Submitted:
07 June 2025
Posted:
09 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
3. Types and Composition of Coffee Industry Residues
3.1. Coffee waste generated during dry/wet processing
3.2. Coffee wastes generated during roasting
3.3. Coffee waste generated during brewing
4. Technologies and Methods for Coffee By-Product Valorization
4.1. Biological processes
4.1.1. Fermentation
4.2. Green extraction techniques
4.2.1. Supercritical CO₂ Extraction
4.2.2. Microwave-Assisted and Ultrasound-Assisted Extraction (MAE & UAE)
4.2.3. Pressurized Liquid Extraction (PLE)
4.3. Chemical conversion
4.3.1. Hydrolysis for sugars and fine chemicals
4.3.2. Maillard Reaction-Based Valorization
4.4. Emerging Technologies
4.4.1. Solid-State Fermentation (SSF)
4.4.2. Encapsulation Technologies
5. Applications of Valorized Coffee by-Products in Food and Feed Industry
5.1. Food Industry Applications
5.1.1. Dietary Fiber Enrichment
5.1.2. Antioxidant Fortification
5.1.3. Prebiotic Potential
5.1.4. Protein Enrichment
5.2. Feed Industry Applications
5.2.1. Livestock Feed Ingredient
5.2.2. Nutrient Supply
5.2.3. Improved Digestibility and Growth
5.2.4. Environmental Benefits
6. Environmental and Economic Perspectives in the Food and Feed Industry
6.1. Life Cycle Assessment (LCA) of Food-Related Valorization
6.2. Cost-Benefit Analysis of Coffee Waste Valorization for Food and Feed
6.3. Carbon Footprint and Emissions Reduction through Food Valorization
7. Policy, Regulatory, and Market Landscape in Food and Feed Valorization
7.1. Waste Management and Bioeconomy Policies Relevant to Food Systems
7.2. Certification and Safety Considerations in Food and Feed Applications
7.3. Market Trends and Investment Landscape in Food and Feed Valorization
8. Challenges and Future Research Directions
8.1. Technical Bottlenecks and Knowledge Gaps
8.2. Integration into Existing Coffee Value Chains
8.3. Standardization and Quality Control
8.4. Opportunities for Interdisciplinary Innovation
9. Conclusion
Author Contributions
Funding
Availability of Data and Materials
Conflict of Interest
References
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Afrouzi, H.N.; Ahmed, J.; Siddique, B.M.; Khairuddin, N.; Hassan, A. A comprehensive review on carbon footprint of regular diet and ways to improving lowered emissions. Results Eng. 2023, 18. [Google Scholar] [CrossRef]
- Aguilar-Rivera, N., & Olvera-Vargas, L. A. (2023). Management of Food Waste for Sustainable Economic Development and Circularity. In Handbook of Sustainability Science in the Future (pp. 1895–1917). Springer, Cham. https://doi.org/10.1007/978-3-031-04560-8_173.
- Ahmed, H.; Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Toward Circular Economy: Potentials of Spent Coffee Grounds in Bioproducts and Chemical Production. Biomass 2024, 4, 286–312. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.; Alfaifi, B.; Elamin, W.; Lateef, M.A. Advancements in Coffee Manufacturing: From Dehydration Techniques to Quality Control. Food Eng. Rev. 2024, 16, 513–539. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health – a comprehensive review. Veter- Q. 2020, 41, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Marina, M.L. Green Extraction Techniques in Food Analysis; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2023. [Google Scholar]
- Aloo, O.S.; Gemechu, F.G.; Oh, H.-J.; Kilel, E.C.; Chelliah, R.; Gonfa, G.; Oh, D.-H. Harnessing fermentation for sustainable beverage production: a tool for improving the nutritional quality of coffee bean and valorizing coffee byproducts. Biocatal. Agric. Biotechnol. 2024, 59. [Google Scholar] [CrossRef]
- Alu'DAtt, M.H.; Alrosan, M.; Gammoh, S.; Tranchant, C.C.; Alhamad, M.N.; Rababah, T.; Zghoul, R.; Alzoubi, H.; Ghatasheh, S.; Ghozlan, K.; et al. Encapsulation-based technologies for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and health-promoting ingredients. Food Biosci. 2022, 50. [Google Scholar] [CrossRef]
- Ameca, G.M.; Cerrilla, M.E.O.; Córdoba, P.Z.; Cruz, A.D.; Hernández, M.S.; Haro, J.H. Chemical composition and antioxidant capacity of coffee pulp. Cienc. E Agrotecnologia 2018, 42, 307–313. [Google Scholar] [CrossRef]
- Andrade, C.; Perestrelo, R.; Câmara, J.S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef]
- Andrade, N.; Peixoto, J.A.B.; Oliveira, M.B.P.P.; Martel, F.; Alves, R.C. Can coffee silverskin be a useful tool to fight metabolic syndrome? Front. Nutr. 2022, 9, 966734. [Google Scholar] [CrossRef]
- Angeloni, S.; Freschi, M.; Marrazzo, P.; Hrelia, S.; Beghelli, D.; Juan-García, A.; Juan, C.; Caprioli, G.; Sagratini, G.; Angeloni, C.; et al. Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxidative Med. Cell. Longev. 2021, 2021. [Google Scholar] [CrossRef]
- Roslan, N.A.; Sukri, S.A.M.; Wei, L.S.; Shahjahan, M.; Rohani, F.; Yea, C.S.; Kabir, M.A.; Guru, A.; Goh, K.W.; Kallem, P.; et al. Replacement of fishmeal by fermented spent coffee ground: Effects on growth performance, feed stability, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep. 2024, 36. [Google Scholar] [CrossRef]
- Osorio-Arias, J.; Delgado-Arias, S.; Cano, L.; Zapata, S.; Quintero, M.; Nuñez, H.; Ramírez, C.; Simpson, R.; Vega-Castro, O. Sustainable Management and Valorization of Spent Coffee Grounds Through the Optimization of Thin Layer Hot Air-Drying Process. Waste Biomass- Valorization 2019, 11, 5015–5026. [Google Scholar] [CrossRef]
- Febrianto, N.A.; Zhu, F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem. 2023, 412, 135489. [Google Scholar] [CrossRef]
- Arya, S.S.; Venkatram, R.; More, P.R.; Vijayan, P. The wastes of coffee bean processing for utilization in food: a review. J. Food Sci. Technol. 2021, 59, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, V.; Chandramughi, V.; Kumar, G.; Ngamcharussrivichai, C.; Piechota, G.; Igliński, B.; Kothari, R.; Chen, W.-H. Advancements in lignocellulosic biomass: A critical appraisal of fourth-generation biofuels and value-added bioproduct. Fuel 2024, 365. [Google Scholar] [CrossRef]
- Fernandes, M.A.d.O.; Baêta, B.E.L.; Adarme, O.F.H.; Fonseca, A. LCA-based carbon footprint analysis of anaerobic digestion of coffee husk waste. Renew. Sustain. Energy Rev. 2024, 207. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
- Banu, J.R.; Kannah, R.Y.; Kumar, M.D.; Preethi; Kavitha, S. ; Gunasekaran, M.; Zhen, G.; Awasthi, M.K.; Kumar, G. Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects. Renew. Sustain. Energy Rev. 2021, 152. [Google Scholar] [CrossRef]
- Barajas-Álvarez, P.; Castillo-Herrera, G.A.; Guatemala-Morales, G.M.; Corona-González, R.I.; Arriola-Guevara, E.; Espinosa-Andrews, H. Supercritical CO2-ethanol extraction of oil from green coffee beans: optimization conditions and bioactive compound identification. J. Food Sci. Technol. 2021, 58, 4514–4523. [Google Scholar] [CrossRef]
- Barcelos, R.P.; Lima, F.D.; Carvalho, N.R.; Bresciani, G.; Royes, L.F. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr. Res. 2020, 80, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Bevilacqua, E.; Cruzat, V.; Singh, I.; Rose’meyer, R.B.; Panchal, S.K.; Brown, L. The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients 2023, 15, 994. [Google Scholar] [CrossRef]
- Bhatia, L.; Jha, H.; Sarkar, T.; Sarangi, P.K. Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review. Int. J. Environ. Res. Public Heal. 2023, 20, 2318. [Google Scholar] [CrossRef]
- Bijla, L.; Hmitti, A.; Fadda, A.; Oubannin, S.; Gagour, J.; Aissa, R.; Laknifli, A.; Sakar, E.H.; Gharby, S. Valorization of spent coffee ground as a natural antioxidant and its use for sunflower oil shelf-life extension. Eur. J. Lipid Sci. Technol. 2024, 126. [Google Scholar] [CrossRef]
- Blanco-Llamero, C.; Macário, H.F.; Guedes, B.N.; Fathi, F.; Oliveira, M.B.P.P.; Souto, E.B. Bioactives in Nutricosmetics: A Focus on Caffeine from Tea to Coffee. Cosmetics 2024, 11, 149. [Google Scholar] [CrossRef]
- Blinová, L. , Sirotiak, M., Bartošová, A., & Soldán, M. (2017). Utilization of Waste From Coffee Production. Vedecké Práce Materiálovotechnologickej Fakulty Slovenskej Technickej Univerzity v Bratislave so Sídlom v Trnave, 25(40), 91–101.
- Blumenthal, P.; Steger, M.C.; Bellucci, A.Q.; Segatz, V.; Rieke-Zapp, J.; Sommerfeld, K.; Schwarz, S.; Einfalt, D.; Lachenmeier, D.W. Production of Coffee Cherry Spirits from Coffea arabica Varieties. Foods 2022, 11, 1672. [Google Scholar] [CrossRef]
- Bondam, A.F.; da Silveira, D.D.; dos Santos, J.P.; Hoffmann, J.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Bruno, M.; Marchi, M.; Ermini, N.; Niccolucci, V.; Pulselli, F.M. Life Cycle Assessment and Cost–Benefit Analysis as Combined Economic–Environmental Assessment Tools: Application to an Anaerobic Digestion Plant. Energies 2023, 16, 3686. [Google Scholar] [CrossRef]
- Bürck, M.; Ramos, S.d.P.; Braga, A.R.C. Enhancing the Biological Effects of Bioactive Compounds from Microalgae through Advanced Processing Techniques: Pioneering Ingredients for Next-Generation Food Production. Foods 2024, 13, 1811. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Arreguín-Campos, A.; Cruz-Medrano, M.A.; Bilbao, M.D.d.C. Spent coffee (Coffea arabicaL.) grounds promote satiety and attenuate energy intake: A pilot study. J. Food Biochem. 2020, 44, e13204. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.A.F.; Sagu, S.T.; Celis, P.S.; Rawel, H.M. Comparison of Batch and Continuous Wet-Processing of Coffee: Changes in the Main Compounds in Beans, By-Products and Wastewater. Foods 2020, 9, 1135. [Google Scholar] [CrossRef]
- Campos, R.C.; Pinto, V.R.A.; Melo, L.F.; da Rocha, S.J.S.S.; Coimbra, J.S. New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. Futur. Foods 2021, 4. [Google Scholar] [CrossRef]
- Cantele, C.; Tedesco, M.; Ghirardello, D.; Zeppa, G.; Bertolino, M. Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods 2022, 11, 717. [Google Scholar] [CrossRef]
- Carmen, M.-T.; Lorena, Z.-C.; Alexander, V.-A.; Amandio, V.; Raúl, S. Coffee Pulp: An Industrial By-product with Uses in Agriculture, Nutrition and Biotechnology. Rev. Agric. Sci. 2020, 8, 323–342. [Google Scholar] [CrossRef]
- Castaldo, L.; Lombardi, S.; Gaspari, A.; Rubino, M.; Izzo, L.; Narváez, A.; Ritieni, A.; Grosso, M. In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Spent Coffee Grounds-Enriched Cookies. Foods 2021, 10, 1837. [Google Scholar] [CrossRef] [PubMed]
- Castro-Díaz, R.; Silva-Beltrán, N.P.; Gámez-Meza, N.; Calderón, K. The Antimicrobial Effects of Coffee and By-Products and Their Potential Applications in Healthcare and Agricultural Sectors: A State-of-Art Review. Microorganisms 2025, 13, 215. [Google Scholar] [CrossRef]
- Cavanagh, Q.; Brooks, M.S.-L.; Rupasinghe, H. Innovative technologies used to convert spent coffee grounds into new food ingredients: Opportunities, challenges, and prospects. Futur. Foods 2023, 8. [Google Scholar] [CrossRef]
- Chala, B.; Oechsner, H.; Latif, S.; Müller, J. Biogas Potential of Coffee Processing Waste in Ethiopia. Sustainability 2018, 10, 2678. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Xu, B.; Chen, J. Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. Food Rev. Int. 2021, 39, 1333–1358. [Google Scholar] [CrossRef]
- Choe, U. Valorization of spent coffee grounds and their applications in food science. Curr. Res. Food Sci. 2025, 10, 101010. [Google Scholar] [CrossRef] [PubMed]
- Borah, M.S.; Tiwari, A.; Sridhar, K.; Narsaiah, K.; Nayak, P.K.; Inbaraj, B.S. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023, 12, 3823. [Google Scholar] [CrossRef]
- de la Cruz, S.T.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; del Castillo, M.D. An Assessment of the Bioactivity of Coffee Silverskin Melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Cubas, A.L.V.; Hermann, K.A.d.C.; Lins, E.F.; Maraschin, M.; Coelho, D.S.; Moecke, E.H.S. Spent ground coffee oil using non-thermal plasma technology as a pre-extraction method: an in vitro analysis of collagen synthesis, cell proliferation and migration and toxicity. Sustain. Chem. Pharm. 2022, 29. [Google Scholar] [CrossRef]
- Dabade, A. (2020). Extraction and Functional Properties of Crude Proteins from Coffee Silver Skin and its Cost Effective Application. NCIFEH Conference Proceeding Sept April, 252.
- Dari, D.N.; da Silva, L.F.; Júnior, A.M.B.L.; Freitas, I.S.; Aires, F.I.d.S.; dos Santos, J.C.S. Spent coffee grounds: Insights and future prospects for bioenergy and circular economy applications. Green Technol. Sustain. 2025, 3. [Google Scholar] [CrossRef]
- de Almeida, M.N.; Halfeld, G.G.; da Costa, I.B.; Guimarães, L.G.d.L.; Cordeiro, B.; Guimarães, V.M. Exploring the Potential of Coffee Husks as a Raw Material for Second-Generation Ethanol Production. BioEnergy Res. 2023, 17, 281–293. [Google Scholar] [CrossRef]
- de Moraes, F. , Moraes, B. De, Kulay, L., & Trianni, A. (2025). Integrating life cycle assessment and ecodesign to improve product effectiveness and environmental performance: A novel approach. Sustainable Production and Consumption, 55(24), 76–89. 20 October. [CrossRef]
- de Otálora, X.D.; Ruiz, R.; Goiri, I.; Rey, J.; Atxaerandio, R.; Martin, D.S.; Orive, M.; Iñarra, B.; Zufia, J.; Urkiza, J.; et al. valorisation of spent coffee grounds as functional feed ingredient improves productive performance of Latxa dairy ewes. Anim. Feed. Sci. Technol. 2020, 264. [Google Scholar] [CrossRef]
- de Souza, T.S.P.; Kawaguti, H.Y. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Dhiman, S.; Thakur, B.; Kaur, S.; Ahuja, M.; Gantayat, S.; Sarkar, S.; Singh, R.; Tripathi, M. Closing the loop: technological innovations in food waste valorisation for global sustainability. Discov. Sustain. 2025, 6, 1–35. [Google Scholar] [CrossRef]
- Díaz-Hernández, G.C.; Alvarez-Fitz, P.; Maldonado-Astudillo, Y.I.; Jiménez-Hernández, J.; Parra-Rojas, I.; Flores-Alfaro, E.; Salazar, R.; Ramírez, M. Antibacterial, Antiradical and Antiproliferative Potential of Green, Roasted, and Spent Coffee Extracts. Appl. Sci. 2022, 12, 1938. [Google Scholar] [CrossRef]
- Divyashri, G.; Murthy, T.P.K.; Ragavan, K.V.; Sumukh, G.M.; Sudha, L.S.; Nishka, S.; Himanshi, G.; Misriya, N.; Sharada, B.; Venkataramanaiah, R.A. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 2023, 9, e20212. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, D.; Gablo, N.; Zelenkova, L.; Dordevic, S.; Tremlova, B. Utilization of Spent Coffee Grounds as a Food By-Product to Produce Edible Films Based on κ-Carrageenan with Biodegradable and Active Properties. Foods 2024, 13, 1833. [Google Scholar] [CrossRef]
- dos Muchangos, L.S.; Mejia, C.; Gupta, R.; Sadreghazi, S.; Kajikawa, Y. A systematic review of life cycle assessment and environmental footprint for the global coffee value chain. Environ. Impact Assess. Rev. 2024, 111. [Google Scholar] [CrossRef]
- dos Santos, É.M.; de Macedo, L.M.; Ataide, J.A.; Delafiori, J.; Guarnieri, J.P.d.O.; Rosa, P.C.P.; Ruiz, A.L.T.G.; Lancellotti, M.; Jozala, A.F.; Catharino, R.R.; et al. Antioxidant, antimicrobial and healing properties of an extract from coffee pulp for the development of a phytocosmetic. Sci. Rep. 2024, 14, 1–11. [Google Scholar] [CrossRef]
- dos Santos, É.M.; de Macedo, L.M.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.; Mazzola, P.G. Coffee by-products in topical formulations: A review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Durán-Aranguren, D.D.; Robledo, S.; Gomez-Restrepo, E.; Valencia, J.W.A.; Tarazona, N.A. Scientometric Overview of Coffee By-Products and Their Applications. Molecules 2021, 26, 7605. [Google Scholar] [CrossRef]
- EC, (European Commission). (2018). A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. https://doi.org/10.2777/478385.
- Enrique, O.-M. , Esther, M. ( 15, 149–158.
- Erismann, Y.; Brück, W.M.; Andlauer, W. Solid-State Fermentation of Agro-Industrial By-Products. Nutraceuticals 2025, 5, 11. [Google Scholar] [CrossRef]
- Estrada-Flores, J.G.; Pedraza-Beltrán, P.E.; Yong-Ángel, G.; Avilés-Nova, F.; Rayas-Amor, A.-A.; Solís-Méndez, A.D.; González-Ronquillo, M.; Vázquez-Carrillo, M.F.; Castelán-Ortega, O.A. Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture 2021, 11, 416. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Bin Amin, M. Circular economy and sustainable practices in the food industry: A comprehensive bibliometric analysis. Clean. Responsible Consum. 2024, 14. [Google Scholar] [CrossRef]
- Forcina, A.; Petrillo, A.; Travaglioni, M.; di Chiara, S.; De Felice, F. A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites. J. Clean. Prod. 2022, 385. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Franca, A.S.; Basílio, E.P.; Resende, L.M.; Fante, C.A.; Oliveira, L.S. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods 2024, 13, 3935. [Google Scholar] [CrossRef] [PubMed]
- Franca, A. S. , & Oliveira, L. S. (2009). Coffee Processing Solid Waste: Current uses and future perspectives. In Agricultural Wastes (pp. 156–189).
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef]
- Gambero Rosso. (2021). Cascara, coffee husk infusion: what is it and how is it made. https://www.gamberorossointernational.
- Genanaw, W.; Kanno, G.G.; Derese, D.; Aregu, M.B. Effect of Wastewater Discharge From Coffee Processing Plant on River Water Quality, Sidama Region, South Ethiopia. Environ. Heal. Insights 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ramírez, A.; Rebollo-Hernanz, M.; Cañas, S.; Cobeta, I.M.; Rodríguez-Rodríguez, P.; Gila-Díaz, A.; Benítez, V.; Arribas, S.M.; Aguilera, Y.; Martín-Cabrejas, M.A. Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy. Foods 2024, 13, 3006. [Google Scholar] [CrossRef]
- Ginting, A.R.; Kit, T.; Mingvanish, W.; Thanasupsin, S.P. Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. Sustainability 2022, 14, 8435. [Google Scholar] [CrossRef]
- Górska, A.; Brzezińska, R.; Wirkowska-Wojdyła, M.; Bryś, J.; Domian, E.; Ostrowska-Ligęza, E. Application of Thermal Methods to Analyze the Properties of Coffee Silverskin and Oil Extracted from the Studied Roasting By-Product. Appl. Sci. 2020, 10, 8790. [Google Scholar] [CrossRef]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef]
- Gouvea, B.M.; Torres, C.; Franca, A.S.; Oliveira, L.S.; Oliveira, L.S.; Oliveira, E.S. Feasibility of ethanol production from coffee husks. Biotechnol. Lett. 2009, 31, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Ground to Ground. (2015). The Amazing Opportunitites in Coffee Pulp Recycling. https://groundtoground. 2015.
- Gupta, M.K.; Balodi, V.; Tripathi, A.D. ; Rizwana; Agarwal, A.; Nirmal, N.P.
- Herzyk, F.; Piłakowska-Pietras, D.; Korzeniowska, M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024, 13, 1713. [Google Scholar] [CrossRef] [PubMed]
- Horgan, F.G.; Floyd, D.; Mundaca, E.A.; Crisol-Martínez, E. Spent Coffee Grounds Applied as a Top-Dressing or Incorporated into the Soil Can Improve Plant Growth While Reducing Slug Herbivory. Agriculture 2023, 13, 257. [Google Scholar] [CrossRef]
- Hu, S.; Gil-Ramírez, A.; Martín-Trueba, M.; Benítez, V.; Aguilera, Y.; Martín-Cabrejas, M.A. Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Curr. Res. Food Sci. 2023, 6, 100475. [Google Scholar] [CrossRef]
- Huang, C.-H.; Liao, Y.-M.; Tsai, G.-J. Solid-State Fermentation of Grain-Derived By-Products by Aspergillus kawachii and Rhizopus oryzae: Preparation and Evaluation of Anti-Allergic Activity. Fermentation 2024, 10, 457. [Google Scholar] [CrossRef]
- Irawan, A.; Rabemanolontsoa, H.; McLellan, B.C. Comprehensive Environmental Impact Analysis of Dry Processing Methods for Specialty Coffee Beans in Bondowoso, Indonesia Using Life Cycle Assessment. Biomass 2024, 4, 843–864. [Google Scholar] [CrossRef]
- Iriondo-dehond, A. , Fernandez-gomez, B., National, S., Martinez-saez, N., & Martirosyan, D. M. (2017). Coffee Silverskin: A Low-Cost Substrate for Bioproduction of High-Value Health Promoting Products. Annals of Nutrition & Food Science, 1(September), 1–7.
- Iriondo-DeHond, A.; Iriondo-DeHond, M.; del Castillo, M.D. Applications of Compounds from Coffee Processing By-Products. Biomolecules 2020, 10, 1219. [Google Scholar] [CrossRef] [PubMed]
- Jirarat, W.; Kaewsalud, T.; Yakul, K.; Rachtanapun, P.; Chaiyaso, T. Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides. Foods 2024, 13, 1230. [Google Scholar] [CrossRef]
- Jomnonkhaow, U.; Plangklang, P.; Reungsang, A.; Peng, C.-Y.; Chu, C.-Y. Valorization of spent coffee grounds through integrated bioprocess of fermentable sugars, volatile fatty acids, yeast-based single-cell protein and biofuels production. Bioresour. Technol. 2023, 393, 130107. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.-C.; Kim, Y.Y.; Yang, J.E.; Lee, H.M.; Hwang, I.M.; Park, H.W.; Kim, H.M. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. Sci. Total. Environ. 2023, 912, 169521. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; de Rezende, T.R.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Koay, H.; Azman, A.; Zin, Z.M.; Portman, K.; Hasmadi, M.; Rusli, N.; Aidat, O.; Zainol, M. Assessing the impact of spent coffee ground (SCG) concentrations on shortbread: A study of physicochemical attributes and sensory acceptance. Futur. Foods 2023, 8. [Google Scholar] [CrossRef]
- Koskinakis, S.E.; Stergiopoulos, C.; Vasileiou, C.; Krokida, M. Sustainable Valorization of Coffee Silverskin Waste: Pressurized Liquid Extraction of Bioactive Compounds. Foods 2025, 14, 615. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Athanassiou, C.G.; Lalas, S.I. Utilization of Spent Coffee Grounds as a Feed Additive for Enhancing the Nutritional Value of Tenebrio molitor Larvae. Sustainability 2023, 15, 16224. [Google Scholar] [CrossRef]
- Král, E.; Rukov, J.L.; Mendes, A.C. Coffee Cherry on the Top: Disserting Valorization of Coffee Pulp and Husk. Food Eng. Rev. 2023, 16, 146–162. [Google Scholar] [CrossRef]
- Kumar, A.; Agrawal, A. Recent trends in solid waste management status, challenges, and potential for the future Indian cities – A review. Curr. Res. Environ. Sustain. 2020, 2. [Google Scholar] [CrossRef]
- Kusumocahyo, S.P.; Tangguh, P.; Annelies, C.D.; Sutanto, H. Utilization of Coffee Silverskin By-Product from Coffee Roasting Industry through Extraction Process for the Development of Antioxidant Skin Gel. 2019, 70, 313–325.
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material utilization of green waste: a review on potential valorization methods. Bioresour. Bioprocess. 2021, 8, 1–26. [Google Scholar] [CrossRef]
- Liu, T.-C.; Wu, Y.-C.; Chau, C.-F. An Overview of Carbon Emission Mitigation in the Food Industry: Efforts, Challenges, and Opportunities. Processes 2023, 11, 1993. [Google Scholar] [CrossRef]
- Liu, Z.; de Souza, T.S.P.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A.R. Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes 2023, 11, 840. [Google Scholar] [CrossRef]
- Lorbeer, L.; Schwarz, S.; Franke, H.; Lachenmeier, D.W. Toxicological Assessment of Roasted Coffee Silver Skin (Testa of Coffea sp.) as Novel Food Ingredient. Molecules 2022, 27, 6839. [Google Scholar] [CrossRef]
- Nonglait, D.L.; Gokhale, J.S. Review Insights on the Demand for Natural Pigments and Their Recovery by Emerging Microwave-Assisted Extraction (MAE). Food Bioprocess Technol. 2023, 17, 1681–1705. [Google Scholar] [CrossRef]
- Machado, M.; Santo, L.E.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef]
- Machado, M.; Ferreira, H.; Oliveira, M.B.P.P.; Alves, R.C. Coffee by-products: An underexplored source of prebiotic ingredients. Crit. Rev. Food Sci. Nutr. 2023, 64, 7181–7200. [Google Scholar] [CrossRef]
- Machado, M.; Galrinho, M.F.; Passos, C.P.; Santo, L.E.; Chiș, M.S.; Ranga, F.; Puga, H.; Palmeira, J.; Coimbra, M.A.; Oliveira, M.B.P.; et al. Prebiotic potential of a coffee silverskin extract obtained by ultrasound-assisted extraction on Lacticaseibacillus paracasei subsp. paracasei. J. Funct. Foods 2024, 120. [Google Scholar] [CrossRef]
- Maiyah, N.; Kerdpiboon, S.; Supapvanich, S.; Kerr, W.L.; Sriprom, P.; Chotigavin, N.; Klaypradit, W.; Puttongsiri, T. Recovering bioactive compounds and antioxidant capacity of medium roasted spent coffee grounds through varied hydrothermal brewing cycles. J. Agric. Food Res. 2025, 20. [Google Scholar] [CrossRef]
- Marew, L.; Meheret, F.; Asmare, B. Effect of Processed Coffee Husk on Feed Intake, Nutrient Digestibility, Body Weight Changes and Economic Feasibility of Bonga Sheep Fed on Natural Pasture Hay as a Basal Diet. Veter- Med. Sci. 2024, 10, e70118. [Google Scholar] [CrossRef]
- Ghinea, C.; Ungureanu-Comăniță, E.-D.; Țâbuleac, R.M.; Oprea, P.S.; Coșbuc, E.D.; Gavrilescu, M. Cost-Benefit Analysis of Enzymatic Hydrolysis Alternatives for Food Waste Management. Foods 2025, 14, 488. [Google Scholar] [CrossRef]
- Marques, C.; Güneş, S.; Vilela, A.; Gomes, R. Life-Cycle Assessment in Agri-Food Systems and the Wine Industry—A Circular Economy Perspective. Foods 2025, 14, 1553. [Google Scholar] [CrossRef]
- Marzorati, S.; Jiménez-Quero, A.; Massironi, A.; Nasti, R.; Verotta, L. Circular valorization of coffee silverskin through supercritical CO2 for the production of functional extracts. RSC Sustain. 2023, 1, 563–573. [Google Scholar] [CrossRef]
- Masssijaya, S.Y.; Lubis, M.A.R.; Nissa, R.C.; Nurhamiyah, Y.; Nugroho, P.; Antov, P.; Lee, S.-H.; Papadopoulos, A.N.; Kusumah, S.S.; Karlinasari, L. Utilization of Spent Coffee Grounds as a Sustainable Resource for the Synthesis of Bioplastic Composites with Polylactic Acid, Starch, and Sucrose. J. Compos. Sci. 2023, 7, 512. [Google Scholar] [CrossRef]
- Mediani, A.; Kamal, N.; Lee, S.Y.; Abas, F.; Farag, M.A. Green Extraction Methods for Isolation of Bioactive Substances from Coffee Seed and Spent. Sep. Purif. Rev. 2022, 52, 24–42. [Google Scholar] [CrossRef]
- Melios, S.; Johnson, H.; Grasso, S. Sensory quality and regulatory aspects of upcycled foods: Challenges and opportunities. Food Res. Int. 2024, 199, 115360. [Google Scholar] [CrossRef] [PubMed]
- Moccand, C.; Manchala, A.D.; Sauvageat, J.-L.; Lima, A.; FleuryRey, Y.; Glabasnia, A. Improvement of Robusta coffee aroma by modulating flavor precursors in the green coffee bean with enzymatically treated spent coffee grounds: A circular approach. Food Res. Int. 2023, 170, 112987. [Google Scholar] [CrossRef]
- Montemurro, M.; Casertano, M.; Vilas-Franquesa, A.; Rizzello, C.G.; Fogliano, V. Exploitation of spent coffee ground (SCG) as a source of functional compounds and growth substrate for probiotic lactic acid bacteria. LWT 2024, 198. [Google Scholar] [CrossRef]
- Montoya-Hernández, D.; Dufoo-Hurtado, E.; Cruz-Hernández, A.; Campos-Vega, R. Spent coffee grounds and its antioxidant dietary fiber promote different colonic microbiome signatures: Benefits for subjects with chronodisruption. Microb. Pathog. 2023, 185, 106431. [Google Scholar] [CrossRef]
- Mota, D.A.; Santos, J.C.B.; Faria, D.; Lima, Á.S.; Krause, L.C.; Soares, C.M.F.; Ferreira-Dias, S. Synthesis of Dietetic Structured Lipids from Spent Coffee Grounds Crude Oil Catalyzed by Commercial Immobilized Lipases and Immobilized Rhizopus oryzae Lipase on Biochar and Hybrid Support. Processes 2020, 8, 1542. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Pereira, A.D.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M.; Srinivas, P. Production of α-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 2009, 84, 1246–1249. [Google Scholar] [CrossRef]
- Navajas-Porras, B.; Castillo-Correa, M.; Navarro-Hortal, M.D.; Montalbán-Hernández, C.; Peña-Guzmán, D.; Hinojosa-Nogueira, D.; Romero-Márquez, J.M. The Valorization of Coffee By-Products and Waste Through the Use of Green Extraction Techniques: A Bibliometric Analysis. Appl. Sci. 2025, 15, 1505. [Google Scholar] [CrossRef]
- Neto, D.P.d.C.; Gonot-Schoupinsky, X.P.; Gonot-Schoupinsky, F.N. Coffee as a Naturally Beneficial and Sustainable Ingredient in Personal Care Products: A Systematic Scoping Review of the Evidence. Front. Sustain. 2021, 2. [Google Scholar] [CrossRef]
- Van Nguyen, D.; Duong, C.T.T.; Vu, C.N.M.; Nguyen, H.M.; Pham, T.T.; Tran-Thuy, T.-M.; Nguyen, L.Q. Data on chemical composition of coffee husks and lignin microparticles as their extracted product. Data Brief 2023, 51, 109781. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Velotto, S.; D'AUria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. J. Clean. Prod. 2022, 370. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Esposito, F.; Velotto, S.; Romano, R.; Aponte, M.; Giarra, A.; Toscanesi, M.; Montella, E.; Cirillo, T. Coffee Silverskin: Chemical and Biological Risk Assessment and Health Profile for Its Potential Use in Functional Foods. Foods 2022, 11, 2834. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.N.; Arias, B.S.C.; Quintero, J.C.d.l.V.; Baca, S.Z.; Pais-Chanfrau, J.M. Multi-Objective Statistical Optimization of Pectinolytic Enzymes Production by an Aspergillus sp. on Dehydrated Coffee Residues in Solid-State Fermentation. Fermentation 2022, 8, 170. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass- Valorization 2020, 12, 2145–2169. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Bertuzzi, T.; Oleszek, W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023, 28, 342. [Google Scholar] [CrossRef]
- Oyedeji, S., Patel, N., Krishnamurthy, R., & Fatoba, P. O. (2024). Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion. In Advances in Biochemical Engineering/Biotechnology (pp. 1–34). Springer. https://doi.org/10.1007/10_2024_274.
- Pal, P.; Singh, A.K.; Srivastava, R.K.; Rathore, S.S.; Sahoo, U.K.; Subudhi, S.; Sarangi, P.K.; Prus, P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024, 13, 3007. [Google Scholar] [CrossRef]
- Papageorgiou, C.; Dermesonlouoglou, E.; Tsimogiannis, D.; Taoukis, P. Enrichment of Bakery Products with Antioxidant and Dietary Fiber Ingredients Obtained from Spent Coffee Ground. Appl. Sci. 2024, 14, 6863. [Google Scholar] [CrossRef]
- Peixoto, J.A.B.; Andrade, N.; Machado, S.; Costa, A.S.G.; Puga, H.; Oliveira, M.B.P.P.; Martel, F.; Alves, R.C. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Brenes-Peralta, L.; De Menna, F.; Vittuari, M. Interlinked driving factors for decision-making in sustainable coffee production. Environ. Dev. Sustain. 2022, 26, 3297–3330. [Google Scholar] [CrossRef]
- Phuong, D.V.; Quoc, L.P.T.; Van Tan, P.; Duy, L.N.D. Production of bioethanol from Robusta coffee pulp (Coffea robusta L.) in Vietnam. Food raw Mater. 2019, 7, 10–17. [Google Scholar] [CrossRef]
- Pillaca-Pullo, O.S.; Lopes, A.M.; Bautista-Cruz, N.; Estela-Escalante, W. From coffee waste to nutritional gold: bioreactor cultivation of single-cell protein from Candida sorboxylosa. J. Chem. Technol. Biotechnol. 2024, 100, 360–368. [Google Scholar] [CrossRef]
- Poltronieri, P.; Rossi, F. Challenges in Specialty Coffee Processing and Quality Assurance. Challenges 2016, 7, 19. [Google Scholar] [CrossRef]
- Pongsiriyakul, K.; Wongsurakul, P.; Kiatkittipong, W.; Premashthira, A.; Kuldilok, K.; Najdanovic-Visak, V.; Adhikari, S.; Cognet, P.; Kida, T.; Assabumrungrat, S. Upcycling Coffee Waste: Key Industrial Activities for Advancing Circular Economy and Overcoming Commercialization Challenges. Processes 2024, 12, 2851. [Google Scholar] [CrossRef]
- Powell, M.D.; LaCoste, J.D.; Fetrow, C.J.; Fei, L.; Wei, S. Bio-derived nanomaterials for energy storage and conversion. Nano Sel. 2021, 2, 1682–1706. [Google Scholar] [CrossRef]
- Pyrzynska, K. Useful Extracts from Coffee By-Products: A Brief Review. Separations 2024, 11, 334. [Google Scholar] [CrossRef]
- Pyrzynska, K. Spent Coffee Grounds as a Source of Chlorogenic Acid. Molecules 2025, 30, 613. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Xie, J.; Cui, H.; Mozafari, M.R.; Chen, W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit. Rev. Food Sci. Nutr. 2021, 63, 3362–3385. [Google Scholar] [CrossRef]
- Ravindran, R.; Williams, G.A.; Jaiswal, A.K. Spent Coffee Waste as a Potential Media Component for Xylanase Production and Potential Application in Juice Enrichment. Foods 2019, 8, 585. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Aguilera, Y.; Gil-Ramírez, A.; Benítez, V.; Cañas, S.; Braojos, C.; Martin-Cabrejas, M.A. Biorefinery and Stepwise Strategies for Valorizing Coffee By-Products as Bioactive Food Ingredients and Nutraceuticals. Appl. Sci. 2023, 13, 8326. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Fernández-Gómez, B.; Herrero, M.; Aguilera, Y.; Martín-Cabrejas, M.A.; Uribarri, J.; del Castillo, M.D. Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin Extract via a Mixed Mechanism of Action. Foods 2019, 8, 438. [Google Scholar] [CrossRef]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Basile, G.; Nitride, C.; Pizzolongo, F.; Masi, P. The Use of Carbon Dioxide as a Green Approach to Recover Bioactive Compounds from Spent Coffee Grounds. Foods 2023, 12, 1958. [Google Scholar] [CrossRef]
- Ronie, M.E.; Aziz, A.H.A.; Kobun, R.; Pindi, W.; Roslan, J.; Putra, N.R.; Mamat, H. Unveiling the potential applications of plant by-products in food – A review. Waste Manag. Bull. 2024, 2, 183–203. [Google Scholar] [CrossRef]
- Ayyaril, S.S.; Shanableh, A.; Bhattacharjee, S.; Rawas-Qalaji, M.; Cagliani, R.; Shabib, A.G.; Khan, M.I. Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results Eng. 2023, 18. [Google Scholar] [CrossRef]
- Sajid, M.; Ertz, M. Blueprints to Benefits: Towards an Index to Measure the Impact of Sustainable Product Development on the Firm’s Bottom Line. Sustainability 2024, 16, 537. [Google Scholar] [CrossRef]
- Sakouhi, F.; Saadi, C.; Omrani, I.; Boukhchina, S.; Solana, R.R. Quality parameters and lipid composition of oil extracted from spent coffee grounds: A promising alternative to vegetable oils used for consumption and cosmetic purposes. Eur. J. Lipid Sci. Technol. 2024, 126. [Google Scholar] [CrossRef]
- Martin, D.S.; Ibarruri, J.; Luengo, N.; Ferrer, J.; García-Rodríguez, A.; Goiri, I.; Atxaerandio, R.; Medjadbi, M.; Zufía, J.; de Cámara, E.S.; et al. Evaluation of Valorisation Strategies to Improve Spent Coffee Grounds’ Nutritional Value as an Ingredient for Ruminants’ Diets. Animals 2023, 13, 1477. [Google Scholar] [CrossRef]
- Martin, D.S.; Orive, M.; Iñarra, B.; García, A.; Goiri, I.; Atxaerandio, R.; Urkiza, J.; Zufía, J. Spent coffee ground as second-generation feedstuff for dairy cattle. Biomass- Convers. Biorefinery 2020, 11, 589–599. [Google Scholar] [CrossRef]
- Saratale, G.D.; Bhosale, R.; Shobana, S.; Banu, J.R.; Pugazhendhi, A.; Mahmoud, E.; Sirohi, R.; Bhatia, S.K.; Atabani, A.; Mulone, V.; et al. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresour. Technol. 2020, 314, 123800. [Google Scholar] [CrossRef]
- Sarghini, F.; Marra, F.; De Vivo, A.; Vitaglione, P.; Mauriello, G.; Maresca, D.; Troise, A.D.; Echeverria-Jaramillo, E. Acid hydrolysis of spent coffee grounds: effects on possible prebiotic activity of oligosaccharides. Chem. Biol. Technol. Agric. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Komlenić, D.K.; Bucić-Kojić, A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021, 10, 927. [Google Scholar] [CrossRef]
- Serna-Jiménez, J.A.; Siles, J.A.; de los Ángeles Martín, M.; Chica, A.F. A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization. Processes 2022, 10, 2436. [Google Scholar] [CrossRef]
- Shaddel, R.; Akbari-Alavijeh, S.; Cacciotti, I.; Yousefi, S.; Tomas, M.; Capanoglu, E.; Tarhan, O.; Rashidinejad, A.; Rezaei, A.; Bhia, M.; et al. Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications. Crit. Rev. Food Sci. Nutr. 2022, 64, 4940–4965. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.; Xie, J.; Yang, X. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef]
- Shawky, E.; Gibbons, S.; Selim, D.A. Bio-sourcing from byproducts: A comprehensive review of bioactive molecules in Agri-Food Waste (AFW) streams for valorization and sustainable applications. Bioresour. Technol. 2025, 132640. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochemistry 2023, 101, 106646. [Google Scholar] [CrossRef]
- Sidło, W.; Latosińska, J. Reuse of Spent Coffee Grounds: Alternative Applications, Challenges, and Prospects—A Review. Appl. Sci. 2024, 15, 137. [Google Scholar] [CrossRef]
- Silva, M.d.O.; Honfoga, J.N.B.; de Medeiros, L.L.; Madruga, M.S.; Bezerra, T.K.A. Obtaining Bioactive Compounds from the Coffee Husk (Coffea arabica L.) Using Different Extraction Methods. Molecules 2020, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-products and food wastes: are they safe enough for their valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Sommano, S.R.; Jantrawut, P.; Sangta, J.; Chanabodeechalermrung, B.; Sunanta, P.; Bakshani, C.; Willats, W. Utilization of coffee pulp for the production of sustainable cellulosic composite and plant-based hydrogel as a potential human wound dressing. Food Struct. 2023, 37. [Google Scholar] [CrossRef]
- Spratt, O.; Suri, R.; Deutsch, J. Defining Upcycled Food Products. J. Culin. Sci. Technol. 2020, 19, 485–496. [Google Scholar] [CrossRef]
- Stem Fellowship. (2022). Spent Coffee Ground Biodiesel: a brief introduction to an alternative fuel source and its production. https://live.stemfellowship.
- Stubenrauch, J.; Garske, B.; Ekardt, F.; Hagemann, K. European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. Sustainability 2022, 14, 4365. [Google Scholar] [CrossRef]
- Stylianou, M.; Agapiou, A.; Omirou, M.; Vyrides, I.; Ioannides, I.M.; Maratheftis, G.; Fasoula, D. Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environ. Sci. Pollut. Res. 2018, 25, 35776–35790. [Google Scholar] [CrossRef]
- Takala, B. Utilization of Coffee Husk and Pulp Waste as Soil Amendment. A Review. 2021, 12, 10–16. [Google Scholar] [CrossRef]
- Tamilselvan, K.; Sundarajan, S.; Ramakrishna, S.; Amirul, A.-A.A.; Vigneswari, S. Sustainable valorisation of coffee husk into value added product in the context of circular bioeconomy: Exploring potential biomass-based value webs. Food Bioprod. Process. 2024, 145, 187–202. [Google Scholar] [CrossRef]
- Tkaczenko, H.; Kurhaluk, N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int. J. Mol. Sci. 2025, 26, 1098. [Google Scholar] [CrossRef]
- Tolesa, S.F.; Tolesa, B.F. An Examination of Ethiopian Data on the Coffee Value Chain from a Systemic Perspective. Int. J. Bus. Econ. Res. 2024, 13, 142–151. [Google Scholar] [CrossRef]
- Tripathi, M.; Sharma, M.; Bala, S.; Connell, J.; Newbold, J.R.; Rees, R.M.; Aminabhavi, T.M.; Thakur, V.K.; Gupta, V.K. Conversion technologies for valorization of hemp lignocellulosic biomass for potential biorefinery applications. Sep. Purif. Technol. 2023, 320. [Google Scholar] [CrossRef]
- Tripathi, S.; Murthy, P.S. Coffee oligosaccharides and their role in health and wellness. Food Res. Int. 2023, 173, 113288. [Google Scholar] [CrossRef]
- Tun, M.M.; Raclavská, H.; Juchelková, D.; Růžičková, J.; Šafář, M.; Štrbová, K.; Gikas, P. Spent coffee ground as renewable energy source: Evaluation of the drying processes. J. Environ. Manag. 2020, 275, 111204. [Google Scholar] [CrossRef] [PubMed]
- Ufitikirezi, J.d.D.M.; Filip, M.; Ghorbani, M.; Zoubek, T.; Olšan, P.; Bumbálek, R.; Strob, M.; Bartoš, P.; Umurungi, S.N.; Murindangabo, Y.T.; et al. Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion. Sustainability 2024, 16, 3617. [Google Scholar] [CrossRef]
- Urugo, M.M.; Teka, T.A.; Gemede, H.F.; Mersha, S.; Tessema, A.; Woldemariam, H.W.; Admassu, H. A comprehensive review of current approaches on food waste reduction strategies. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70011. [Google Scholar] [CrossRef] [PubMed]
- USDA, (United States Department of Agriculture Foreign Agricultural Services). (2025). Production- Coffee. 2024/2025 Coffee Production Trend. https://www.fas.usda. 0711.
- Van Doan, H.; Lumsangkul, C.; Hoseinifar, S.H.; Harikrishnan, R.; Balasundaram, C.; Jaturasitha, S. Effects of coffee silverskin on growth performance, immune response, and disease resistance of Nile tilapia culture under biofloc system. Aquaculture 2021, 543. [Google Scholar] [CrossRef]
- Vargas-Serna, C.L.; Pineda-Osorio, A.N.; Gallego-Ocampo, H.L.; Plaza-Dorado, J.L.; Ochoa-Martínez, C.I. Transforming Coffee and Meat By-Products into Protein-Rich Meal via Black Soldier Fly Larvae (Hermetia illucens). Sustainability 2025, 17, 460. [Google Scholar] [CrossRef]
- Wongsiridetchai, C.; Jonjaroen, V.; Sawangwan, T.; Charoenrat, T.; Chantorn, S. Evaluation of prebiotic mannooligosaccharides obtained from spent coffee grounds for nutraceutical application. LWT 2021, 148. [Google Scholar] [CrossRef]
- Yusufoğlu, B.; Kezer, G.; Wang, Y.; Ziora, Z.M.; Esatbeyoglu, T. Bio-recycling of spent coffee grounds: Recent advances and potential applications. Curr. Opin. Food Sci. 2023, 55. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P. Food waste valorization advocating Circular Bioeconomy - A critical review of potentialities and perspectives of spent coffee grounds biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, D.; Zhao, X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 2021, 146. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Shabbir, M.A.; Aslam Maan, A.; Khan, M.K.I.; Nadeem, M.; Khalil, A.A.; Din, A.; Aadil, R.M. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. Food Rev. Int. 2020. [Google Scholar] [CrossRef]






| Processing Stage | Types of Byproduct | Key nutritional and Bioactive Compounds Composition | References |
| Wet processing | Pulp (43%) | Carbohydrates (31%), dietary fiber (46%), proteins (9-10%), lipids (1–2%), minerals (6–10%), cellulose (25%), hemicellulose (3%), lignin (20-31%), Ash (6-7%), polyphenols (8%), caffeine (18%) | (Ameca et al., 2018; Chala et al., 2018; Machado et al., 2023; Phuong et al., 2019) |
| Dry processing | Husk (50% w/w) | Carbohydrates (43-85%), Total dietary fiber (39%), cellulose (39-43%),lignin (6-42%), and hemicellulose (9-12%), protein (8-11%), lipids (1-3%), ash (7%), Ash (9.5%), minerals (3-7%), tanins (5%), caffeine (1%) | (Chala et al., 2018; de Almeida et al., 2023; Gouvea et al., 2009; Machado et al., 2023; Nguyen et al., 2023) |
| Roasting | Silverskin (4.2% w/w) | Carbohydrate (5-14.5%) Dietary fiber (50-65%), proteins (7-22%), lipids (1-3%), Ash (7-11%), Caffeine (0.8-1.3%), chlorogenic acids (1-6.8%), melanoidins (17-23%) | (Gottstein et al., 2021; Iriondo-dehond et al., 2017; Lorbeer et al., 2022; Machado et al., 2023) |
| Brewing | Spent coffee grounds (91% w/w) | Carbohydrate (45-89%), cellulose 8–25%, hemicellulose 30–40%), lignin (20–30%), lipids (1.5-27%), Caffeine (1–2%), Ash (8-11%), protein (10-17%), minerals (0.1-1%). | (Blinová et al., 2017; Franca & Oliveira, 2022; Machado et al., 2023) |
| Application Area | Product | Coffee By-Product Used | Main Findings | Reference |
| Food Industry | Dietary Fibers | Pulp, Husk, Silverskin | The addition of coffee silverskin to chocolate cakes increased dietary fiber, antioxidant capacity, and phenolic content, with cakes containing 2.6% and 3.6% CS receiving good sensory acceptance. Despite the lower acceptance of cakes with 4.6% CS, the study confirms CS’s potential as a functional food ingredient with significant health benefits. | (Franca et al., 2024) |
| Antioxidants | SCG | Cookies enriched with SCGc contained 780 mg of melanoidins, 16.2 mg of chlorogenic acid (CGA), 6.5 mg of caffeine, and 0.08 mg of phenolic acids per 100 g of sample. Among the CGAs, 5-caffeoylquinic acid was the most abundant, measured at 116.4 mg/100 g in SCG and 8.2 mg/100 g in SCGc. Compared to control cookies, the SCGc samples exhibited significantly higher antioxidant activity and total phenolic content | (Castaldo et al., 2021) | |
| Protein Enrichment | SCG, Pulp | Incorporating SCGs into the diet of Tenebrio molitor larvae significantly enhanced their nutritional value. Larvae fed with 25% SCGs showed a 45.26% increase in crude protein, an 81.28% increase in vitamin C, an 822.79% increase in vitamin A, and a 29.01% increase in polyphenols. | (Kotsou et al., 2023) | |
| Prebiotic | SCG | Mannooligosaccharides (MOS) from SCGs demonstrated notable prebiotic properties. When added to Lactobacillus acidophilus cultures, MOS enhanced bacterial activity by 23.96% and significantly improved survival under simulated gastrointestinal conditions, with a 77.41% survival rate after 2 hours of exposure to α-amylase. Additionally, Lactobacillus casei cultures grown with MOS were able to inhibit the growth of Salmonella paratyphi by 12.55%. | (Wongsiridetchai et al., 2021) | |
| Animal feed industry | Animal Feed Ingredients | Pulp, Husk, SCG | SCG are a viable alternative feed ingredient for dairy cattle, with feeding up to 5% SCG in the concentrate showing no negative impact on milk yields, fat content, or overall animal performance, while only slightly reducing crude protein by 1.8%. | (San Martin et al., 2021) |
| Nutrient supply | SCG | Incorporating 100g/Kg SCG into feed of dairy ewes improved milk yield and composition by enhancing rumen fermentation patterns—specifically increasing acetic, butyric, isovaleric, and isobutyric acids—without affecting intake, digestibility, or feeding behavior. | (de Otálora et al., 2020) | |
| Improving growth performance | SCG | Replacing 10% of fish meal (FM) with fermented SCGS in the diet of African catfish (Clarias gariepinus) significantly improved growth performance, feed floatability, and water stability. Fish fed with the 10% fermented SCGs diet (T2) showed the highest improvements (p < 0.05) in growth metrics, intestinal villus length, width, and crypt depth, as well as in blood parameters such as white and red blood cells, haemoglobin, albumin, globulin, total protein, and creatine. Additionally, higher total bacterial counts in feed and intestine were observed in the T2 group. | (Aqilah et al., 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
