Submitted:
14 May 2025
Posted:
16 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Region and Data Sources
2.2. Spatio-Temporal Dynamics of Tortrix viridana Outbreaks
2.3. The Suitability of the Forest Sites for Tortrix viridana
2.4. Data Processing
3. Results
3.1. Dynamics of T. viridana Outbreaks in the Forests of Ukraine for 1947–2025.
3.2. The Main Parameters of T. viridana Outbreaks in Forests of Individual Regions
3.2. Tortrix viridana as Part of the Flush Feeder Complex in Long-Term Dynamics
3.3. Change in the Suitability of Forest Subcompartments for Tortrix viridana
3.4. Phenological Mismatch in Oak Bud-Flushing and T. viridana Hatch Dates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gasov, H. Der grűne Eichenwickler (Tortrix viridana) als Forstschädling. Arb. Biol. Reichsamsalt 1925, 12, 355–508.
- Fankhänel, H. Über die Massenvermehrung des Grünen Eichenwicklers (Tortrix viridana L.) in der DDR in den Jahren 1957–1959 und über Maßnahmen zur Überwachung des Schädlings. Anzeiger für Schädlingskunde 1962, 35, 158-158.
- Schwenke W. Die Forstschädlinge Europe. Bd.3. Hamburg und Berlin, 1978. S. 76–85.
- Du Merle, P., Mazet, R. Dynamique intracyclique d’une population méditerranéenne de tordeuse verte du chêne, Tortrix viridana (Lepidoptera : Tortricidae). Ecologia mediterranea 1990, 16, 73-91; doi : . [CrossRef]
- Bogenschütz, H. Eurasian species in forestry. In: World crop pests. 5: Tortricid Pests. Editors: van der Geest, LPS, Evenhuis, HH. Elsevier: Amsterdam, 1991, pp. 673–709.
- Rubtsov, V.V., Rubtsova, N.N. Analysis of the interaction of leaf-eating insects with oak. Nauka, Moscow, 1984. 183 p. (In Russian).
- Meshkova, V. History and geography of foliage browsing insect pests outbreaks. Majdan: Kharkiv, 2002. 244 p (In Ukrainian).
- Meshkova, V. Seasonal development of foliage browsing insects. Planeta-print: Kharkov, 2009. 382 pp. (In Russian).
- Turčáni, M., Patočka, J., & Kulfan, M. How do lepidopteran seasonal guilds differ on some oaks (Quercus spp.) –A case study. Journal of Forest science 2009, 55(12), 578-590.
- Turčáni, M., Patočka, J., & Kulfan, M. Which factors explain lepidopteran larvae variance in seasonal guilds on some oaks? Journal of Forest Science 2010, 56(2), 68-76.
- Seifi, S., Madadi, H., Ghobari, H., & Bavaghar, M.P. Studying the effective factors of spatial distribution of Tortrix viridana L. in Mariwan oak forests. Iranian Journal of Forest and Range Protection Research 2023, 21(2), 337-349.
- Gholami, H., Ghobari, H., Badakhshan, H., Rafie, J. N., Salehi, H., & Namayandeh, A. Patterns of genetic variation among host-plant associated populations of the green oak leaf roller moth, Tortrix viridana (Lepidoptera: Tortricidae) in oak forests of northwestern Iran. Journal of Entomological Society of Iran 2022, 42(1), 67-80.
- Bertić, M., Orgel, F., Gschwendtner, S., Schloter, M., Moritz, F., Schmitt-Kopplin, P., ... & Ghirardo, A. European oak metabolites shape digestion and fitness of the herbivore Tortrix viridana. Functional Ecology 2023, 37(5), 1476-1491.
- Bertić, M., Schroeder, H., Kersten, B., Fladung, M., Orgel, F., Buegger, F., ... & Ghirardo, A. European oak chemical diversity–from ecotypes to herbivore resistance. New Phytologist 2021, 232(2), 818-834.
- Yousefi, S., Haghighian, F., Jahromi, M. N., & Pourghasemi, H. R. Pest-infected oak trees identify using remote sensing-based classification algorithms. In: Computers in Earth and Environmental Sciences Elsevier 2022, pp. 363-376.
- Du Merle, P. Phenological resistance of oaks to the green oak leafroller Tortrix viridana (Lepidoptera: Tortricidae). In: Mechanism of woody plant defenses against insects. Mattson, W.J., Levieux, J., Bernard-Dagan, C, editors. New York: Springer; 1988. p. 215–226.
- Du Merle, P., Mazet, R. Phenological stages and infestation by Tortrix viridana L. (Lep., Tortricidae) of the buds of two oaks (Quercus pubescens and Q. ilex). Acta oecol. (Oecol. appl.) 1983, 4.1, 47-53.
- Hunter, M.D. Differential susceptibility to variable plant phenology and its role in competition between two insect herbivores on oak. Ecological Entomology 1990, 15(4), 401-408.
- Feeny, P. P. Plant apparency and chemical defence. In: Recent advances in Phytochemistry. Biochemical interactions between plants and insects (ed. Wallace, J. W., Mansell, R. L.). New York: Plenum Press, 1978, Vol. 10. pp. 1–40.
- Feeny, P. P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 1970, 51, 565–581.
- Visser, M.E. & Holleman, L.J.M. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Biol. Sci. 2001, 268, 89–94.
- van Asch, M., Van Tienderen, P.H., Holleman, L.J.M., Visser, M. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Global Change Biology 2007, 13, 1596–1604.
- van Asch, M., Visser, M.E. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu. Rev. Entomol. 2007, 52, 37–55.
- van Dis, N.E, Sieperda, G.-J., Bansal, V., van Lith, B., Wertheim, B., Visser, M.E. Phenological mismatch affects individual fitness and population growth in the winter moth. Proc. R. Soc. B 2023, 290, 414. [CrossRef]
- Weir, J.C. Trophic generalism in the winter moth: a model species for phenological mismatch. Oecologia 2024, 206(3), 225-239.
- Weir, J.C., Phillimore, A.B. Buffering and phenological mismatch: A change of perspective. Global Change Biology 2024, 30(5), e17294.
- Ivashov, A.V., Boyko, G.E., Simchuk, A.P. The role of host plant phenology in the development of the oak leafroller moth, Tortrix viridana L. (Lepidoptera: Tortricidae). Forest ecology and management 2002, 157(1-3), 7-14.
- Tkach, V.P., Tarnopilska, O.M., Orlov, O.O. Тypes of forest formations of Ukraine in the system of European classifications. Kharkiv: Madryd, 2024. 415 p. ISBN 978-617-8254-23-0. [CrossRef]
- Wesołowski, T., Rowiński, P. Late leaf development in pedunculate oak (Quercus robur): An antiherbivore defence? Scandinavian Journal of Forest Research 2008, 23, 386–394.
- Wesołowski, T., Rowiński, P. Timing of bud burst and tree-leaf development in a multispecies temperate forest. Forest Ecology and Management 2006, 237, 387–393.
- Berryman, A.A. Forest insects: principles and practice of population management. Springer Science & Business Media, 2012.
- Beletsky, E.N. Mass propagation of insects. History, theory, forecasting: monograph. Kharkov: Maidan, 2011. 172 pp. (In Russian).
- Boulanger, Y., Desaint, A., Martel, V., Marchand, M., Massoda, Tonye. S., Saint-Amant, R. et al. Recent climate change strongly impacted the population dynamic of a North American insect pest species. PLOS Clim 2025, 4(2): e0000488. [CrossRef]
- Belitz, M. W., Larsen, E. A., Hurlbert, A. H., Di Cecco, G. J., Neupane, N., Ries, L., ... & Youngflesh, C. Potential for bird–insect phenological mismatch in a tri-trophic system. Journal of Animal Ecology 2025, 94(4), 717–728. [CrossRef]
- Damien, M., Tougeron, K., Prey-predator phenological mismatch under climate change. Current Opinion in Insect Science 2019. [CrossRef]
- Renner, S. S., Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, and Systematics 2018, 49, 165-182.
- Moldavan, L., Pimenowa, O., Wasilewski, M., Wasilewska, N. Sustainable Development of Agriculture of Ukraine in the Context of Climate Change. Sustainability 2023, 15, 10517. [CrossRef]
- Buras, A., Menzel, A. Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios. Frontiers in Plant Science 2019, 9, 1986. [CrossRef]
- Dyderski, M.K, Paź, S., Frelich, L.E., Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Global Change Biology 2018, 24, 1150–1163. [CrossRef]
- Levkovska, L. Modern Trends in the Development of the Risky Farming Zone in the Context of Climate Change. Effective Economy. Dnipro State Agrarian and Economic University, LLC “DCS Centre”. 2021. 9. Available online: http://www.economy. nayka.com.ua/pdf/9_2021/14.pdf (accessed on 10 May 2025).
- Buksha, I. F., Pyvovar, T. S., Buksha, M. I., Pasternak, V. P., & Buksha, T. I. Modelling and forecasting the impact of climate change on forests of Ukraine for 21st century time horizon. Forestry Ideas 2021, 27, 470-482).
- Didukh, Y.P. World of plants of Ukraine in aspect of the climate change. Kyiv, Naukova Dumka. 2023. 176p. [in Ukrainian] ISBN: 978-966-00-1868-6. [CrossRef]
- General Characteristics of Ukrainian Forests. 2016. Available online: https://forest.gov.ua/napryamki-diyalnosti/lisi-ukrayini/zagalna-harakteristika-lisiv-ukrayini (accessed on 2 March 2025). (In Ukrainian).
- Didukh, Ya.P., Vynokurov, D.S. Spatial-temporal changes of bioclimate factors in Europe. Hydrology, hydrochemistry and hydroecology 2021, 1(59), 64–75. [CrossRef]
- Zepner, L.; Karrasch, P.; Wiemann, F.; Bernard, L. ClimateCharts. Net—An interactive climate analysis web platform. Int. J. Digit. Earth 2021, 14, 338–356.
- Rumiantsev, M., Luk’yanets, V., Musienko, S., Mostepanyuk, A., Obolonyk, I. Main problems in natural seed regeneration of pedunculate oak (Quercus robur L.) stands in Ukraine. Forestry Studies | Metsanduslikud Uurimused 2018, 69, 7-23, ISSN 1406-9954. Journal homepage: http://mi.emu.ee/forestry.studies.
- Hayda, Y., Mohytych, V., Bidolakh, D., Kuzovych, V., & Sulkowska, M. The introduction of red oak (Quercus rubra L.) in Ukrainian forests: advantages of productivity versus disadvantages of invasiveness. Folia Forestalia Polonica. Series A. Forestry 2022, 64(4).
- Ukrainian State Forest Management Planning Association. (n.d.). Available online: https://lisproekt.gov.ua/ (accessed on 2 March 2025).
- QGIS 3.40.5. Available online: https://qgis.org/en/site/ (accessed on 2 March 2025).
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9.
- Peck, R.; Short, T.; Olsen, C. Introduction to Statistics and Data Analysis; Cengage Learning: Boston, MA, USA. 2020. Available online: http://www.statisticslectures.com/topics/ztestproportions/ (accessed on 2 March 2025).
- Boychenko, S., Kuchma, T., Karamushka, V., Maidanovych, N., & Kozak, O. Wildfires and Climate Change in the Ukrainian Polissia During 2001–2023. Sustainability, 2025, 17(5), 2223.
- Gosling, R. H., Jackson, R. W., Elliot, M., & Nichols, C. P. Oak declines: Reviewing the evidence for causes, management implications and research gaps. Ecological Solutions and Evidence 2024, 5(4), e12395.
- Langer, G. J., Bußkamp, J., Burkardt, K., Hurling, R., Plašil, P., & Rohde, M. Review on temperate oak decline and oak diseases with a focus on Germany. Journal für Kulturpflanzen 2025, 77(02), 36-49.
- Liu, M., Jiang, P., Chase, J. M., & Liu, X. Global insect herbivory and its response to climate change. Current Biology, 2024, 34(12), 2558-2569.
- Logan, J., Régnière, J., Powell, J. Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ. 2003, 1, 130–7. [CrossRef]
- Jepsen, J., Hagen, S., Ims, R., Yoccoz, N. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol. 2008, 77(2), 257–264. [CrossRef]
- Robinet, C., Roques, A. Direct impacts of recent climate warming on insect populations. Int Zool. 2010, 5(2), 132–42. [CrossRef]
- Kardash, Ye. S. Changes in the complex of phyllophagous insects in deciduous trees of Kharkiv city for 50 years. Baltic Coastal Zone 2021 [S.l.], 24, 27-39. ISSN 1643-0115. Available at: <https://bcz.upsl.edu.pl/index.php/1/article/view/372>. Date accessed: 10 May 2025.
- Meshkova, V. Foliage-browsing Lepidoptera (Insecta) in deciduous forests of Ukraine for the last 70 years. Proceedings of the Forestry Academy of Sciences of Ukraine 2021, 22, 173-179. [CrossRef]
- Pureswaran, D., Roques, A., Battisti, A. Forest Insects and Climate Change. Curr For Rep. 2018, 4, 35–50. [CrossRef]
- Ekholm, A., Tack, A., Pulkkinen, P., Roslin, T. Host plant phenology, insect outbreaks and herbivore communities - The importance of timing. J Anim Ecol. 2020, 89, 829–841. [CrossRef]
- Stireman, J., Dyer, L., Janzen, D., Singer, M., Lill, J., Marquis, R., et al. Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci USA. 2005, 102(48), 17384–7. [CrossRef]
- Luo, Y., Chen, H. Climate change-associated tree mortality increases without decreasing water availability. Ecol Lett. 2015, 18(11):1207–15/. [CrossRef]
- Liu, Q., Peng, C., Schneider, R., Cyr, D., McDowell, N.G., Kneeshaw, D. Drought-induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Glob Chang Biol. 2023, 29(8), 2274–2285. PMID: 36704817. [CrossRef]
- Gamayunova, S.G. Bioecological features of parasitoids of green oak leaf roller. Forestry and Forest Melioration 1988, 76, 51-53.
- Andreieva, O., Martynchuk, I., Zhytova, О., Vyshnevskyi, A., & Zymaroieva, A. Features of forecasting of foliage-browsing insects distribution in the forests of Zhytomyr Polissia. Scientific Horizons 2021, 24(1), 68-76.
- Borysenko, O. I., Meshkova, V.L. Prediction of fires and insect pests foci spread in the pine stands by means of GIS. Kharkiv: Planeta-Print, 2021. 148 p. ISBN 978-617-7897-67-4.
- Crimmins, T.M., Gerst, K.L., Huerta, D.G., Marsh, R.L., Posthumus, E.E., Rosemartin, A.H., ... & Whitmore, M. Short-term forecasts of insect phenology inform pest management. Annals of the Entomological Society of America 2020, 113(2), 139-148.
- Jones, B.C., Despland, E. Effects of synchronization with host plant phenology occur early in the larval development of a spring folivore. Canadian Journ. Zool. 2006, 84, 928–633.
- Sarvašová, L., Zach, P., Parák, M., Saniga, M., Kulfan, J. Infestation of Early- and Late-Flushing Trees by Spring Caterpillars: An Associational Effect of Neighbouring Trees. Forests 2021, 12, 1281. [CrossRef]
- Malyshev, A. V., Blume-Werry, G., Spiller, O., Smiljanić, M., Weigel, R., Kolb, A., ... & Kreyling, J. Warming nondormant tree roots advances aboveground spring phenology in temperate trees. New Phytologist 2023, 240(6), 2276-2287.
- Silvestro, R., Deslauriers, A., Prislan, P., Rademacher, T., Rezaie, N., Richardson, A. D., ... & Rossi, S. From Roots to Leaves: Tree Growth Phenology in Forest Ecosystems. Current Forestry Reports 2025, 11(1), 1-19.
- Liu, Y., Liu, X., Fu, Z., Zhang, D., & Liu, L. Soil temperature dominates forest spring phenology in China. Agricultural and Forest Meteorology 2024, 355, 110141. [CrossRef]
- Puzrina, N., Psenichna, N., Boiko, H., & Sendonin, S. Dominant pests and pathogens of urban plantings in Kyiv: Species composition and prevalence. Scientific Journal Ukrainian Journal of Forest & Wood Science 2023, 14(3).
- Paulin, M., Hirka, A., Eötvös, C. B., Gáspár, C., Fürjes-Mikó, Á., & Csóka, G. Known and predicted impacts of the invasive oak lace bug (Corythucha arcuata) in European oak ecosystems–a review. Folia Oecologica 2020, 47(2).















| Indicators | Kharkiv RS | Vovchansk FE | Chuguyevo-Babchansk FE | Zhovtneve FE |
| Total oak stands area, ha | 17791.5 | 17708.2 | 13170.1 | 33896.8 |
| Oak stands in D1, D2, ha | 17602.2 | 16931.3 | 12657.5 | 32981.3 |
| Oak stands of vegetative origin, ha | 14141.8 | 14498.5 | 9414.0 | 23638.8 |
| Oak stands of 41-80 years, ha | 10286.6 | 6327.2 | 3666.8 | 15812.5 |
| Oak proportion ≥90%, ha | 9200.0 | 9116.6 | 6201.1 | 15246.9 |
| Oak stands with relative stocking density <65%, ha | 4802.9 | 2339.8 | 2071.7 | 9939.4 |
| Stands with the highest scores for all indicators, ha | 1121.6 | 167.7 | 9.0 | 533.5 |
| Indicators | Kharkiv RS | Vovchansk FE | Chuguyevo-Babchansk FE | Zhovtneve FE |
| Total oak stands area, ha | 17746.6 | 17306.9 | 13310.1 | 33965.9 |
| Oak stands in D1, D2, ha | 17559.9 | 16555.3 | 12780.3 | 33062.0 |
| Oak stands of vegetative origin, ha | 13811.9 | 13966.8 | 9845.3 | 23085.3 |
| Oak stands of 41-80 years, ha | 5451.1 | 2787.3 | 2479.3 | 11567.5 |
| Oak proportion ≥90%, ha | 7560.6 | 5696.2 | 4830.3 | 15168.4 |
| Oak stands with relative stocking density <65%, ha | 3350.8 | 2414.4 | 2734.3 | 8100.4 |
| Stands with the highest scores for all indicators, ha | 265.7 | 25.4 | 7.7 | 230.8 |
| Indicators | Kharkiv RS | Vovchansk FE | Chuguyevo-Babchansk FE | Zhovtneve FE |
| Total oak stands area, ha | -0.3 | -2.3 | 1.1 | 0.2 |
| Oak stands in D1, D2, ha | -0.2 | -2.2 | 1.0 | 0.2 |
| Oak stands of vegetative origin, ha | -2.3 | -3.7 | 4.6 | -2.3 |
| Oak stands of 41-80 years, ha | -47.0 | -55.9 | -32.4 | -26.8 |
| Oak proportion ≥90%, ha | -17.8 | -37.5 | -22.1 | -0.5 |
| Oak stands with relative stocking density <65%, ha | -30.2 | 3.2 | 32.0 | -18.5 |
| Stands with the highest scores for all indicators, ha | -76.3 | -84.9 | -14.4 | -56.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
