Submitted:
28 March 2025
Posted:
28 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Census and Functional Traits
2.3. Statistical Analysis
3. Results
3.1. Functional Diversity of the Bird Community by Vegetation Cover Types and Systems
3.2. Functional Diversity of the Bird Community by Guilds, Vegetation Cover Types, and Systems
3.3. Functional Composition of the Bird Community by Vegetation Cover Types and Systems
3.4. Functional Composition of the Bird Community by Guilds, Vegetation Cover Types, and Systems
3.5. Relationship Between Functional Diversity and Composition and Landscape Structure
4. Discussion
4.1. Functional Diversity and Composition of Bird Communities by Vegetation Cover and System
4.2. Functional Diversity of Bird Communities by Guilds, Vegetation Cover Types, and Systems
4.3. Relationship Between Landscape Structure and Functional Diversity and Composition
4.4. Implications for Ecosystem Service Provision
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SAFc | Agroforestry Systems with Cacao |
| SSP | Silvopastoral Systems |
| FRU | Frugivores |
| INS | Insectivores |
| GRA | Granivores |
| NEC | Nectarivores |
| VER | Vertebrate Consumers |
| BS | Secondary Forests |
| CA | Cacao Agroforestry Crops |
| HU | Wetlands |
| PE | Weedy Pastures |
| PL | Clean Pastures |
| RT | Early Successional Shrubs |
| RV | Late Successional Shrubs |
| FRAC | Mean Fractal Index |
| CONTIG | Contiguity Index |
| SHAPE | Shape Index |
| AREA | Total Area |
| CIRCLE | Circularity Index |
| PERIM | Perimeter–Area Ratio |
| PARA | Mean Perimeter–Area Ratio |
| LTO | Total Body Length |
| LTA | Tarsus Length |
| AEX | Extended Wing |
| COM | Commissure |
| ALT | Beak Height |
| CTO | Total Culmen Length |
| PES | Weight |
References
- Armenteras, D.; Murcia, U.; González, T.M.; Barón, O.J.; Arias, J.E. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Glob Ecol Conserv. 2019, 17, e00567. [Google Scholar] [CrossRef]
- Hänggli, A.; Levy, S.A.; Armenteras, D.; Bovolo, C.I.; Brandão, J.; Rueda, X.; et al. A systematic comparison of deforestation drivers and policy effectiveness across the Amazon biome. Environ Res Lett. 2023, 18, 073001. [Google Scholar] [CrossRef]
- Velásquez Valencia, A.; Bonilla Gómez, M.A. Influence of the configuration and heterogeneity of the agroforestry and silvopastoral mosaics on the bird community, Andean Amazon of Colombia. Rev Biol Trop. 2019, 67, 306–320. [Google Scholar] [CrossRef]
- Fontúrbel, F.E.; Betancurt-Grisales, J.F.; Vargas-Daza, A.M.; Castaño-Villa, G.J. Effects of habitat degradation on bird functional diversity: A field test in the Valdivian rainforest. For Ecol Manag. 2022, 522, 120466. [Google Scholar] [CrossRef]
- Koo, H.; Kleemann, J.; Cuenca, P.; Noh, J.K.; Fürst, C. Implications of landscape changes for ecosystem services and biodiversity: A national assessment in Ecuador. Ecosyst Serv. 2024, 69, 101652. [Google Scholar] [CrossRef]
- Gebremichael, G.; Hundera, K.; De Decker, L.; Aerts, R.; Lens, L.; Atickem, A. Bird Community Composition and Functional Guilds Response to Vegetation Structure in Southwest Ethiopia. Forests. 2022, 13, 2068. [Google Scholar] [CrossRef]
- Giraldo, L.P.; Chará, J.; Velásquez-Valencia, A.; Ordoñez-García, M. Vegetation structure and bird diversity in silvopastoral systems of the Amazonian piedmont of Colombia. Agrofor Syst. 2024, 98, 2253–2266. [Google Scholar] [CrossRef]
- Habel, J.C.; Mulwa, M.; Wagner, L.; Schmitt, T.; Teucher, M.; Ulrich, W. Diverging responses to natural and anthropogenic habitats in aftrotropical birds and butterflies. Biodivers Conserv. 2024, 33, 971–985. [Google Scholar] [CrossRef]
- Zamora-Marín, J.M.; Zamora-López, A.; Oliva-Paterna, F.J.; Torralva, M.; Sánchez-Montoya, M.M.; Calvo, JF. From small waterbodies to large multi-service providers: Assessing their ecological multifunctionality for terrestrial birds in Mediterranean agroecosystems. Agric Ecosyst Environ. 2024, 359, 108760. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J.; Clerici, N.; Correa-Ayram, C. Rapid loss in landscape connectivity after the peace agreement in the Andes-Amazon region. Glob Ecol Conserv. 2022, 38, e02205. [Google Scholar] [CrossRef]
- Mena, J.L.; Yagui, H.; Tejeda, V.; Cabrera, J.; Pacheco-Esquivel, J.; Rivero, J.; Pastor, P. Abundance of jaguars and occupancy of medium- and large-sized vertebrates in a transboundary conservation landscape in the northwestern Amazon. Glob Ecol Conserv. 2020, 23, e01079. [Google Scholar] [CrossRef]
- Negret Torres, P.J. Development, armed conflict and conservation: improving the effectiveness of conservation decisions in conflict hotspots using Colombia as a case study, PhD Thesis, The University of Queensland. 2020. Available online: https://espace.library.uq.edu.au/view/UQ:4cfbe2d (accessed on day month year).
- Johnson, B.A.; Kumar, P.; Okano, N.; Dasgupta, R.; Shivakoti, B.R. Nature-based solutions for climate change adaptation: A systematic review of systematic reviews. Nat-Based Solut. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Baptiste, B.; Pinedo-Vasquez, M.; Gutierrez-Velez, V.H.; Andrade, G.I.; Vieira, P.; Estupiñán-Suárez, L.M.; Londoño, M.C.; Laurance, W.; Lee, T.M. Greening peace in Colombia. Nat Ecol Evol. 2017, 1, 0102. [Google Scholar] [CrossRef] [PubMed]
- Climate Change-Resilient Agriculture and Agroforestry: Ecosystem Services and Sustainability; Castro, P., Azul, A.M., Leal Filho, W., Azeiteiro, U.M., Eds.; Springer International Publishing: Cham, 2019; Available online: http://link.springer.com/10.1007/978-3-319-75004-0 (accessed on day month year)(Climate Change Management).
- Clerici, N.; Armenteras, D.; Kareiva, P.; Botero, R.; Ramírez-Delgado, J.P.; Forero-Medina, G.; Ochoa, J.; Pedraza, C.; Schneider, L.; Lora, C.; et al. Deforestation in Colombian protected areas increased during post-conflict periods. Sci Rep. 2020, 10, 4971. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.K.R. Agroforestry Systems and Environmental Quality: Introduction. J Environ Qual. 2011, 40, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Murgueitio Restrepo, E.; Chara Orozco, J.D.; Barahona Rosales, R.; Cuartas Cardona, C.A.; Naranjo Ramirez, J.F. Intensive Silvopastoral Systems (SSPi), a tool for mitigating and adapting to climate change. Trop Subtrop Agroecosystems. 2014, 17. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1558.
- Davis, S.; Guerreiro Milheiras, S.; Olivier, P.L.; Barnes, L.; Shirima, D.; Kioko, E.; Sallu, S.M.; Ishengoma, E.; Marshall, A.R.; Pfeifer, M. Cropland can support high bird diversity in heterogeneous rural tropical landscapes. Bird Conserv Int. 2024, 34, e13. [Google Scholar] [CrossRef]
- Frank, C.; Hertzog, L.; Klimek, S.; Schwieder, M.; Tetteh, G.O.; Böhner, H.G.S.; Röder, N.; Levers, C.; Katzenberger, J.; Kreft, H. Woody semi-natural habitats modulate the effects of field size and functional crop diversity on farmland birds. J Appl Ecol. 2024, 61, 987–999. [Google Scholar] [CrossRef]
- Alvarado, F.; Escobar, F.; Williams, D.R.; Arroyo-Rodríguez, V.; Escobar-Hernández, F. The role of livestock intensification and landscape structure in maintaining tropical biodiversity. Nichols, E., editor. J Appl Ecol. 2018, 55, 185–194. [Google Scholar] [CrossRef]
- Álvarez, F.; Casanoves, F.; Suárez, J.C.; Rusch, G.M.; Ngo Bieng, M.A. An assessment of silvopastoral systems condition and their capacity to generate ecosystem services in the Colombian Amazon. Ecosyst People. 2023, 19, 2213784. [Google Scholar] [CrossRef]
- Williams, B.A.; Grantham, H.S.; Watson, J.E.M.; Alvarez, S.J.; Simmonds, J.S.; Rogéliz, C.A.; Da Silva, M.; Forero-Medina, G.; Etter, A.; Nogales, J.; et al. Minimising the loss of biodiversity and ecosystem services in an intact landscape under risk of rapid agricultural development. Environ Res Lett. 2020, 15, 014001. [Google Scholar] [CrossRef]
- Gantz, A.G.; Yáñez − Alvarado, M.; Zamorano, G.; Smith – Ramírez, C.; Valdivia, C.E.; Rau, J.R. Contrasting responses of taxonomic diversity and functional groups of birds to the agricultural landscape of southern Chile. Ornithol Res. 2024, 32, 357–371. [Google Scholar] [CrossRef]
- Ocampo-Ariza, C.; Hanf-Dressler, T.; Maas, B.; Novoa-Cova, J.; Thomas, E.; Vansynghel, J.; Steffan-Dewenter, I.; Tscharntke, T. Regional differences of functional and taxonomic bird diversity in tropical agroforests of Peru. Conserv Sci Pract. 2024, 6, e13123. [Google Scholar] [CrossRef]
- Anderle, M.; Brambilla, M.; Hilpold, A.; Matabishi, J.G.; Paniccia, C.; Rocchini, D.; Rossin, J.; Tasser, E.; Torresani, M.; Tappeiner, U.; et al. Habitat heterogeneity promotes bird diversity in agricultural landscapes: Insights from remote sensing data. Basic Appl Ecol. 2023, 70, 38–49. [Google Scholar] [CrossRef]
- Nogueira, O.M.A.; Palmeirim, A.F.; Peres, C.A.; Dos Santos-Filho, M. Synergistic effects of habitat configuration and land-use intensity shape the structure of bird assemblages in human-modified landscapes across three major neotropical biomes. Biodivers Conserv. 2021, 30, 3793–3811. [Google Scholar] [CrossRef]
- Bain, G.C.; MacDonald, M.A.; Hamer, R.; Gardiner, R.; Johnson, C.N.; Jones, M.E. Changing bird communities of an agricultural landscape: declines in arboreal foragers, increases in large species. R Soc Open Sci. 2020, 7, 200076. [Google Scholar] [CrossRef] [PubMed]
- Molina-Marin, D.A.; Rodas-Rua, J.C.; Lara, C.E.; Rivera-Páez, F.A.; Fontúrbel, F.E.; Castaño-Villa, G.J. Effects of Landscape Configuration on the Body Condition of Migratory and Resident Tropical Birds. Diversity. 2022, 14, 432. [Google Scholar] [CrossRef]
- Peña, R.; Schleuning, M.; Miñarro, M.; García, D. Variable relationships between trait diversity and avian ecological functions in agroecosystems. Funct Ecol. 2023, 37, 87–98. [Google Scholar] [CrossRef]
- Jacoboski, L.I.; Hartz, S.M. Using functional diversity and taxonomic diversity to assess effects of afforestation of grassland on bird communities. Perspect Ecol Conserv. 2020, 18, 103–108. [Google Scholar] [CrossRef]
- Lisón, F.; Matus-Olivares, C.; Troncoso, E.; Catalán, G.; Jiménez-Franco, M.V. Effect of forest landscapes composition and configuration on bird community and its functional traits in a hotspot of biodiversity of Chile. J Nat Conserv. 2022, 68, 126227. [Google Scholar] [CrossRef]
- Hewes, A.E.; Cuban, D.; Groom, D.J.E.; Sargent, A.J.; Beltrán, D.F.; Rico-Guevara, A. Variable evidence for convergence in morphology and function across avian nectarivores. J Morphol. 2022, 283, 1483–1504. [Google Scholar] [CrossRef] [PubMed]
- Campo-Celada, M.; Jordano, P.; Benítez-López, A.; Gutiérrez-Expósito, C.; Rabadán-González, J.; Mendoza, I. Assessing short and long-term variations in diversity, timing and body condition of frugivorous birds. Oikos 2022, oik.08387. [Google Scholar] [CrossRef]
- Landázuri, O.S.; Tinoco, B.A.; Espinosa, C.I.; Jiménez-Franco, M.V.; Robledano, F. Effects of landscape composition and configuration on Andean birds are influenced by spatial scale. For Ecol Manag. 2024, 563, 121960. [Google Scholar]
- Pizo, M.A.; Morales, J.M.; Ovaskainen, O.; Carlo, T.A. Frugivory Specialization in Birds and Fruit Chemistry Structure Mutualistic Networks across the Neotropics. Am Nat. 2021, 197, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; DeClerck, F.; Grab, H.; Gratton, C.; Hunt, L.; Larsen, A.E.; Martínez-Salinas, A.; et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci. 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Siefer, P.; Olmos-Moya, N.; Fontúrbel, F.E.; Lavandero, B.; Pozo, R.A.; Celis-Diez, J.L. Bird-mediated effects of pest control services on crop productivity: a global synthesis. J Pest Sci. 2022, 95, 567–576. [Google Scholar] [CrossRef]
- Bitani, N.; Cordier, C.P.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Responses of bird functional communities to anthropogenic disturbances in the naturally fragmented Southern Mistbelt Forests in the Midlands of KwaZulu-Natal, South Africa. For Ecol Manag. 2024, 562, 121977. [Google Scholar] [CrossRef]
- Şekercioğlu, Ç.H.; Sutherland, W.J.; Buechley, E.R.; Li, B.V.; Ocampo-Peñuela, N.; Mahamued, B.A. Avian biodiversity collapse in the Anthropocene: drivers and consequences. Front Ecol Evol. 2023, 11, 1202621. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Liu, X.; Han, Q.; Liu, P.; Wang, D.; Wang, J. Patch shape, connectivity and functional groups moderate the responses of bird diversity to agricultural diversification — A meta-analysis. Glob Ecol Conserv. 2024, 55, e03204. [Google Scholar] [CrossRef]
- Tilman, D. Functional Diversity. Encycl Biodivers. 2001, 3, 12. [Google Scholar]
- Martínez-Salinas, A.; DeClerck, F.; Vierling, K.; Vierling, L.; Legal, L.; Vílchez-Mendoza, S.; Avelino, J. Bird functional diversity supports pest control services in a Costa Rican coffee farm. Agric Ecosyst Environ. 2016, 235, 277–288. [Google Scholar] [CrossRef]
- Figueroa-Alvarez, J.A.; Ortega-Álvarez, R.; Manson, R.H.; Sosa, V.J.; Vázquez-Reyes, L.D.; Medina Mena, I.; Bautista Bautista, L. Insectivorous birds and potential pest control services: An occupancy study of functional groups in a coffee landscape in Oaxaca, Mexico. Perspect Ecol Conserv. 2024, 22, 331–341. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, E.A.; Almazán-Núñez, R.C.; Corcuera, P.; González-García, F.; Brito-Millán, M.; Alvarado-Castro, V.M. Land use cover changes the bird distribution and functional groups at the local and landscape level in a Mexican shaded-coffee agroforestry system. Agric Ecosyst Environ. 2022, 330, 107882. [Google Scholar]
- Lessi, B.; Geneletti, D.; Cortinovis, C.; Dias, M.; Reis, M. Bird richness and Ecosystems Services across an urban to natural gradient in south-eastern Brazil: implications for landscape planning and future scenarios. One Ecosyst. 2024, 9, e114955. [Google Scholar]
- Alvarado Sandino, C.O.; Barnes, A.P.; Sepúlveda, I.; Garratt, M.P.D.; Thompson, J.; Escobar-Tello, M.P. Examining factors for the adoption of silvopastoral agroforestry in the Colombian Amazon. Sci Rep. 2023, 13, 12252. [Google Scholar] [PubMed]
- Acevedo-Charry, O.; Peña-Alzate, F.Á.; Beckers, J.; Cabezas, M.; Coral-Jaramillo, B.; Janni, O.; Ocampo, D.; Peñuela-Gomez, S.M.; Rocha-López, D.; Socolar, J.B.; et al. Avifauna del interfluvio de la cuenca media Caquetá Putumayo (Japurá-Içá), al sur de la Amazonia colombiana y su respuesta a la huella humana. Rev Acad Colomb Cienc Exactas Físicas Nat. 2021, 45, 229–249. [Google Scholar] [CrossRef]
- Decaëns, T.; Martins, M.B.; Feijoo, A.; Oszwald, J.; Dolédec, S.; Mathieu, J.; de Sartre, X.A.; Bonilla, D.; Brown, G.; Cuellar Criollo, Y.A.; et al. Biodiversity loss along a gradient of deforestation in Amazonian agricultural landscapes. Conserv Biol. 2018, 32, 1380–1391. [Google Scholar] [PubMed]
- Pulecio-Suarez, I.L.; Velázquez-Valencia, A.; Cruz-Trujillo, E.J. Riqueza y Abundancia de la comunidad de aves en tres sistemas de producción en el Piedemonte Amázonico. Rev. Inv. Agroemp. 2015, 1, 11–17. [Google Scholar]
- Agudelo-Hz, W.J.; Castillo-Barrera, N.C.; Uriel, M.G. Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways. Sci Rep. 2023, 13, 2152. [Google Scholar] [PubMed]
- Kim, J.H.; Park, S.; Kim, S.H.; Kang, K.; Waldman, B.; Lee, M.H.; Yu, M.; Yang, H.; Yong Chung, H.; Lee, E.J. Structural implications of traditional agricultural landscapes on the functional diversity of birds near the Korean Demilitarized Zone. Ecol Evol. 2020, 10, 12973–12982. [Google Scholar] [PubMed]
- Santos, J.S.D.; Dodonov, P.; Oshima, J.E.F.; Martello, F.; Santos De Jesus, A.; Ferreira, M.; Silva-Neto, C.M.; Ribeiro, M.C.; Garcia Collevatti, R. Landscape ecology in the Anthropocene: an overview for integrating agroecosystems and biodiversity conservation. Perspect Ecol Conserv. 2021, 19, 21–32. [Google Scholar] [CrossRef]
- IDEAM. Leyenda Nacional de Coberturas de la Tierra. Metodología Corine Land Cover adaptada para Colombia. Escala 1:100.000. Primera edición. Vol. 1. Bogotá: Instituto de Hidrología, Meteorología y Estudios Ambientales; 2010. 73 p.
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps. 2023. Available online: https://www.fragstats.org (accessed on day month year).
- Pliscoff, P.; Simonetti, J.A.; Grez, A.A.; Vergara, P.M.; Barahona-Segovia, R.M. Defining corridors for movement of multiple species in a forest-plantation landscape. Glob Ecol Conserv. 2020, 23, e01108. [Google Scholar] [CrossRef]
- Coddington, C.P.J.; Cooper, W.J.; Mokross, K.; Luther, D.A. Forest structure predicts species richness and functional diversity in Amazonian mixed-species bird flocks. Biotropica. 2023, 55, 467–479. [Google Scholar] [CrossRef]
- Tobias, J.A.; Sheard, C.; Pigot, A.L.; Devenish, A.J.M.; Yang, J.; Sayol, F.; Neate-Clegg, M.H.; Alioravainen, N.; Weeks, T.L.; Barber, R.A.; et al. AVONET: morphological, ecological and geographical data for all birds. Ecol Lett. 2022, 25, 581–597. [Google Scholar] [CrossRef]
- Remsen, J.; Areta, J.; Bonaccorso, E.; Claramunt, S.; Lane, D.; Robbins, M.; Stiles, F.G.; Zimmer, K.J. A classification of the bird species of South America. South American Classification Committee. Museum of Natural Science, Louisiana State University. 2025. Available online: https://www.museum.lsu.edu/~Remsen/SACCBaseline.htm (accessed on day month year).
- Echeverry-Galvis, M.Á.; Acevedo-Charry, O.; Avendaño, J.E.; Gómez, C.; Stiles, F.G.; Estela, F.A.; Cuervo, A.M. Official List of Birds of Colombia 2022: Additions, Taxonomic Changes, and Status Updates. Ornitol Colomb. 2022, 25–51. [Google Scholar] [CrossRef]
- Ayerbe-Quiñones, F. Illustrated Guide to Colombian Birdlife. Third edition. Colombia: WCS Colombia; 2023; 459 p.
- McMullan, M. Field Guide to the Birds of Colombia. 2023.a ed. Cali, Colombia: McMullan Birding & Publishers; 2023; 528 p.
- Jarrett, C.; Smith, T.B.; Claire, T.T.R.; Ferreira, D.F.; Tchoumbou, M.; Elikwo, M.N.F.; Wolfe, J.D.; Brzeski, K.; Welch, A.; Hanna, R. Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. J Appl Ecol. 2021, 58, 1237–1247. [Google Scholar] [CrossRef]
- Michel, N.L.; Whelan, C.J.; Verutes, G.M. Ecosystem services provided by Neotropical birds. The Condor. 2020, 122, duaa022. [Google Scholar] [CrossRef]
- Pejchar, L.; Clough, Y.; Ekroos, J.; Nicholas, K.A.; Olsson, O.; Ram, D.; Tschumi, M.; Smith, H.G. Net Effects of Birds in Agroecosystems. BioScience. 2018, 68, 896–904. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Macchiavelli, R.E.; Casanoves, F. Linear Mixed Models: applications in InfoStat. First Edition. Córdoba, Argentina. 2017. Available online: https://repositorio.catie.ac.cr/bitstream/handle/11554/8691/Linear_mixed_models.pdf?sequence=4&isAllowed=y (accessed on day month year).
- Di Rienzo, J.; Balzarini, M.; Gonzalez, L.; Casanoves, F.; Tablada, M.; Robledo, C.W. InfoStat Software version 2020. National University of Córdoba. 2020. Available online: https://www.infostat.com.ar/index.php?mod=page&id=15 (accessed on day month year).
- Bonfim, F.C.G.; Dodonov, P.; Cazetta, E. Landscape composition is the major driver of the taxonomic and functional diversity of tropical frugivorous birds. Landsc Ecol. 2021, 36, 2535–2547. [Google Scholar] [CrossRef]
- Chapman, P.M.; Tobias, J.A.; Edwards, D.P.; Davies, R.G. Contrasting impacts of land-use change on phylogenetic and functional diversity of tropical forest birds. J Appl Ecol. 2018, 55, 1604–1614. [Google Scholar] [CrossRef]
- Conti, G.; Enrico, L.; Jaureguiberry, P.; Cuchietti, A.; Lipoma, M.L.; Cabrol, D. The role of functional diversity in the provision of multiple ecosystem services: An empirical analysis in the dry Chaco of Córdoba, central Argentina. Ecosistemas. 2018, 27, 60–74. [Google Scholar]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology. 2010, 91, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Pla, L.; Casanoves, F.; Di Rienzo, J. Quantifying Functional Biodiversity. Dordrecht: Springer Netherlands; 2012. (SpringerBriefs in Environmental Science). Available online: https://link.springer.com/10.1007/978-94-007-2648-2 (accessed on day month year).
- R Core Team. R: A language and environment for statistical computing. Viena, Austria: R Foundation for Statistical Computing; 2021. Available online: https://www.R-project.org/ (accessed on day month year).
- Laliberté, E.; Legendre, P.; Shipley, B. FD-package: Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology. 2014.
- Lepš, J.; De Bello, F. Differences in trait–environment relationships: Implications for community weighted means tests. J Ecol. 2023, 111, 2328–2341. [Google Scholar] [CrossRef]
- Casanoves, F.; Pla, L.; Di Rienzo, J.A.; Díaz, S. FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol. 2011, 2, 233–237. [Google Scholar] [CrossRef]
- Marcolin, F.; Lakatos, T.; Gallé, R.; Batáry, P. Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Glob Ecol Conserv. 2021, 28, e01687. [Google Scholar] [CrossRef]
- Balzarini, M.; Gonzalez, L.; Tablada, M.; Casanoves, F.; Di Rienzo, J.; Robledo, C.W. InfoStat Statistical Software: User Manual. First Edition. Córdoba, Argentina: Group InfoStat, FCA, National University of Córdoba; 2008; 335 p.
- Rosenfield, M.F.; Miedema Brown, L.; Anand, M. Increasing cover of natural areas at smaller scales can improve the provision of biodiversity and ecosystem services in agroecological mosaic landscapes. J Environ Manage. 2022, 303, 114248. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Trujillo, V.; Betancurt-Grisales, J.F.; Vargas-Daza, A.M.; Lara, C.E.; Rivera-Páez, F.A.; Fontúrbel, F.E.; Castaño-Villa, G.J. Bird Functional Diversity in Agroecosystems and Secondary Forests of the Tropical Andes. Diversity. 2021, 13, 493. [Google Scholar] [CrossRef]
- Luck, G.W.; Carter, A.; Smallbone, L. Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity. PLoS ONE. 2013, 8, e63671. [Google Scholar] [CrossRef]
- Carvajal Alfaro, V.; Oviedo, P.E. Composición de aves asociada a fincas de cacao orgánico en Región Huetar Norte, Costa Rica. Uniciencia. 2024, 38, 1–9. [Google Scholar] [CrossRef]
- Cabral, J.P.; Faria, D.; Morante-Filho, J.C. Landscape composition is more important than local vegetation structure for understory birds in cocoa agroforestry systems. For Ecol Manag. 2021, 481, 118704. [Google Scholar] [CrossRef]
- Coelho, M.T.P.; Raniero, M.; Silva, M.I.; Hasui, É. The effects of landscape structure on functional groups of Atlantic forest birds. Wilson J Ornithol. 2016, 128, 520–534. [Google Scholar] [CrossRef]
- Gutiérrez García, G.A.; Gutiérrez-Montes, I.; Hernández Núñez, H.E.; Suárez Salazar, J.C.; Casanoves, F. Relevance of local knowledge in decision-making and rural innovation: A methodological proposal for leveraging participation of Colombian cocoa producers. J Rural Stud. 2020, 75, 119–124. [Google Scholar] [CrossRef]
- Hernández-Núñez, H.E.; Gutiérrez-Montes, I.; Sánchez-Acosta, J.R.; Rodríguez-Suárez, L.; Gutiérrez-García, G.A.; Suárez-Salazar, J.C.; Casanoves, F. Agronomic conditions of cacao cultivation: its relationship with the capitals endowment of Colombian rural households. Agrofor Syst. 2020, 94, 2367–2380. [Google Scholar] [CrossRef]
- Bennett, R.E.; Sillett, T.S.; Rice, R.A.; Marra, P.P. Impact of cocoa agricultural intensification on bird diversity and community composition. Conserv Biol. 2022, 36, e13779. [Google Scholar] [CrossRef]
- De Moraes, K.F.; Lima, M.G.M.; Gonçalves, G.S.R.; Cerqueira, P.V.; Santos, M.P.D. The future of endemic and threatened birds of the Amazon in the face of global climate change. Ecol Evol. 2024, 14, e11097. [Google Scholar] [CrossRef]
- Karp, D.S.; Rominger, A.J.; Zook, J.; Ranganathan, J.; Ehrlich, P.R.; Daily, G.C. Intensive agriculture erodes β-diversity at large scales. Ecol Lett. 2012, 15, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Carucci, T.; Whitehouse-Tedd, K.; Yarnell, R.W.; Collins, A.; Fitzpatrick, F.; Botha, A.; Santangeli, A. Ecosystem services and disservices associated with vultures: A systematic review and evidence assessment. Ecosyst Serv. 2022, 56, 101447. [Google Scholar] [CrossRef]
- Šekercioğlu, C.H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Ornithol. 2012, 153, 153–61. [Google Scholar] [CrossRef]
- Mayani-Parás, F.; Moreno, C.E.; Escalona-Segura, G.; Botello, F.; Munguía-Carrara, M.; Sánchez-Cordero, V. Classification and distribution of functional groups of birds and mammals in Mexico. PLOS ONE. 2023, 18, e0287036. [Google Scholar] [CrossRef] [PubMed]
- Smith, O.M.; Kennedy, C.M.; Echeverri, A.; Karp, D.S.; Latimer, C.E.; Taylor, J.M.; Wilson-Rankin, E.E.; Owen, J.P.; Snyder, W.E. Complex landscapes stabilize farm bird communities and their expected ecosystem services. J Appl Ecol. 2022, 59, 927–941. [Google Scholar] [CrossRef]
- Matuoka, M.A.; Benchimol, M.; Almeida-Rocha, J.M.D.; Morante-Filho, J.C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol Indic. 2020, 116, 106471. [Google Scholar] [CrossRef]
- Adelino, J.R.P.; Calsavara, L.C.; Willrich, G.; Rosa, G.L.M.; Lima, M.R.; Dos Anjos, L. Ecosystem functions of birds as a tool to track restoration efficiency in Brazil. Ornithol Res. 2020, 28, 38–50. [Google Scholar] [CrossRef]
- Gaston, K.J. Birds and ecosystem services. Curr Biol. 2022, 32, R1163–R1166. [Google Scholar] [CrossRef] [PubMed]
- Karp, D.S.; Mendenhall, C.D.; Sandí, R.F.; Chaumont, N.; Ehrlich, P.R.; Hadly, E.A.; Daily, G.C. Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett. 2013, 16, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Whelan, C.J.; Şekercioğlu, Ç.H.; Wenny, D.G. Why birds matter: from economic ornithology to ecosystem services. J Ornithol. 2015, 156, 227–238. [Google Scholar] [CrossRef]
- Frenzel, M.; Everaars, J.; Schweiger, O. Bird communities in agricultural landscapes: What are the current drivers of temporal trends? Ecol Indic. 2016, 65, 113–121. [Google Scholar] [CrossRef]
- Le Clech, S.; Van Bussel, L.G.J.; Lof, M.E.; De Knegt, B.; Szentirmai, I.; Andersen, E. Effects of linear landscape elements on multiple ecosystem services in contrasting agricultural landscapes. Ecosyst Serv. 2024, 67, 101616. [Google Scholar] [CrossRef]
- Benedetti, Y.; Morelli, F.; Munafò, M.; Assennato, F.; Strollo, A.; Santolini, R. Spatial associations among avian diversity, regulating and provisioning ecosystem services in Italy. Ecol Indic. 2020, 108, 105742. [Google Scholar] [CrossRef]
- Linden, V.M.G.; Grass, I.; Joubert, E.; Tscharntke, T.; Weier, S.M.; Taylor, P.J. Ecosystem services and disservices by birds, bats and monkeys change with macadamia landscape heterogeneity. J Appl Ecol. 2019, 56, 2069–2078. [Google Scholar] [CrossRef]
- Mortimer, R.; Saj, S.; David, C. Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor Syst. 2018, 92, 1639–1657. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
