Submitted:
24 March 2025
Posted:
25 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Extreme Conditions Triggering the Adaptation
3. Extreme Habitat as Key Decision Maker
4. Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rothschild, L.J.; Mancinelli, R.L. Life in Extreme Environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef]
- Cockell, C.S. Vacant Habitats in the Universe. Trends Ecol Evol 2011, 26, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Pikuta, E. V; Hoover, R.B.; Tang, J. Microbial Extremophiles at the Limits of Life. Crit Rev Microbiol 2007, 33, 183–209. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Charlton, T.; Ertan, H.; Mohd Omar, S.; Siddiqui, K.S.; Williams, T.J. Biotechnological Uses of Enzymes from Psychrophiles. Microb Biotechnol 2011, 4, 449–460. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020, 21. [Google Scholar] [CrossRef] [PubMed]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Mastascusa, V.; Romano, I.; Di Donato, P.; Poli, A.; Della Corte, V.; Rotundi, A.; Bussoletti, E.; Quarto, M.; Pugliese, M.; Nicolaus, B. Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study. Origins of Life and Evolution of Biospheres 2014, 44, 231–237. [Google Scholar] [CrossRef]
- Kochhar, N.; I․K, K.; Shrivastava, S.; Ghosh, A.; Rawat, V.S.; Sodhi, K.K.; Kumar, M. Perspectives on the Microorganism of Extreme Environments and Their Applications. Curr Res Microb Sci 2022, 3, 100134. [Google Scholar] [CrossRef]
- Dalmaso, G.Z.; Ferreira, D.; Vermelho, A.B. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications. Mar Drugs 2015, 13, 1925–1965. [Google Scholar] [CrossRef]
- Colman, D.R.; Poudel, S.; Hamilton, T.L.; Havig, J.R.; Selensky, M.J.; Shock, E.L.; Boyd, E.S. Geobiological Feedbacks and the Evolution of Thermoacidophiles. ISME J 2018, 12, 225–236. [Google Scholar] [CrossRef]
- Mesbah, N.M. Industrial Biotechnology Based on Enzymes From Extreme Environments. Frontiers in Bioengineering and Biotechnology 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Ishino, S.; Ishino, Y. DNA Polymerases as Useful Reagents for Biotechnology – the History of Developmental Research in the Field. Frontiers in Microbiology 2014, 5. [Google Scholar] [CrossRef]
- Rampelotto, P.H. Extremophiles and Extreme Environments. Life 2013, 3, 482–485. [Google Scholar] [CrossRef]
- Coker, J.A. Recent Advances in Understanding Extremophiles. F1000Res 2019, 8. [Google Scholar] [CrossRef]
- Dimitriu, T.; Szczelkun, M.D.; Westra, E.R. Evolutionary Ecology and Interplay of Prokaryotic Innate and Adaptive Immune Systems. Current Biology 2020, 30, R1189–R1202. [Google Scholar] [CrossRef]
- Singh, P.; Jain, K.; Desai, C.; Tiwari, O.; Madamvar, D. Microbial Community Dynamics of Extremophiles/Extreme Environment. In; 2019; pp. 323–332 ISBN 978-0-12-814849-5.
- Grant, P.R.; Grant, B.R.; Huey, R.B.; Johnson, M.T.J.; Knoll, A.H.; Schmitt, J. Evolution Caused by Extreme Events. Philos Trans R Soc Lond B Biol Sci 2017, 372. [Google Scholar] [CrossRef]
- Chevin, L.-M.; Hoffmann, A.A. Evolution of Phenotypic Plasticity in Extreme Environments. Philos Trans R Soc Lond B Biol Sci 2017, 372. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Liu, G.; Huang, K. Cold Adaptation Mechanisms of a Snow Alga Chlamydomonas Nivalis During Temperature Fluctuations. Front Microbiol 2020, 11, 611080. [Google Scholar] [CrossRef] [PubMed]
- Perfumo, A.; Freiherr von Sass, G.J.; Nordmann, E.-L.; Budisa, N.; Wagner, D. Discovery and Characterization of a New Cold-Active Protease From an Extremophilic Bacterium via Comparative Genome Analysis and in Vitro Expression. Front Microbiol 2020, 11, 881. [Google Scholar] [CrossRef]
- Berlemont, R.; Gerday, C. 1.16 - Extremophiles. In; Moo-Young, M.B.T.-C.B. (Third E., Ed.; Pergamon: Oxford, 2011; ISBN 978-0-444-64047-5. [Google Scholar]
- Maheshwari, R.; Bharadwaj, G.; Bhat, M.K. Thermophilic Fungi: Their Physiology and Enzymes. Microbiol Mol Biol Rev 2000, 64, 461–488. [Google Scholar] [CrossRef]
- Santos, F.; Antón, J. Extremophiles: Hypersaline Environments. In; Schmidt, T.M.B.T.-E. of M. (Fourth E., Ed.; Academic Press: Oxford, 2019; ISBN 978-0-12-811737-8. [Google Scholar]
- Blaser, M.J.; Cardon, Z.G.; Cho, M.K.; Dangl, J.L.; Donohue, T.J.; Green, J.L.; Knight, R.; Maxon, M.E.; Northen, T.R.; Pollard, K.S.; et al. Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Furhan, J. Adaptation, Production, and Biotechnological Potential of Cold-Adapted Proteases from Psychrophiles and Psychrotrophs: Recent Overview. J Genet Eng Biotechnol 2020, 18, 36. [Google Scholar] [CrossRef]
- Gunjal, A.; Waghmode, M.; Annasaheb Magar Mahavidyalaya, S.; Patil, N.; Aparna, G.; Meghmala, W.; Neha, P.) March (2021) Res; 2021; Vol. 4.
- Tesei, D.; Quartinello, F.; Guebitz, G.M.; Ribitsch, D.; Nöbauer, K.; Razzazi-Fazeli, E.; Sterflinger, K. Shotgun Proteomics Reveals Putative Polyesterases in the Secretome of the Rock-Inhabiting Fungus Knufia Chersonesos. Sci Rep 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Atanasova, N.; Stoitsova, S.; Paunova-krasteva, T.; Kambourova, M. Plastic Degradation by Extremophilic Bacteria. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef]
- Gumulya, Y.; Boxall, N.J.; Khaleque, H.N.; Santala, V.; Carlson, R.P.; Kaksonen, A.H. In a Quest for Engineering Acidophiles for Biomining Applications: Challenges and Opportunities. Genes (Basel) 2018, 9. [Google Scholar] [CrossRef]
- CA, J. Biomining of Metals: How to Access and Exploit Natural Resource Sustainably. Microb Biotechnol 10, 1193. [Google Scholar]
- Anwar, U.B.; Zwar, I.P.; de Souza, A.O. Biomolecules Produced by Extremophiles Microorganisms and Recent Discoveries. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biomolecules: Properties, Relevance, and Their Translational Applications 2020, 247–270. [CrossRef]
- Stetter, K.O. Extremophiles and Their Adaptation to Hot Environments. FEBS Lett 1999, 452, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Chien, A.; Edgar, D.B.; Trela, J.M. Deoxyribonucleic Acid Polymerase from the Extreme Thermophile Thermus Aquaticus. J Bacteriol 1976, 127, 1550–1557. [Google Scholar] [CrossRef]
- Takagi, M.; Nishioka, M.; Kakihara, H.; Kitabayashi, M.; Inoue, H.; Kawakami, B.; Oka, M.; Imanaka, T. Characterization of DNA Polymerase from Pyrococcus Sp. Strain KOD1 and Its Application to PCR. Appl Environ Microbiol 1997, 63, 4504–4510. [Google Scholar] [CrossRef]
- Gifford, D.R.; Bhattacharyya, A.; Geim, A.; Marshall, E.; Krašovec, R.; Knight, C.G. Environmental and Genetic Influence on the Rate and Spectrum of Spontaneous Mutations in Escherichia Coli. Microbiology (Reading) 2024, 170. [Google Scholar] [CrossRef]
- Marie, V.; Lin, J. Cannibalistic Viruses in the Aquatic Environment: Role of Virophages in Manipulating Microbial Communities. International Journal of Environmental Science and Technology 2016, 13, 2097–2104. [Google Scholar] [CrossRef]
- Kobras, C.M.; Falush, D. Adapting for Life in the Extreme. Elife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Polz, M.F.; Alm, E.J.; Hanage, W.P. Horizontal Gene Transfer and the Evolution of Bacterial and Archaeal Population Structure. Trends Genet 2013, 29, 170–175. [Google Scholar] [CrossRef]
- Daly, M.J. A New Perspective on Radiation Resistance Based on Deinococcus Radiodurans. Nat Rev Microbiol 2009, 7, 237–245. [Google Scholar] [CrossRef]
- Martínez-Puente, D.H.; Pérez-Trujillo, J.J.; Zavala-Flores, L.M.; García-García, A.; Villanueva-Olivo, A.; Rodríguez-Rocha, H.; Valdés, J.; Saucedo-Cárdenas, O.; Montes de Oca-Luna, R.; Loera-Arias, M. de J. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Sguazzi, G.; Fasani, G.; Renò, F.; Gino, S. Biobanks: Archives or Resources? Their Secondary Use for Forensic Purposes—A Systematic Review. Forensic Sciences 2024, 4, 42–61. [Google Scholar] [CrossRef]
- Uherek, C.; Wels, W. DNA-Carrier Proteins for Targeted Gene Delivery. Adv Drug Deliv Rev 2000, 44, 153–166. [Google Scholar] [CrossRef]
- Benner, S.A.; Sismour, A.M. Synthetic Biology. Nat Rev Genet 2005, 6, 533–543. [Google Scholar] [CrossRef]
- Foo, J.L.; Ching, C.B.; Chang, M.W.; Leong, S.S.J. The Imminent Role of Protein Engineering in Synthetic Biology. Biotechnol Adv 2012, 30, 541–549. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Kaur, T.; Singh, B.; Chauhan, V.S.; Kumar, A.; Rastegari, A.A.; Yadav, N.; Yadav, A.N.; Gupta, V.K. Extremophiles for Hydrolytic Enzymes Productions: Biodiversity and Potential Biotechnological Applications. In Bioprocessing for Biomolecules Production; 2019; pp. 321–372 ISBN 9781119434436.
- Seckbach, J.; Chela-Flores, J. Extremophiles and Chemotrophs as Contributors to Astrobiological Signatures on Europa: A Review of Biomarkers of Sulfate-Reducers and Other Microorganisms. In Proceedings of the SPIE Optical Engineering + Applications; 2007.
- Mangold, S.; Valdés, J.H.; Holmes, D.S.; Dopson, M. Sulfur Metabolism in the Extreme Acidophile Acidithiobacillus caldus. Front Microbiol 2011, 2. [Google Scholar] [CrossRef]
- Marlow, J.J.; Steele, J.A.; Case, D.H.; Connon, S.A.; Levin, L.A.; Orphan, V.J. Microbial Abundance and Diversity Patterns Associated with Sediments and Carbonates from the Methane Seep Environments of Hydrate Ridge, OR. Front Mar Sci 2014, 1. [Google Scholar] [CrossRef]
- Witt, M.; Pozzi, R.; Diesch, S.; Hädicke, O.; Grammel, H. New Light on Ancient Enzymes – in Vitro CO2 Fixation by Pyruvate Synthase of Desulfovibrio Africanus and Sulfolobus acidocaldarius. FEBS J 2019, 286. [Google Scholar] [CrossRef]
- Narayanan, M.; Ali, S.S.; El-sheekh, M. A Comprehensive Review on the Potential of Microbial Enzymes in Multipollutant Bioremediation: Mechanisms, Challenges, and Future Prospects. J Environ Manage 2023, 334, 117532. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.; Singh, R.; Harakeh, S.M.; Teklemariam, A.D.; Alharthy, S.A.; Tripathi, S.C.; Singh, R.P.; Hassan, A.A.; Srivastava, N.; Gupta, V.K. Enzymes Based Biocatalysis for the Treatment of Organic Pollutants and Bioenergy Production. Curr Opin Green Sustain Chem 2022. [Google Scholar] [CrossRef]
- May, S.W. Applications of Oxidoreductases. Curr Opin Biotechnol 1999, 10, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.C. , Hardy, R.W. Nitrogen Fixation in Bacteria and Higher Plants. Mol Biol Biochem Biophys 1975, 1–189. [Google Scholar] [CrossRef]
- Neemisha; Kumar, A.; Sharma, P.; Kaur, A.; Sharma, S.; Jain, R. Harnessing Rhizobacteria to Fulfil Inter-Linked Nutrient Dependency on Soil and Alleviate Stresses in Plants. J Appl Microbiol 2022, 133, 2694–2716. [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. Plants (Basel) 2023, 12. [Google Scholar] [CrossRef]
- Steimbrüch, B.A.; Sartorio, M.G.; Cortez, N.; Albanesi, D.; Lisa, M.; Repizo, G.D. The Distinctive Roles Played by the Superoxide Dismutases of the Extremophile Acinetobactersp. Ver3. Sci Rep 2022, 12. [Google Scholar] [CrossRef]
- Tanwir, K.; Amna; Javed, M.T.; Shahid, M.; Akram, M.S.; Ali, Q. Chapter 32 - Antioxidant Defense Systems in Bioremediation of Organic Pollutants. In Handbook of Bioremediation; Hasanuzzaman, M., Prasad, M.N.V., Eds.; Academic Press, 2021; pp. 505–521 ISBN 978-0-12-819382-2.
- Cabej, N.R. 18 - Species and Allopatric Speciation. In Epigenetic Principles of Evolution; Cabej, N.R., Ed.; Elsevier: London, 2012; ISBN 978-0-12-415831-3. [Google Scholar]
- Laksanalamai, P.; Robb, F.T. Small Heat Shock Proteins from Extremophiles: A Review. Extremophiles 2004, 8, 1–11. [Google Scholar] [CrossRef]
- Assenberg, R.; Wan, P.T.; Geisse, S.; Mayr, L.M. Advances in Recombinant Protein Expression for Use in Pharmaceutical Research. Curr Opin Struct Biol 2013, 23, 393–402. [Google Scholar] [CrossRef]
- Saibil, H. Chaperone Machines for Protein Folding, Unfolding and Disaggregation. Nat Rev Mol Cell Biol 2013, 14, 630–642. [Google Scholar] [CrossRef] [PubMed]
- De Champdoré, M.; Staiano, M.; Rossi, M.; D’Auria, S. Proteins from Extremophiles as Stable Tools for Advanced Biotechnological Applications of High Social Interest. J R Soc Interface 2007, 4, 183–191. [Google Scholar] [CrossRef]
- Weber, A.P.M.; Horst, R.J.; Barbier, G.G.; Oesterhelt, C. Metabolism and Metabolomics of Eukaryotes Living under Extreme Conditions. Int Rev Cytol 2007, 256, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, H.B.; Oliverio, A.M. Extreme Environments Offer an Unprecedented Opportunity to Understand Microbial Eukaryotic Ecology, Evolution, and Genome Biology. Nat Commun 2023, 14, 4959. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case. Life (Basel) 2013, 3, 363–374. [Google Scholar] [CrossRef]
- Nancucheo, I.; Barrie Johnson, D. Acidophilic Algae Isolated from Mine-Impacted Environments and Their Roles in Sustaining Heterotrophic Acidophiles. Front Microbiol 2012, 3, 325. [Google Scholar] [CrossRef]
- Lin, S. Algae. By Linda E Graham and Lee W Wilcox. Upper Saddle River (New Jersey): Prentice Hall. Xvi + 700 p; Ill.; Taxonomic and Subject Indexes. ISBN: 0–13–660333–5. 2000. Q Rev Biol 2002, 77, 70–71. [Google Scholar] [CrossRef]
- McFadden, G.I. Origin and Evolution of Plastids and Photosynthesis in Eukaryotes. Cold Spring Harb Perspect Biol 2014, 6, a016105–a016105. [Google Scholar] [CrossRef]
- Elias, M.; Archibald, J.M. Sizing up the Genomic Footprint of Endosymbiosis. Bioessays 2009, 31, 1273–1279. [Google Scholar] [CrossRef]
- Ana, A. Ramos [Review] The Unicellular Green Alga Dunaliella salina Teod. as a Model for Abiotic Stress Tolerance: Genetic Advances and Future Perspectives. Algae 2011, 26, 3–20. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb Cell Fact 2018, 17, 36. [Google Scholar] [CrossRef]
- Downing, J.M.; Lock, S.C.L.; Iovinella, M.; Davey, J.W.; Mackinder, L.C.M.; Chong, J.P.J.; Ashton, P.D.; Feichtinger, G.A.; James, S.; Jeffares, D.C.; et al. Comparisons between Complete Genomes of the Eukaryotic Extremophile Galdieria Sulphuraria Reveals Complex Nuclear Chromosomal Structures. bioRxiv 2022. [Google Scholar]
- Clapcott, J.E.; Goodwin, E.O.; Harding, J.S. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities. Environ Manage 2016, 57, 711–721. [Google Scholar] [CrossRef]
- Hogsden, K.L.; Harding, J.S. Consequences of Acid Mine Drainage for the Structure and Function of Benthic Stream Communities: A Review. Freshwater Science 2012, 31, 108–120. [Google Scholar] [CrossRef]
- Stefanidou, N.; Genitsaris, S.; Lopez-bautista, J.M.; Sommer, U.; Moustaka-Gouni, M. Unicellular Eukaryotic Community Response to Temperature and Salinity Variation in Mesocosm Experiments. Front Microbiol 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Moustaka-Gouni, M.; Kormas, K.A.; Scotti, M.; Vardaka, E.; Sommer, U. Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment. Protist 2016, 167, 389–410. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef]
- Rajapakse, K.; Drobne, D.; Kastelec, D.; Kogej, K.; Makovec, D.; Gallampois, C.; Amelina, H.; Danielsson, G.; Fanedl, L.; Marin\vsek-Logar, R.; et al. Proteomic Analyses of Early Response of Unicellular Eukaryotic Microorganism Tetrahymena Thermophila Exposed to TiO2 Particles. Nanotoxicology 2016, 10, 542–556. [Google Scholar] [CrossRef]
- Yang, W.W.; Wang, Y.; Huang, B.; Wang, N.X.; Wei, Z.B.; Luo, J.; Miao, A.J.; Yang, L.Y. TiO2 Nanoparticles Act as a Carrier of Cd Bioaccumulation in the Ciliate Tetrahymena Thermophila. Environ Sci Technol 2014, 48, 7568–7575. [Google Scholar] [CrossRef]
- Merola, A.; Castaldo, R.; Luca, P. De; Gambardella, R.; Musacchio, A.; Taddei, R. Revision of Cyanidium Caldarium. Three Species of Acidophilic Algae. Plant Biosyst 1981, 115, 189–195. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Misumi, O.; Shin-I, T.; Maruyama, S.; Takahara, M.; Miyagishima, S.-Y.; Mori, T.; Nishida, K.; Yagisawa, F.; Nishida, K.; et al. Genome Sequence of the Ultrasmall Unicellular Red Alga Cyanidioschyzon Merolae 10D. Nature 2004, 428, 653–657. [Google Scholar] [CrossRef]
- Nozaki, H.; Takano, H.; Misumi, O.; Terasawa, K.; Matsuzaki, M.; Maruyama, S.; Nishida, K.; Yagisawa, F.; Yoshida, Y.; Fujiwara, T.; et al. A 100%-Complete Sequence Reveals Unusually Simple Genomic Features in the Hot-Spring Red Alga Cyanidioschyzon Merolae. BMC Biol 2007, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, S.; Tomita, R.; Fujiwara, T.; Ohnuma, M.; Kuroiwa, H.; Kuroiwa, T.; Miyagishima, S. Efficient Open Cultivation of Cyanidialean Red Algae in Acidified Seawater. Sci Rep 2020, 10, 13794. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Fernández-Siurob, I.; Garcia-Casillas, L.A.; Velázquez-Juárez, G. Dunaliella Salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes 2022, 10. [Google Scholar] [CrossRef]
- Raja, R.; Hemaiswarya, S.; Rengasamy, R. Exploitation of Dunaliella for Beta-Carotene Production. Appl Microbiol Biotechnol 2007, 74, 517–523. [Google Scholar] [CrossRef]
- Goldstein, B. Tardigrades and Their Emergence as Model Organisms. Curr Top Dev Biol 2022, 147, 173–198. [Google Scholar]
- Goldstein, B.; Blaxter, M. Tardigrades. Current Biology 2002, 12, R475. [Google Scholar] [CrossRef]
- Hesgrove, C.; Boothby, T.C. The Biology of Tardigrade Disordered Proteins in Extreme Stress Tolerance. Cell Communication and Signaling 2020, 18, 178. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Tanaka, S.; Yamaguchi, S.; Kuwahara, H.; Takamura, C.; Imajoh-Ohmi, S.; Horikawa, D.D.; Toyoda, A.; Katayama, T.; Arakawa, K.; et al. Two Novel Heat-Soluble Protein Families Abundantly Expressed in an Anhydrobiotic Tardigrade. PLoS ONE 2012, 7, e44209. [Google Scholar] [CrossRef]
- Makarov, K.V.; Sundukov, Yu.N.; Matalin, A. V Ground Beetles (Coleoptera, Carabidae) in Fumarole Fields of Kunashir Island, Kuril Archipelago, Russia. Acta Zoologica Academiae Scientiarum Hungaricae 2020. [Google Scholar] [CrossRef]
- Chng, Y.R.; Ong, J.L.Y.; Ching, B.; Chen, X.L.; Hiong, K.C.; Wong, W.P.; Chew, S.F.; Lam, S.H.; Ip, Y.K. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus Annectens, and Changes in Their Branchial MRNA Expression Levels and Protein Abundance during Three Phases of Aestivation. Front Physiol 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Meir, J.U.; Ponganis, P.J. High-Affinity Hemoglobin and Blood Oxygen Saturation in Diving Emperor Penguins. J Exp Biol 2009, 212, 3330–3338. [Google Scholar] [CrossRef] [PubMed]
- Golikov, A. V; Ceia, F.R.; Sabirov, R.M.; Ablett, J.D.; Gleadall, I.G.; Gudmundsson, G.H.; Hoving, H.J.T.; Judkins, H.; Palsson, J.; Reid, A.L.; et al. The First Global Deep-Sea Stable Isotope Assessment Reveals the Unique Trophic Ecology of Vampire Squid Vampyroteuthis Infernalis (Cephalopoda). Sci Rep 2019, 9. [Google Scholar] [CrossRef] [PubMed]
| Type of extreme condition | Description | Biological consequences |
|---|---|---|
| Alkaline or acidic environment | Natural habitats above pH 9 like alkaline/soda lakes, limestone caves and some hot springs, or under pH 5 like volcanic lakes, acidic wetlands, streams and soil and mine drainage, which are persistently, or with regular frequency or for short periods extremely acidic or basic. | Protein denaturation, cell membrane damage, enzyme inactivation, disruption of internal pH balance and altered metabolic processes |
| Cold | Habitats periodically or consistently below -17 °C either persistently, or with regular frequency or for short periods like mountains, polar sites, and deep ocean. | Cell membrane damage, intracellular ice formation, dehydration, enzymatic inhibition and cellular damage, cold adaptation |
| Hot | Broadly conceived habitats periodically or constantly in excess of 40 °C either persistently, or with regular frequency or for protracted periods. Volcanic regions and geothermal streams | Dehydration, cell membrane damage, protein denaturation, DNA denaturation, enzyme deactivation and disruption of biological processes. |
| Hypersaline | Environments with salt concentrations greater than that of seawater, that is, >3.5% like salt lakes and mines. | Osmotic stress, shrinkage of the cell, desiccation, enzyme inactivation |
| High pressure | Habitats under extreme hydrostatic pressure like aquatic regions more than 2000 meter in the ocean and deep lakes. | Cellular compression, enzyme inactivation, membrane disruption, possible DNA and protein denaturation and cellular adaptation |
| Radiation | Background radiation beyond the natural average of annual exposure at about 2.4 mSv or 240 mrem. | DNA damage, cell death, carcinogenesis, cell dysfunction and cell cycle arrest |
| Absence of water | Habitats without free water whether persistently, or with regular frequency or for short periods. Includes hot and cold desert environments, and some endolithic habitats | Dehydration, protein denaturation, cell dysfunction, impaired cellular communication and functions, metabolic inactivity, growth arrest and death. |
| Absence of light | Unreachable regions for sun light like deep ocean environments and habitats such as caves | Reduced energy production, retarded biological rhythms, dependency to alternative energy source, reduced biodiversity and increased adaptation and specialization |
| Absence of oxygen | Habitats without free oxygen – whether persistently, or with regular frequency, or for protracted periods. Includes habitats in deeper sediments. | Oxygen deprivation, cellular damage and death. Development of semi- or full anaerobe metabolism. |
| Absence of nutrients | Areas on earth that lack an abundance of nutrients such as the vast ocean, desert and high country. | nutrient deficiency and energy depletion, organ dysfunction and damages leading to death, or growth arrest |
| Human made extreme environment | Anthropogenic affected habitats. Including waste depots, mine tailings, oil influenced habitats and pollution by heavy metals or organic compounds. | severe cellular and tissue damage |
| Type of extremophile | Type of environment | Taxonomic families of extremophiles |
| Psychrophile | Cold environment | Mostly bacteria, archaea and Eukaryotes (algae) |
| Therrmophile and acidophilic thermophile | Hot or hot acidic environment | Mostly bacteria, archaea and rarely Eukaryotes (fungi and algae) |
| Halophile or osmophile | High salt/high sugar | Mostly bacteria, archaea and rarely Eukaryotes (fungi and algae) |
| Acidophile | Acidic environment | Mostly bacteria, archaea and Eukaryotes (algae) |
| Alkaliphile | Alkaline environment | Mostly bacteria, archaea and Eukaryotes (black fungi and algae) |
| Barophile or Piezophile | High-pressure environment | Mostly bacteria, archaea and rarely Eukaryotes (single cell protists, deep-sea fish and invertebrates) |
| Xerophile | Dry environment | Mostly bacteria, archaea and Eukaryotes (fungi) |
| Radiotolerant | High level of radiating environment | Mostly bacteria, archaea and Eukaryotes (fungi) |
| Endolithic extremophile | Rocky environment | Mostly bacteria, archaea and Eukaryotes (black fungi, lichens and algae) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
