Submitted:
11 March 2025
Posted:
12 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Geometry
2.1. Isothermic Patches (CC-Patch)
2.2. Quad-Type
2.2.1. Quad-Type from Reparameterization

2.3. Cyc-Type
2.3.1. Cyc-Type from Möbius Transform
2.4. Rev-Type
2.4.1. Rev-type from Reparameterization
2.4.2. Rev-Type from Christoffel Transform

2.5. MS-Type
2.5.1. MS-Type from Christoffel Transform
2.5.2. MS-Type from Goursat Transform

2.5.3. MS-Type Special Properties

2.6. CMC-Type
2.6.1. Connection pCGC - CMC Patches
2.6.2. CMC-Type from Bäcklund tr. of pCGC
2.7. Gen-Type
2.7.1. Gen-Type from BDR Transform
2.7.2. Gen-Type from Möbius Transform
3. Design Explorations
3.1. Design with Quad, Rev and Cyc-Types
3.2. Design with MS-Type

3.3. Design with CMC-Type
3.4. Design with Gen-Type

4. Prototyping
5. Conclusions
References
- Eisenhart, .L. A Treatise on Differential Geometry of Curves and Surfaces; Ginn and Company, 1909.
- Rogers, .C.; Schief, W.K. Bäcklund and Darboux transformations: Geometry and modern applications in soliton theory; Cambridge university press: Cambridge, 2002.
- Bobenko, .A.; Pinkall, U. Discrete isothermic surfaces. J. reine angew. Math. 1996, 475, 187 – 208. [CrossRef]
- Christoffel, .E. Ueber einige allgemeine Eigenschaften der Minimumsflächen. Crelle’s J. 1867, 67, 218 – 228. [CrossRef]
- Li, .X.; Mansouri, M.; Elshafei, A. Conformal principal-asymptotic elastic gridshells: parametric design and modular construction.
- Goursat, .E. Sur un mode de transformation des surfaces minima (1,2). Acta Math. 1887, 11, (135–186), (257–264).
- Dierkes, .U.; Hildebrandt, S.; Sauvigny, F. Minimal surfaces; Springer: Berlin, Heidelberg, 1992.
- Weber, .M. Classical Minimal Surfaces in Euclidean Space by Examples. Lec. Notes Clay Mathematical SummerSchool MSRI, Berkeley 2001.
- Bobenko, .A.; Hoffmann, T.; Springborn, B. Minimal surfaces from circle patterns: Geometry from combinatorics. Ann. of Math. 2006, 164, 231 – 264.
- Pottmann, .H.; Liu, Y.; Bobenko, A.; Wallner, J.; Wang, W. Geometry of multi-layer freeform structures for architecture. ACM Tr., Proc. SIGGRAPH 2007, 26, 1–11. [CrossRef]
- Pottmann, .H.; Asperl, A.; Hofer, M.; Kilian, A. Architectural Geometry; Bentley Institute Press, 2007.
- Gray, .A.; Abbena, E.; Salamon, S. Modern differential geometry of curves and surfaces with Mathematica. 3rd Edition; Chapman & Hall/CRC, 2006.
- Tošić, .Z.; Abdelmagid, A.; Lordick, D.; Baverel, O.; Elshafei, A. Pre-rationalization approach for the low-tech construction of doubly curved surfaces part-1.
- Sterling, .I.; Wente, H. Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. Jour. 1993, 42, 1239–1266.
- Bianchi, .L. Lezioni di geometria differenziale; Pisa, 1903.
- Eisenhart, .L. Transformations of Surfaces; Princeton university press, 1923.
- Tošić, .Z. Isothermic Surfaces Python for Grasshopper, 2024.














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
