Submitted:
11 February 2025
Posted:
11 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Marine Inorganic Carbon Sources for Carbon Assimilation
3. Assimilation of Inorganic Carbon via Rubisco
4. Kinetics of Rubisco vs. Whole Cell Photosynthesis
4.1. Cyanobacteria and Microalgae
| Organisms | Rubisco | K0.5 CO2 (mM) |
Srel (mol mol−1) |
Kcat (mol CO2 mol−1 active sites s−1) |
| b-cyanobacteria | Form IBc | 200-260 * |
35-56 | 2.6 - 11.4 |
| a-cyanobacterium Prochlorococcus | Form 1Ac | 750 | 4.7 | |
| Green algae | Form 1B | 29-38 | 61-83 | |
| Diatoms | Form 1D | 23-68 | 57-116 | 2.1-3.7 |
| Synurophyceae | Form 1D | 18.2-41.8 | ||
| Dinoflagellates# | Form II | ~37 | ||
| Rhodophyta Porphyridium purpureum | Form 1D | 22 | 144 | 2.6 |
| Rhodophyta Cyanidium |
Form 1D | 6.6-6.7 | 224-238 | 1.3-1.6 |
4.2. Macroalgae and Seagrasses
5. Inorganic Carbon Acquisition and ‘Biophysical’ CCMs
5.1. Cyanobacteria and Microalgae
5.2. Macroalgae and Seagrasses
6. Alternative ‘Biochemical’ Modes of Inorganic Carbon Utilisation in Some Marine Photoautotrophs
6.1. Cyanobacteria and Microalgae
6.2. Macroalgae and Seagrasses
7. Inorganic Carbon Acquisition in Various Marine Environments
8. Future Scenarios
9. Summary
- Marine photoautotrophs in general use the 120 times higher HCO3- than CO2 concentration in seawater for their photosynthetic needs;
- There are several ways in which cyanobacteria and microalgae can acquire Ci from seawater, including diffusion or active transport of CO2. For many microalgae, however, as well as for macroalgae and seagrasses, the most common way is to convert HCO3- to CO2 via membrane-bound CA activity associated with the periplasmic space. Another, more efficient way to acquire HCO3-, is by its direct uptake, mediated, at least in the macroalga Ulva, by an anion exchange protein bound to the plasma membrane;
- Because marine photosynthesisers contain Rubiscos with lower affinities for CO2 than terrestrial C3 plants, and given the slow diffusional supply of this Ci form in seawater, they are in need of (and typically possess) CCMs in order to partly or fully (depending on species) saturate Rubisco with CO2 so as to optimise photosynthetic- and growth rates. Some algae, however, can under low irradiance utilise only CO2 by diffusion;
- The ‘biophysical’ CCMs of marine photoautotrophs are different from the ‘biochemical’ CCMs of terrestrial C4 and CAM plants as they rely on extracellular HCO3- supplying CO2 to their Rubiscos;
- Photoautotrophs using C4 and CAM pathways for inorganic carbon fixation are very rare in marine environments, but C4 metabolism may in some cases have an anaplerotic carboxylation role;
- While many macroalgae and all seagrasses investigated in laboratory conditions require additional CO2 to fully saturate carbon fixation, their performance in situ may be different such that they are closer to CO2 saturation without additional CO2 or Ci additions;
- Responses to future changes in CO2 levels would appear to be very species dependent and also influenced by modulation of CCM activity by other environmental conditions such as light and nutrient levels.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis. Princeton University Press, USA, 2007.
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, UK, 2011.
- Raven, J.A.; Kübler, J.; Beardall, J. Put out the light, and then put out the light. J. Mar. Biol. Assoc. UK, 2000, 80, 1-25. [CrossRef]
- Quigg, A.; Kevekordes, K.; Raven, J.A.; Beardall, J. Limitations on microalgal growth at very low photon flux densities: the role of energy slippage. Photos. Res. 2006, 88, 299–31.
- Beer, S.; Björk, M.; Beardall, J.; Photosynthesis in the Marine Environment. Wiley-Blackwell, U.K. 2014.
- Fuchs, G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Ann. Rev. Microbiol, 2011, 65, 631–658.
- Beardall J., Raven J.A. Acquisition of Inorganic carbon by microalgae and cyanobacteria. In: Wang Q. (Ed.) Microbial Photosynthesis. Springer, Singapore 2020, pp. 151-168.
- Eisenhut, M.; Ruth, W.; Haimovitch, M.; Bauwe, H; Kaplan, A.; Hagemann, M. The photorespiratory glycolate metabolism is essential for cyanobacteria and may have been conveyed endosymbiotically to plants. Proc. Nation. Acad. Sci. USA, 2008, 105, 17199–17204.
- Raven, J.A.; Beardall, J. CO2 acquisition mechanisms in algae: Carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In Photosynthesis in the Algae (Eds. Larkum, A.W.D.; Douglas, S.E.; Raven J.A. Advances in Photosynthesis (Series Editor, Govindjee). Kluwer; 2003, pp. 225-244.
- Raven, J.A.; Beardall, J.; Sánchez-Baracaldo, P. The possible evolution and future of CO2 concentrating mechanisms. J. Exp. Bot. 2017 68, 3701-3716. [CrossRef]
- Capo-Bauca, S.; Inguez, C.; Galmes, J. The diversity and coevolution of Rubisco and CO2 concentrating mechanisms in marine macrophytes. New Phytol. 2024, 241, 6, 2353-2365. [CrossRef]
- Burns, D.B.; Beardall, J. Utilization of inorganic carbon by marine microalgae. ,J.Exp. Mar. Biol. Ecol. 1987, 107, 75-86.
- Burkhardt, S.; Amoroso, G.; Riebesell, U.; Sültemeyer, D. CO2 and HCO3−uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 2001, 46, 1378–1391.
- Iniguez C.; Capo-Bauca S.; Niinemets U.; Stoll H.; Aguilo-Nicolau P.; Galmes J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO2 concentrating mechanisms. Plant J., 2020, 101, 897-918. [CrossRef]
- Smith-Harding, T.J.; Mitchell, J. G.; Beardall, J. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. J Phycol .2018, 53: 1159-1170. [CrossRef]
- Young, J.N.; Heureux, A.M.C.; Sharwood, R.E.; Rickaby, R.E.M.; Morel, F.M.M.; Whitney, S.M. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 2016, 67, 3445–3456. [CrossRef]
- Sültemeyer, D.; Price, G.D.; Yu, JW.; Badger, M.R. Characterisation of carbon dioxide and bicarbonate transport during steady-state photosynthesis in the marine cyanobacterium Synechococcus strain PCC7002. Planta 1995, 197, 597–607. [CrossRef]
- Bhatti S.; Colman B. Inorganic carbon acquisition in some synurophyte algae. Physiol. Plant. 2008, 133, 33–40. [CrossRef]
- Kerby, N.W.; Raven, J.A; Transport and fixation of inorganic carbon by marine algae. Bot. Res. 1985, 2, 71-122.
- Cook, C.M.; Colman, B. Some characteristics of photosynthetic inorganic carbon uptake of a marine macrophytic red alga. Plant, Cell Environ. 1987. 10, 275-278.
- Reiskind, J.; Beer, S.; Bowes, G. Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat. Bot. 1989, 34, 131-152. [CrossRef]
- Israel, A.; Beer, S. Photosynthetic carbon acquisition in the red alga Gracilaria conferta. II. Rubisco carboxylase kinetics, carbonic anhydrase and HCO3- uptake. Mar. Biol. 1992, 112, 697-700. [CrossRef]
- Capo-Bauca, S.; Galmes, J.; Aguilo-Nikolai, P.; Ramez-Pozuelo, S.; Iniguez, C. Carbon assimilation in upper subtidal macroalgae is determined by an inverse correlation between Rubisco carboxylation efficiency and CO2 concentrating mechanism effectiveness. New Phytol. 2023, 237, 2027--2038. [CrossRef]
- Beer, S.; Israel, A. Photosynthesis of Ulva sp. III. O2 effects, carboxylation activity, and the CO2 incorporation pattern. Plant Physiol. 1986, 81, 937-938.
- Capo-Bauca, S.; Inguez, C.; Galmes, J.;Galmez, J/ Aguilo-Nikolai, P. Correlative adaptation between Rubisco and CO2 concentrating mechanisms in seagrasses. Nature Planta 2022, 8, 705-716.
- Raven, J.A.; Giordano, M.; Beardall, J.; Maberly, S.C. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil. Trans. R. Soc. B. 2012, 367, 493-507. [CrossRef]
- Beer, S. Photosynthesis and photorespiration in marine angiosperms (Review Article). Aquat. Bot. 1989, 34, 153-166.
- Touchette, B.W.; Burkholder, JA.M. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000. 250, 169-205. [no CO2 pump in SG].
- Larkum, W.D.; Davey, P.A.; Kuo, J.; Ralph, P.J.; Raven, J.A. Carbon-concentrating mechanisms in seagrasses. J. Exp. Bot. 2017, 3773–3784. [CrossRef]
- Maberly, S.C. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 1990, 26, 439-449. [CrossRef]
- Raven, J.A.; Johnston, A. M.; Kübler J.E.; Korb, R.; McInroy , S.G.; Handley, L.L.; Scrimgeour, C.M.; Walker, D.I.; Beardall, J.; Vanderklift, M.; Fredricksen, S.; Dunton, K.H. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 2002, 29, 355-78. [CrossRef]
- Cassar, N.; Laws, E.A.; Popp, B.N.; Bidigare, R.R. Sources of inorganic carbon for photosynthesis in a strain of Phaeodactylum tricornutum. Limnol. Oceanogr. 2002, 47, 1192-1197. [CrossRef]
- Cassar, N.; Laws, E.A.; Bidigare, R.R.. Bicarbonate uptake by Southern Ocean phytoplankton. Global Biogeochemical Cy., 2004, 18. [CrossRef]
- Beardall J,; Giordano, M; Raven, J.A. And Nothing was the same anymore: The rise in O2 and consequences for photoautotrophs. In: Giordano M,; Beardall, J.; Maberly, S.; Raven J.A. (Eds). Evolutionary Physiology of Aquatic Plants and Algae. 2024, Cambridge University Press, pp. 43-64.
- Price, G. D.; Badger, M. R.; Woodger, F. J.; Long, B. M. Advances in understanding the cyanobacterial CO2- concentrating-mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 2008, 59, 1441–1461.
- Nakajima, K.; Tanaka, A.; Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Nation. Acad. Sci. USA 2013, 110, 1767–1772. [CrossRef]
- Tsuji, Y.; Mahardika, A.; Matsuda, Y. (2017). Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. J. Exp. Bot. 2017, 68, 3949–3958. [CrossRef]
- Huertas, I. E.; Colman, B.; Espie, G. S. (2002). Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct. Plant Biol., 2002, 29: 271–77. [CrossRef]
- Amoroso, G.; Sültemeyer, D. F.; Thyssen, C.; Fock, H. P. (1998). Uptake of HCO3− and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol. 1998, 116, 193–201. [CrossRef]
- Tsuji, Y.; Nakajima, K.; Matsuda, Y. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. J. Exp. Bot. 2017, 68, 3763–3772. [CrossRef]
- Matsuda, Y., Hopkinson, B. M., Nakajima, K.; Dupont C. L.; Tsuji Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Phil. Trans. Roy. Soc. B. 2017, 372, 20160403. [CrossRef]
- DiMario, R. J.; Machingura, M. C.; Waldrop, G. L.; Moroney J.V. The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci.2017, 268, 11–17. [CrossRef]
- Beer, S. Photosynthetic traits in the ubiquitous and prolific macroalga Ulva (Chlorophyta): A Review. Eur. J. Phycol. 2022, 58: 390-398. [CrossRef]
- Beer,S.; Koch, E. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 1996, 141, 199-204. [CrossRef]
- Beer, S.; Eshel, A. Photosynthesis of Ulva sp. II. Utilization of CO2 and HCO3- when submerged. J. Exp. Mar. Biol. Ecol. 1983, 70, 99-106.
- Beer, S.; Eshel. Photosynthesis of Ulva sp. I. Effects of desiccation when exposed to air. J. Exp. Mar. Biol. Ecol. 1983, 70, 91-97.
- Schwarz, A.-M.; Björk, M.; Buluda, T.; Mtolera, M.; Beer, S. Photosynthetic utilisation of carbon and light by two tropical seagrass species as measured in situ. Mar. Biol. 2000, 137, 755-761. [CrossRef]
- Campbell, J.E,. Fourqurean, J.W. Mechanisms of bicarbonate use influence the photosynthetic carbon dioxide sensitivity of tropical seagrasses. Limnol. Oceanogr. 2013, 58(3), 839-848. [CrossRef]
- Invers, O.; Zimmerman, R.C.; Alberte, R.S.; Perez, M.; Romero, J. Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. J. Exp. Mar. Biol. Ecol. 2001, 265, 203-217. [CrossRef]
- Invers, O.; Romero, J.; Perez, M. Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquat. Bot. 1997, 59, 185-194. [CrossRef]
- Björk, M.; Weil, A.; Semesi, S.; Beer, S. Photosynthetic utilisation of inorganic carbon by seagrasses from Zanzibar, East Africa. Mar. Biol. 1997, 129: 363-366. [CrossRef]
- Beer, S.; Waisel, Y. Some photosynthetic carbon fixation properties in seagrasses. Aquat. Bot. 1979, 7: 129-138. [CrossRef]
- Hellblom, F.; Beer, S.; Björk, M.; Axelsson, L. A buffer sensitive inorganic carbon utilisation system in Zostera marina. Aquat. Bot. 2001, 69, 55-62. [CrossRef]
- Drechsler, Z.; Sharkia, R.; Cabantchik, Z.I.; Beer, S. Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 1993. 191: 34-40. [CrossRef]
- Sharkia, R.; Beer, S.; Kabantchik, Z.I. A membrane-located polypeptide which may be involved in the HCO3- transport of Ulva sp. is recognized by antibodies raised against the human red blood cell anion-exchange protein. Planta. 1994. 194: 247-249.
- Beer, S.; Israel, A. Photosynthesis in Ulva fasciata IV. pH, carbonic anhydrase and inorganic carbon conversions in the unstirred layer. Plant, Cell Environ. 1990, 13, 555-560. [CrossRef]
- Axelsson, L.; Ryberg, H.; Beer, S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant, Cell Environ. 1995, 18, 439-445. [CrossRef]
- Larsson, C.; Axelsson, L. Bicarbonate uptake and utilization in marine macroalga. Eur. J. Phycol. 1999, 34, 79-86.
- Fernandez, P.A.; Hurd, C. L.; Roleda, M. Y.; Wernberg, T. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. J. Phycol. 2014, 50, 998-1008.
- Rubio, L.; García, D.; García-Sánchez, M.J ; Niell, F.X.; Felle,H.H.; Hubert, H.; Fernández, J.A. A direct uptake of HCO3- in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant, Cell Environ. 2017, 40, 2820-2830.
- Raven, J.A.; Beardall, J.; Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 2014, 121, 111-124. [CrossRef]
- Raven, J.A; Ball, L.A.; Beardall, J; Giordano, M.; Maberly, S.C. Algae lacking CO2 concentrating mechanisms. Can. J. Bot. 2011, 83, 869-890. [CrossRef]
- Stepiens, C.C. Impacts of geography, taxonomy and functional group of inorganic carbon use patterns in marine macrophytes. J. Ecol. 2015, 103, 1372-1384.
- Beardall, J.; Roberts, S. Inorganic carbon acquisition by two species of Antarctic macroalgae: Porphyra endivifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biol. 1999, 21, 310-315.
- Coughland, S.; Tattersfield, D. Photorespiration in larger littoral algae. Bot. Mar. 1977. 20, 265-266.
- Beer, S., Israel, A.; Drechsler, Y.; Cohen, Y. Photosynthesis in Ulva fasciata V. Evidence for an inorganic carbon concentrating system, and Ribulose-1,5 bisphosphate carboxylase/Oxygenase CO2 kinetics. Plant Physiol. 1990, 94, 1542-1546.
- Lundberg, P.; Weich, R.G.; Jensen, P.; Vogel, H.J. Phosphorus-91 and nitrogen-14 NMR studies of uptake of phosphorus and nitrogen compounds in the marine macroalga Ulva lactuca. Plant Physiol. 1989, 89, 1380-1387. [CrossRef]
- Invers, O.; Tomas, F.; Perez,M.; Romero, J. Potential effect of increased global CO2 availability on the depth distribution of the seagrass Posidonia oceanica (L.) delile: A tentative assessment using a carbon balance model. Bull. Mar. Sci. 2002, 71(3), 1191-1198.].
- Beer, S.; Björk, M.; Hellblom, F.; Axelsson, L. Inorganic carbon utilisation in marine angiosperms (seagrasses). Funct. Plant Biol. 2002, 29, 349-354.
- Uku, J.; Beer, S.; Björk, M. Buffer sensitivity of photosynthetic carbon utilisation in eight tropical seagrasses, Mar. Biol. 2005, 147, 1085-1090. [CrossRef]
- Buapet, P.; Rasmusson, L.M.; Gullstrom, M.; Björk, M. Photorespiration and carbon limitation determine productivity in temperate seagrasses, PLoS ONE, 2013, 8: e83804. [CrossRef]
- Beardall, J.; Mukerji, D.; Glover, H. E.; Morris I. The path of carbon in photosynthesis by marine phytoplankton. J. Phycol. 1976, 12, 409–417. [CrossRef]
- Morris, I.; Beardall, J.; Mukerji, D. (1978). The mechanisms of carbon fixation in phytoplankton. Mitt. Int. Ver. Theor. Angew. Limnol., 1978, 21, 174–83. [CrossRef]
- Reinfelder, J. R.; Kraepiel, A. M. L.; Morel, F. M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 2000 407,996–999. [CrossRef]
- Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. (2004). The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol. 2024, 135, 2106–2111.
- Johnston, A. M.; Raven, J. A.; Beardall, J.; Leegood, R. C. Photosynthesis in a marine diatom. Nature 2001, 412: 40–41. [CrossRef]
- Roberts, K.; Granum, E.; Leegood, R. C., Raven, J.A. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol. 2007,145, 230–235. [CrossRef]
- Roberts, K., Granum, E., Leegood, R. C, Raven, J.A. Carbon acquisition by diatoms. Photosyn. Res. 2007 93, 79–88. [CrossRef]
- Reiskind, J. B.; Bowes, G. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl. Acad. Sci. USA. 1991, 88, 2883-2887. [CrossRef]
- Kremer, B.P.; Küppers, U. Carboxylating enzymes and pathway of photosynthetic assimilation in different marine algae. Evidence for C4 pathways? Planta 1977, 133, 191-196.
- Beer, S.; Shragge, B, Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta). J. Phycol. 1987, 23, 580-584.
- Zang, X.; Gao, G.; Gao, Z. ; Gao, K..; Liu, D. The contribution of biophysical and biochemical CO2 concentration mechanisms to the carbon fixation of the green macroalga Ulva prolifera. Mar. Sci. Tech. 2024. [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-wide electronic publication 2022, National University of Ireland, Galway.
- Raven, J.A.; Giordano, M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Phil. Trans. R. Soc. B, 2017, 372, 20160400. [CrossRef]
- Kübler, J.E., Raven, J.A. Consequences of light limitation for carbon acquisition in three rhodophytes. Mar. Ecol. Prog. Ser. 1994, 110, 203–209. [CrossRef]
- Beardall, J. Effects of photon flux density on the „CO2 concentrating mechanism” of the cyanobacterium Anabaena variabilis. J. Plank. Res. 1991, 13, 133-41.
- Raven, J.A.; Beardall J. CO2 Concentrating Mechanisms and Environmental Change. Aquat. Bot. 2014, 118, 24-37. [CrossRef]
- Björk, M.; Axelsson, L.; Beer, S. Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Mar. Ecol. Prog. Ser. 2004, 284, 109-116.
- Liu, S-L,; Wang, W-L.; Dy, D.T.; PuFu, C-C. The effect of ulvoid macroalgae on the inorganic carbon utilization by and intertidal seagrass Thalassia hemprichii. Bot. Bull. Acad. Sin. 2005, 46, 197-203.
- Beardall, J.; Raven, J.A. Aquatic Phototrophs and the Greenhouse Effect. In: Giordano M,; Beardall, J.; Maberly, S.; Raven J.A. (Eds). Evolutionary Physiology of Aquatic Plants and Algae. 2024, Cambridge University Press, pp. 295-314.
- Beardall, J.; Beer, S.; Raven, J.A. Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance. Bot. Mar. 1998, 41, 113-123.
- Koch, M.; Bowes, G.; Ross,c.; Zhang, X-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 2013, 19, 103-132. [CrossRef]
- Hurd, C. L.; Hepburn, C. D.; Currie, K. I.; Raven, J.A.; Hunter, K.A. Testing methods of ocean acidification on algal metabolism: Consideration for experimental designs. J. Phycol.2009, 45,1236–1251.
- van der Loos, L.M.; Schmid, M.; Leal, P.P.; McGraw, C.M.; Britton, D.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon strategy. Ecol. Evol. 2019, 9, 125-140. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
