Submitted:
29 January 2025
Posted:
30 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Climate
2.1.2. Soil
2.2. Experimental Details
2.3. Soil Sampling and Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Pre-Experimental Soil Characteristics
| Depth | SOM | pH | T–S | S | T | BS | N | P2O5 | K2O | Al | |
| cm | % | H2O | KCl | cmol ∙ kg−1 | % | % | mg ∙ 100 g−1 | cmol ∙ kg−1 | |||
| 0–30 | 2.24 | 5.04 | 4.13 | 10.7 | 10.9 | 21.6 | 50.2 | 0.12 | 9.0 | 15.2 | 1.15 |
| 30–45 | 1.34 | 4.98 | 4.02 | 8.8 | 8.1 | 16.9 | 48.0 | 0.07 | 8.1 | 16.4 | 1.02 |
3.3. Effect of Fertilizers and Liming on Soil Characteristics
3.4. Effect of Fertilization and Liming on Maize Yield
3.4.1. Maize Yield in 2021
3.4.2. Maize Yield in 2022
3.4.3. Maize Yield in 2023
4. Discussion
4.1. Effect of Liming on Soil Characteristics
4.2. Effect of Fertilization and Liming on Maize Grain Yield
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dugalić, G.; Gajić, B. Pedology, 1st ed. University in Kragujevac, Faculty of Agronomy Čačak, Serbia, 2012; p. 295. (In Serbian).
- Dugalić, G. Characteristics of Kraljevo Area Pseudogley Soils and Possibilities to Increase Its Productive Capability. Ph.D. Thesis, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, p. 193. (In Serbian), 1998.
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. T. Crop J. 2013, 1 (2), 91–104. [CrossRef]
- Smith, J.F.N.; Hardie, A.G. Long-term effects of micro-fine and class A calcit lime application rates on soil acidity and rooibos tea yields under Clanwilliam field conditions. South Afr. J. Plant Soil 2022, 39 (4), 270–277. [CrossRef]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The state of soil degradation in Sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability 2015, 7, 6523–6552. [CrossRef]
- Agegnehu, G.; Amede, T.; Erkossa, T.; Yirga, C.; Henry, C.; Tyler, R.; Nosworthy, M.G.; Beyene, S.; Sileshih, G.W. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agr. Scand. B-S P 2021, 71 (9), 852–869. [CrossRef]
- Enesi, R.O.; Dyck, M.; Chang, S.; Thilakarathna, M.S.; Fan, X.; Strelkov, S.; Gorim, L.Y. Liming remediates soil acidity and improves crop yield and profitability - a meta-analysis. Front. Agron. 2023, 5, 1194896. [CrossRef]
- Weil, R.R.; Brady, N.C. The nature and properties of soils. 15th (global) ed. Pearson Press, New York, 2017.
- Truskavetskyi, R.S.; Tsapko, Yu.L.. Fundamentals of soil fertility management. Kharkiv: FOP Brovin O.V., 2016; 388 pp. (in Ukrainian).
- Nogueirol, R.C.; Monteiro, F.A.; Azevedo, R.A. Tropical soils cultivated with tomato: fractionation and speciation of Al. Environ. Monit. Asses. 2015, 187, 160. [CrossRef]
- Naramabuye, F.X.; Haynes, R.J.; Modi, A.T. Cattle manure and grass residues as liming materials in a semi-subsistence farming system. Agr. Ecosyst. Environ. 2008, 124, 136–141. [CrossRef]
- Dai, P.; Cong, P.; Wang, P.; Dong, J.; Dong, Z.; Song, W. Alleviating soil acidification and increasing the organic carbon pool by long-term organic fertilizer on tobacco planting soil. Agronomy 2021, 11, 2135. [CrossRef]
- Patra, A.; Sharma, V.K.; Nath, D.J.; Purakayastha, T.J.; Barman, M.; Kumar, S.; Chobhe, K.A.; Dutta, A; Anil, A.S. Impact of long term integrated nutrient management (INM) practice on aluminium dynamics and nutritional quality of rice under acidic Inceptisol. Arch. Agron. Soil Sci. 2020, 68 (1), 31–43. [CrossRef]
- Yang, J.; Zheng, Z.; Li, T.; Ye, D.; Wang, Y.; Huang, H.; Yu, H.; Liu, T.; Zhang, X. Variations in aluminium fractions within soils associated with different tea (Camellia sinensis L.) varieties: Insights at the aggregate scale. Plant Soil 2022, 480, 121–133. [CrossRef]
- Dugalić, M.; Životić, Lj.; Gajić, B.; Latković, D. Small Doses of Lime with Common Fertilizer Practices Improve Soil Characteristics and Foster the Sustainability of Maize Production. Agronomy 2024, 14, 46. [CrossRef]
- Kiraev, R.; Kaipov, I.; Shakirzianov, A. Regulating physical and chemical properties of leached chernozems in the forest-steppe of the Southern Urals. BIO Web Conf. International Scientific and Practical Conference “Fundamental Scientific Research and Their Applied Aspects in Biotechnology and Agriculture”, FSRAABA, 2021, 36, 03004. [CrossRef]
- Xu, L.; Liu, W.; Cui, B.; Wang, N.; Ding, J.; Liu, C.; Gao, S.; Zhang S. Aluminium tolerance assessment of 141 maize germplasm in solution culture. Universal J. Agric. Res. 2017, 5, 1–9. [CrossRef]
- Paesal, P.; Azrai, M.; Jayadi M.; Musa, Y. 2023. Screening of acid-tolerant hybrid Corn lines and parents using modified acid mineral soil. IOP Conf. Series: Earth and Environmental Science 2023, 1192, 012021 IOP Publishing. [CrossRef]
- Rowell, D.L. Untersuchungsmethoden under ihre Anwendungen. In Bodenkunde; Springer: Berlin, Germany, 1997; p. 614.
- Mineev, V.G.; Syvchev, V.G.; Amelyanchik, O.A.; Bolysheva, T.N.; Gomonova, N.F.; Durynina, E.P.; Egorov, V.S.; Egorova, E.V.; Edemskaya, N.L.; Karpova, E.A.; et al. Practical Analysis in Agrochemistry; Moscow State University: Moscow, Russia, 2001; p. 688. (In Russian).
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor und Kaliumbestimmung. K. Lantbrukshögskolans Ann. 1960, 26, 199–215.
- Olifir, Y.; Нabryel, A.; Partyka, T.; Havryshko, O.; Kozak, N.; Lykhochvor, V. The content of mobile aluminium compounds depending on the long-term use of various fertilizing and liming systems of Albic Pantostagnic Luvisol. Agron. Res. 2023, 21 (2), 869–882. [CrossRef]
- Alemu, E.; Selassie, Y.G.; Yitaferu, B. Effect of lime on selected soil chemical properties, maize (Zea mays, L.) yield and determination of rate and method of its application in Northwestern Ethiopia. Heliyon 2022, 8 e08657. [CrossRef]
- Jafer, D.; Gebresilassie, H. Application of lime for acid soil amelioration and better Soybean performance in SouthWestern Ethiopia. J. Biol. Agric. Healthc. 2017, 7 (5), 95–100.
- Alemu, G.; Desalegn, T.; Debele, T.; Adela, A.; Taye, G.; Yirga, C. Effect of lime and phosphorus fertilizer on acid soil properties and barley grain yield at Bedi in Western Ethiopia. Afr. J. Agric. Res. 2017, 12 (40), 3005–3012. [CrossRef]
- Adane, B. Effects of liming acidic soils on improving soil properties and yield of haricot bean. J. Environ. Anal. Toxicol. 2014, 5 (1), 1–4. [CrossRef]
- Kimiti, W.; Muncheru-Muna, M.W.; Mugwe, J.N.; Ngetich, K.F.; Kiboi, M.N.; Mugendi, D.N. (2021): Lime, manure and Inorganic Fertilizer Effects on Soil Chemical Properties, Maize Yield and Profitability in Acidic Soils in Central Highlands of Kenya. Asian J Environ. Ecology. 2021, 16 (3), 40–51. [CrossRef]
- Daba, N.A.; Li, D.; Huang, J.; Han, T.; Zhang, L.; Ali, S.; Khan, M.N.; Du, J.; Liu, S.; Legesse, T.G.; Liu, L.; Xu, J.; Zhang, H.; Wang, B. Long-Term Fertilization and Lime-Induced Soil pH Changes Affect Nitrogen Use Efficiency and Grain Yields in Acidic Soil under Wheat-Maize Rotation. Agronomy 2021, 11, 2069. [CrossRef]
- Smatanová, M.; Sušil A. (2017): Current status of content available nutrients and soil reaction in the soil. In: Proceedings of the 23rd International Conference on Reasonable Use of Fertilizers. Dedicated to the Importance of Agrochemical Soil Tests. Brno, Mendel University, 110.
- Cai, Z.; Yang, C.; Carswell, A; Zhang, L.; Wen, S.; Xu, M. Co-amelioration of red soil acidity and fertility with pig manure rather than liming. Soil Use Manage. 2022, 39 (2). [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P. Impact of organic and mineral fertilising on aluminium mobility and extractability in two temperate Cambisols. Plant Soil Environ. 2019, 65, 581–587. [CrossRef]
- Ahmed, W.; Jing, H.; Kaillou, L.; Qaswar, M.; Khan, M.N; Jin, C.; Geng, S.; Qinghai, H.; Yiren, L.; Guangrong, L.; Mei, S.; Chao, L.; Dongchu, L.; Ali, S.; Normatov, Y.; Mehmood, S.; Zhang, H.; Alemu, E. Changes in phosphorus fractions associated with soil chemical properties under long-term organic and inorganic fertilization in paddy soils of southern China. PLoS ONE 2019, 14 (5), e0216881. [CrossRef]
- Rutkowska, B.; Szulc, W.; Hoch, M.; Spychaj-Fabisiak, E. Forms of Al in soil and soil solution in a long-term fertilizer application experiment. Soil Use Manage. 2015, 31, 114–120. [CrossRef]
- Martins, A.P.; Denardin, L.G.D.O.; Tiecher, T.; Borin, J.B.M.; Schaidhauer, W.; Anghinoni, I.; Carvalho, P.C.D.F.; Kumar, S. Nine-year impact of grazing management on soil acidity and aluminium speciation and fractionation in a long-term no-till integrated crop-livestock system in the subtropics. Geoderma 2020, 359, 113986. [CrossRef]
- Hue, N.V. Soil Acidity: Development, Impacts, and Management. In: Structure and Functions of Pedosphere, 1st ed. Giri, B.; Kapoor, R.; Wu, Q.-S.; Varma, A. Eds.; Springer, Singapore, 2022; pp. 103–131. [CrossRef]
- Tao, L.; Li, F.B.; Liu, C.S.; Feng, X.H.; Gu, L.L.; Wang, B.R.; Wen, S.L.; Xu, M.G. Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China. Catena 2019, 174, 227–234.
- Andrić, L.; Rastija, M.; Teklić, T.; Kovačević, V. Response of maize and soybeans to liming. Turk. J. Agric. For. 2012, 36 (4), 415–420. [CrossRef]
- Ning, F.; Nkebiwe, P.; Hartung, J.; Munz, S.; Huang, S.; Zhou, S.; Honninger, G. Phosphate Fertilizer Type and Liming Affect the Growth and Phosphorus Uptake of Two Maize Cultivars. Agriculture 2023, 13 (9), 1771. [CrossRef]
- Negese, W.; Wogi, L.; Geleto, T. Responses of Acidic Soil to Lime and Vericompost Application at Lalo Asabi District, Western Ethiopia. Sci. Res. 2021, 9 (6), 108-119. [CrossRef]
- Simonsson, M.; Östlund, A.; Renfjäll, L.; Sigtryggsson, C.; Börjesson, G.; Kätterer, T. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma 2018, 315, 208–219. [CrossRef]
- Wen, Y.L.; Xiao, J.; Li H., Shen, Q.R.; Ran, W.; Zhou, Q.S.; Yu, G.H.; He, X.H. Long-term fertilization practices alter aluminum fractions and coordinate state in soil colloids. Soil Sci. Soc. Am. J. 2014, 78, 2083–2089. [CrossRef]
- Crusciol, C.A.C.; Bossolani, J.W.; Portugal, J.R.; Moretti, L.G.; Momesso, L.; de Campos, M.; Costa, N.R.; Volf, M.R.; Calonego, J.C.; Rosolem, C.A. Exploring the synergism between surface liming and nitrogen fertilization in no-till system. Agron. J. 2022, 114, 1415–1430. [CrossRef]
- Liao, P.; Ros, M.B.H.; Van Gestel, N.; Sun, Y.-N.; Zhang, J.; Huang, S., Zeng, Y-j.; Wu, Zi-M.; Van Groenigen, K.J. Liming reduces soil phosphorus availability but promotes yield and p uptake in a double rice cropping system. J. Integr. Agric. 2020, 19 (11), 2807–2814. [CrossRef]
- Еjigu, W.; Selassie, Y.; Elias, E.; Molla, E. Effect of lime rates and method of application on soil properties of acidic Luvisols and wheat (Triticum aestivum, L.) yields in northwest Ethiopia. Helyon 2023, 9. [CrossRef]
- Kalkhoran, S.S.; Pannell, D.; Thamo, T.; Polyakov, M.; White, B. Optimal lime rates for soil acidity mitigation: impacts of crop choice and nitrogen fertiliser in Western Australia. Crop Pasture Sci. 2020, 71 (1), 36–46. [CrossRef]
- Li, G.; Singh, R.P., Brennan, J.P., Helyar, K.R. A financial analysis of lime application in a long-term agronomic experiment on the south-western slopes of new south Wales. Crop Pasture Sci. 2010, 61 (1), 12–23. [CrossRef]
- Warner, J.M.; Mann, M.L.; Chamberlin, J.; Tizale, C.Y. Estimating acid soil effects on selected cereal crop productivities in Ethiopia: comparing economic cost-effectiveness of lime and fertilizer applications. PloS One 2023, 18 (1), e0280230. [CrossRef]
- Orton, T.G.; Mallawaarachchi, T.; Pringle, M.J.; Menzies, N.W.; Dalal, R.C.; Kopittke, P.M.; Searle, R.; Hochman, Z.; Dang, Y.P. Quantifying the economic impact of soil constraints on Australian agriculture: a case-study of wheat. Land Degrad. Dev. 2018, 29 (11), 3866– 3875. [CrossRef]
- Komljenović, I.; Marković, M.; Đurašinović, G.; Kovačević, B. Response of maize to liming and phosphorus fertilization with emphasis on weather properties effects. Columella J. Agric. Environ. Sci. 2015, 2 (1). [CrossRef]
- Qaswar, M.; Dongchu, Li.; Jing, H.; Tianfu H.; Ahmed, W.; Abbas, M.; Lu, Z.; Jiangxue, Du.; Khan, Z.; Ullax, S.; Humin, Z.; Boren, W. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system. Sci. Rep. 2020, 10: 19828. [CrossRef]
- Joris, H.A.W.; Caires, E.F.; Bini, A.R.; Scharr, D.A.; Haliski, A. Effects of soil acidity and water stress on corn and soybean performance under a no-till system. Plant Soil 2012, 365, 409–424. [CrossRef]
- Bossolani, J.W.; Crusciol, C.A.C.; Momesso, L.; Portugal, J.R.; Moretti, L.G.; Garcia, A.; de Cássia da Fonseca, M.; Rodrigues, V.A.; Calonego, J.C.; dos Reis, A.R. Surface liming triggers improvements in subsoil fertility and root distribution to boost maize crop physiology, yield and revenue. Plant Soil 2022, 477, 319–341. [CrossRef]
- Brozović, B.; Jug, I.; Đurđević, B.; Ravlić, M.; Vukadinović, V.; Rojnica, I.; Jug, D. Initial Weed and Maize Response to Conservation Tillage and Liming in Different Agroecological Conditions. Agronomy 2023, 13 (4), 1116. [CrossRef]
- Vasconcellos, R.C.; Mendes, F.F.; de Oliveira, A.C.; Guimarães, L.J.; Albuquerque, P.E.; Pinto, M.O.; Barros, B.A.; Pastina, M.M.; Magalhaes, J.V.; Guimaraes, C.T. ZmMATE1 improves grain yield and yield stability in maize cultivated on acid soil. Crop Sci. 2021, 61 (5), 3497-3506. [CrossRef]
- Raboin, L-M.; Razafimahafaly, A.H.D.; Rabenjarisoa, M.B.; Rabary, B.; Dussere, J.; Besquer, T. Improving the fertility of tropical acid soils: Liming versus biochar application? A long term comparison in the highlands of Madagascar. Field Crops Res. 2016, 199, 99-108. [CrossRef]

| Depth (cm) | Particle Size Distribution (%, mm) | Soil Texture | ||||
| 0.25–2 | 0.05–0.25 | 0.05–2 | 0.002–0.05 | <0.002 | ||
| 0–30 | 5.5 | 6.2 | 11.7 | 8.2 | 28.8 | Silty clay loam |
| 30–45 | 4.2 | 5.8 | 10.0 | 8.3 | 28.8 | Silty clay loam |
| >45 | 1.0 | 4.4 | 5.4 | 7.0 | 45.7 | Silty clay |
| Soil characteristic | pH | SOM | N | T–S | S | T | BS | |
| H2O | KCl | % | % | cmol・kg−1 | % | |||
| Treatments | ||||||||
| NPK | 4.96 c | 4.20 b | 1.71 b | 0.079 b | 9.8 a | 9.0 c | 18.8 c | 48.8 c |
| NPK + Liming | 6.21 b | 5.59 a | 1.50 c | 0.081 b | 5.3 b | 19.3 b | 24.6 b | 78.5 b |
| NPK + Liming + Manure | 6.5 a | 5.7 a | 2.49 a | 0.121 a | 4.8 b | 27.9 a | 32.7 a | 85.4 a |
| Soil depth (cm) | ||||||||
| 0–30 | 5.86 | 5.16 | 2.47 a | 0.121 a | 6.4 | 17.8 | 24.12 b | 70.0 |
| 30–45 | 5.90 | 5.16 | 1.32 b | 0.066 b | 6.9 | 19.8 | 26.58 a | 71.8 |
| Soil characteristic | P2O5 | K2O | Al |
| mg・100 g–1 | mg・100 g–1 | cmol・kg–1 | |
| Treatments | |||
| NPK | 6.6 b | 17.7 b | 0.92 a |
| NPK + Liming | 15.6 a | 20.5 ab | 0.36 b |
| NPK + Liming + Manure | 16.6 a | 20.8 a | 0.22 b |
| Soil depth (cm) | |||
| 0–30 | 12.4 a | 17.9 | 0.66 |
| 30–45 | 10.2 b | 18.3 | 0.59 |
| Year | Treatment–T | Hybrid–H | Mean ± SEM | |||
| NS 640 | ZP 606 | NS 6030 | ZP 666 | |||
| 2021 | F | 6601.0 cd | 5283.0 e | 6233.4 d | 6249.3 d | 6091.7±180.4 B |
| LF | 6977.7 bc | 7658.8 a | 7495.6 ab | 7367.6 ab | 7374.9±106.4 A | |
| LMF | 7329.7 ab | 7767.5 a | 7588.8 a | 7227.0 ab | 7478.2±91.5 A | |
| Mean ± SEM | 6969.5±142.2 | 6903.1±410.7 | 7105.9±254.8 | 6948.0±193.5 | 6981.6±129.8 | |
| LSD | F 283.42 ns | H 327.3 ns | F x H 566.83** | |||
| 2022 | F | 8612.7 e | 7824.5 f | 8066.8f | 8108.2 f | 8153.0±98.2 C |
| LF | 9348.5 d | 9904.6 c | 10135.8bc | 9969.1 bc | 9839.5±119.5 B | |
| LMF | 9830.7 c | 10943.5 a | 11056.0a | 10391.9 b | 10555.5±162.2 A | |
| Mean ± SEM | 9263.9±186.9 C | 9557.5±462.7 AB | 9752.9±454.3 A | 9489.7±358.3 BC | 9516.0±185.1 | |
| LSD | F 226.57** | H 261.54** | F x H 453.01** | |||
| 2023 | F | 8724.2 f | 7779.5 gh | 7679.9 h | 8035.1 g | 8054.7±132.2 C |
| LF | 9855.1 e | 11221.5 bc | 11289.4 b | 10767.5 d | 10783.4±176.1 B | |
| LMF | 10128.2 e | 11969.7 a | 11438.8 b | 10931.1 cd | 11117.0±212.5 A | |
| Mean ± SEM | 9569.1±220.4 C | 10323.6±646.4 A | 10136.0±620.7 A | 9911.3±470.5 B | 9985.00±252.1 | |
| LSD | F 163.67** | H 188.98** | F x H 327.31** | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
