Submitted:
24 November 2023
Posted:
28 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Cultural Practices and Treatment Details
2.4. Statistical Analysis
3. Results
3.1. Effect of fertilizers and liming on soil characteristics
3.2. Effect of fertilization and liming on maize yield
4. Discussion
4.1. Effect of liming on soil characteristics
4.2. Effect of fertilization and liming on maize grain yield
4.3. Liming environmental footprint
4.4. Liming application in Western Serbia: problems and perspectives
4.5. Liming sustainability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zingore, S.; Mutegi, J.; Agesa, B.; Tamene, L.; Kihara, J. Soil degradation in sub-Saharan Africa and crop production options for soil rehabilitation. Better Crops Plant Food 2015, 99, 24–26. [Google Scholar]
- Agegnehu, G.; Amede, T. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere 2017, 27: 662–680. [CrossRef]
- Goulding, K. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Lee, S-H.; Ji, H.; Kabir, A.; Jones, C.; Lee, K.W. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. Int. J. Molecular Sci. 2018, 19, 3073. [CrossRef] [PubMed]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.; Holland, E.; Johnes, P.; Katzenberger, J.; Martinelli, L.; Matson, P. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature, 2001; 413, 591. [Google Scholar] [CrossRef]
- Tully, K.; Sullivan, C.; Weil, R.; Sanchez, P. The state of soil degradation in Sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability 2015, 7, 6523–6552. [Google Scholar] [CrossRef]
- FAO. Crops and livestock products database. License: CC BY-NC-SA 3.0 IGO. Extracted from: https://www.fao.org/faostat/en/#data/QCL. Data of Access: 16-05-2023.
- Rheinheimer, D.S.; Tiecher, T.; Gonzatto, R.; Zafar, M.; Brunetto, G. Residual effect of surface-applied lime on soil acidity properties in a long term experiment under notill in a Southern Brazilian sandy Ultisol. Geoderma 201, 313, 7–16. [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soil Sedimen. 2019, 19(3), 1393–1406. [Google Scholar] [CrossRef]
- Joris, H.A.W.; Caires, E.F.; Scharr, D.A.; Bini, A.R.; Haliski, A. Liming in the conversion from degraded pastureland to a no-till cropping system in Southern Brazil. Soil Tillage Res. 2016, 162, 68–77. [Google Scholar] [CrossRef]
- Bossolani, J.W. Soybean in crop rotation with maize and palisade grass intercropping enhances the long-term effects of surface liming in no-till system. J. Soil Sci. Plant Nut. 2020, 21, 119–130. [Google Scholar] [CrossRef]
- Beukes, D.J.; Mapumulo, T.C.; Fyfield, T.P.; Jezile, G.G. Effects of liming and inorganic fertiliser application on soil properties and maize growth and yield in rural agriculture in the Mbizana area, Eastern Cape province, South Africa. S. Afr. J. Plant Soil 2012, 29:3–4, 127-133. [CrossRef]
- Bennett, J.McL.; Greene, R.S.B.; Murphy, B.W.; Hocking, P.; Tongway, D. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semiarid environment of New South Wales. Soil Res. 2014, 52, 120–128. [CrossRef]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; Mc Kenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 2018, 610–611: 316–332. [CrossRef]
- Trivedi, A.; Bhattacharyya, R.; Biswas, D.R.; Das, S.; Das, T.K.; Mahapatra, P.; Shahi, D.K.; Sharma, C. Long-term impacts of integrated nutrient management with equivalent nutrient doses to mineral fertilization on soil organic carbon sequestration in a sub-tropical Alfisol of India. Carbon Manag. 2020, 11(5), 483–497. [CrossRef]
- Alvarez, R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage. 2005, 21(1), 38–52. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of soil acidity of South American soils for sustainable crop production. Adv. Agron. 2014, 128:221–275. [CrossRef]
- De Klein, C.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C.; McConkey, B.G.; Mosier, A.; Rypdal, K. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In IPCC guidelines for National Greenhouse Gas Inventories (chapter 11); Eggelston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K.; Intergovernmental panel on Climate Change, Technical Report 4-88788-032-4, 2006, vol. 4.
- Cho, S. R.; Jeong, S.T.; Kim, G.Y.; Lee, J.G.; Kim, P.J.; Kim, G.W. Evaluation of the carbon dioxide (CO2) emission factor from lime applied in temperate upland soil. Geoderma 2019, 337, 742–748. [Google Scholar] [CrossRef]
- Hijbeek, R.; van Loon, M.P.; Ouaret, W.; Boekelo, B.; van Ittersum, M.K. Liming agricultural soils in Western Kenya: Can long-term economic and environmental benefits pay off short term investments? Agr. Syst. 2021, 190, 103095. [Google Scholar] [CrossRef]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.S.; Xu, Y.; Mandal, S.; Gleeson, D.B.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C.; Luo, J.; Dalal, R.; Ding, W.; Kirkham, M.B.; Naidu, R. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 2016, 139, 1–71. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Sanusi, S.; Othman, S.B. Effect of Christmas Island rock phosphate and rice straw compost application on soil phosphorus availability and maize (Zea mays L.) growth in a tropical acid soil of Kelantan, Malaysia. Open Agric. 2020, 5: 150–158. [CrossRef]
- Gajić, K.; Kresović, B.; Tolimir, M.; Životić, Lj.; Lipovac, A.; Gajić, B. Hydraulic properties of fine-textured soils in lowland ecosystems of Western Serbia vary depending on land use. Geoderma Reg. 2023, 32, e00603. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria, 2022, pp. 236.
- Rowell, D. L. Bodenkunde. Untersuchungsmethoden under ihre Anwendungen. Springer, Berlin, Germany, 1997; pp. 614.
- Mineev, V.G.; Syvchev, V.G.; Amelyanchik, O.A.; Bolysheva, T.N.; Gomonova, N.F.; Durynina, E.P.; Egorov, V.S.; Egorova, E.V.; Edemskaya, N.L.; Karpova, E.A.; Prizhukova, V.G. Practical Analysis in Agrochemistry (in Russian). Moscow State University, Moscow, Russian Federation, 2001; p. 688.
- Alemu, E.; Yihenew, G.S; Birru, Y. Effect of lime on selected soil chemical properties, maize (Zea mays L. ) yield and determination of rate and method of its application in northwestern Ethiopia. Elsevier, Heliyon 2022, 8, e08657. [Google Scholar] [CrossRef]
- Adane, B. Effects of liming acidic soils on improving soil properties and yield of haricot bean. J. Environ. Anal. Toxicol. 2014, 5(1), 1–4. [Google Scholar] [CrossRef]
- De Moraes, F.A.; Moreira, S.G.; Peixoto, D.S.; Resende Silva, J.C.; Macedo, J.R.; Silva, M.M.; Silva, B.M.; Sanchez, P.A.; Nunes, M.R. Lime incorporation up to 40 cm deep increases root growth and crop yield in highly weathered tropical soils. Eur. J. Agron. 2023, 144, 126763. [Google Scholar] [CrossRef]
- Tiritan, C.S.; Büll, L.T.; Crusciol, C.A.C.; Carmeis Filho, A.C.A.; Fernandes, D.M.; Nascente, A.S. Tillage system and lime application in a tropical region: soil chemical fertility and corn yield in succession to degraded pastures. Soil Tillage Res. 2016, 155: 437–447. [CrossRef]
- Kovačević, V.; Rastija, M. Impacts of liming by dolomite on the maize and barley grain yields. Poljoprivreda 2010, 16 (2) 3–8.
- Crusciol, C.A.C.; Bossolani, J.W.; Portugal, J.R.; Moretti, L.G.; Momesso, L.; de Campos, M.; Costa, N.R.; Volf, M.R.; Calonego, J.C.; Rosolem, C.A. Exploring the synergism between surface liming and nitrogen fertilization in no-till system. Agron J. 2022, 114(2), 1415–1430. [Google Scholar] [CrossRef]
- Alvarez, E.; Viade, A.; Fernandez-Marcos, M.L. Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 2009, 152, 1–8. [Google Scholar] [CrossRef]
- Komljenović, I.; Marković, M.; Kondić, D.; Kovačević, V. Response of maize to phosphorus fertilization on hydromorphic soil of Bosnian Posavina area. Poljoprivreda 2010, 16: 9–13. Available online: https://hrcak.srce.hr/61970.
- Komljenović, I.; Marković, M.; Djurašinović, G.; Kovačević, V. Response of maize to liming and ameliorative phosphorus fertilization. Adv. Crop Sci. 2013, 3(3): 225–232.
- Brozović, B.; Jug, I.; Boris, Ð.; Ravlić, M.; Vukadinović, V.; Rojnica, I.; Jug, D. Initial Weed and Maize Response to Conservation Tillage and liming in Different Agroecological Conditions. Agronomy 2023, 13, 1116. [Google Scholar] [CrossRef]
- Bossolani, J. W.; Crusciol, C.A.C.; Momesso, L.; Portugal, J.R.; Moretti, L.G.; Garcia, A.; de Cássia da Fonseca, M.; Rodrigues, V.A.; Calonego, J.C; dos Reis, A.R. Surface liming triggers improvements in subsoil fertility and root distribution to boost maize crop physiology, yield and revenue. Plant Soil 2022, 477, 319–341. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar] [CrossRef]
- Agegnehu, G.; Amede, T.; Erkossa, T.; Yirga, C.; Henry, C.; Tyler, R.; Nosworthy, M.G.; Beyene, S.; Sileshih, G.W. Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agr. Scand. B–S P 2021, 71(9), 852–869. [CrossRef]

| Climate Characteristics | Month | ||||||
| Apr | May | June | July | Aug | Sept | Oct | |
| First season – 2020 | |||||||
| Tmin (°C) | 4.2 | 10.5 | 14.4 | 15.5 | 16.3 | 12.8 | 8.2 |
| Tmax (°C) | 19.7 | 21.7 | 25.3 | 28.4 | 29.0 | 26.7 | 19.8 |
| Rainfall (mm) | 36.9 | 84.4 | 147.3 | 127.7 | 117.7 | 7.5 | 101.9 |
| Second season – 2021 | |||||||
| Tmin (°C) | 3.8 | 10.5 | 14.2 | 18.2 | 15.4 | 11.0 | 5.2 |
| Tmax (°C) | 16.1 | 23.3 | 28.7 | 31.8 | 30.1 | 25.4 | 15.7 |
| Rainfall (mm) | 66.1 | 56.9 | 26.3 | 83.4 | 33.5 | 24.5 | 86.7 |
| Depth (cm) | Particle size distribution (%, mm) | Soil texture | ||||
| 0.25–2 | 0.05–0.25 | 0.05–2 | 0.002–0.05 | <0.002 | ||
| 0–20 | 0.8 | 25.0 | 25.8 | 56.3 | 17.9 | Silt loam |
| 20–40 | 0.9 | 21.2 | 22.1 | 44.1 | 33.8 | Clay loam |
| 40–70 | 0.3 | 17.3 | 17.6 | 36.3 | 46.1 | Clay |
| Depth | SOM | pH | T–S | S | CEC | BS | N | P2O5 | K2O | Al | |
| cm | % | H2O | KCl | cmol kg−1 | % | % | mg ∙ 100 g−1 | ||||
| 0–30 | 1.86 | 5.60 | 4.10 | 10.6 | 14.0 | 24.6 | 56.9 | 0.120 | 9.0 | 15.2 | 5.3 |
| 30–60 | 0.72 | 5.63 | 4.02 | 8.5 | 16.2 | 24.7 | 65.8 | 0.066 | 8.1 | 16.4 | 9.2 |
| Depth | SOM | pH | T–S | S | CEC | BS | N | P2O5 | K2O | Al | |
| cm | % | H2O | KCl | cmol ∙ kg−1 | % | % | mg ∙ 100 g−1 | ||||
| 0–30 | 1.60 | 5.60 | 4.00 | 10.6 | 12.8 | 23.8 | 54.7 | 0.106 | 9.2 | 13.8 | 5.7 |
| 30–60 | 0.70 | 5.42 | 3.80 | 10.5 | 17.5 | 28.1 | 62.4 | 0.058 | 7.2 | 15.5 | 8.4 |
| Depth | SOM | pH | T–S | S | CEC | BS | N | P2O5 | K2O | Al | |
| cm | % | H2O | KCl | cmol ∙ kg−1 | % | % | mg ∙ 100 g−1 | ||||
| 0–30 | 1.47 | 6.29 | 4.50 | 7.1 | 16.1 | 23.2 | 69.3 | 0.100 | 18.3 | 21.2 | 2.3 |
| 30–60 | 0.66 | 6.59 | 4.70 | 7.4 | 18.7 | 26.1 | 71.7 | 0.065 | 15.5 | 17.5 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).