Submitted:
18 September 2024
Posted:
19 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Analyzes and Experimental Determinations
- (1)
- WC(m3/ha) = 100xHxDaxWCsp
- (2)
- FCW (m3/ha) =100xHxDaxFCWsp
- (3)
- MWC(m3/ha) = WC+1/2(FCW- WC)
- (4)
- WR (m3/ha) = PMW - MWC
- (5)
- WD (m3/ha) = PMW – FCW
- (6)
- WN (m3/ha)= H x Da x (FCWsp-W) x 100
2.4. Statistical Analysis
3. Results
3.1. Relationship of Cowpea and Sorghum Plants to Climatic Conditions
3.2. Features of Green Cowpea Manure
3.3. Soil Chemical Quality Analysis
3.4. Analysis of Soil Hydrophysical Indices under Grain Sorghum Culture in the Phase of Maximum Water Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- José Miguel Reichert, Telmo Jorge Carneiro Amado, Dalvan José Reinert, Miriam Fernanda Rodrigues, Luis Eduardo Akiyoshi Sanches Suzuki, 2016. Land use effects on subtropical, sandy soil under sandyzation/desertification processes. Agriculture Ecosystems & Environment, Volume 233, 3 October 2016, Pages 370-380. [CrossRef]
- Anca Luiza Stanila, Catalin Cristian Simota, Iulian Ratoi, Aurelia Diaconu, Mihail Dumitru, 2019. Research on Improving Fertility Sandy Soils from Dabuleni Field by Administration of Loess. Revista de Chimie (Rev. Chim.), Year 2019, Volume 70, Issue 2, 543-548. [CrossRef]
- Orhan Dengiz, İnci Demirağ Turan, 2023. Soil quality assessment for desertification based on multi-indicators with the best-worst method in a semi-arid ecosystem. Journal of Arid Land Volume 15, pages 779–796. Electronic ISSN 2194-7783; Print ISSN: 1674-6767. [CrossRef]
- P. Schröder, B. Beckers, S. Daniels, F. Gnädinger, E. Maestri, N. Marmiroli, M. Menc, R. Millan, M. Obermeier, N. Oustriere, T. Persson, C. Poschenrieder, F. Rineau, B. Rutkowska, T. Schmid, W. Szulc, N. Witters, A. Sæb., 2018. Intensify production, transform biomass to energy and novel goods and protect soils in Europe-A vision how to mobilize marginal lands. Science of The Total Environment, Volumes 616–617, March 2018, Pages 1101-1123. [CrossRef]
- Croitoru Mihaela, Gheorghe D., 2003. The evolution of some soil fertility indicators following the application of chemical fertilizers to grain sorghum on the sandy soils of southern Oltenia. SCDCPN Dăbuleni Scientific Papers, vol XIV. Ed Sitech, ISBN: 973-657-514-4, pp. 79-89. https://www.scdcpndabuleni.ro/wp-content/uploads/Lucrari-stiintifice-SCDCPN-Dabuleni-Vol_XIV.pdf.
- Drăghici Iulian, Drăghici Reta, Croitoru Mihaela, Diaconu Aurelia, Băjenaru Maria Florentina, Dima Milica, 2020. Studies on the implications of fertilization and plant nutrition space on grain sorghum production components in sandy soil conditions. Annals of the University of Craiova, Series: Biology, Horticulture, Food products processing technology, Environmental engineering, Vol. XXV (LXI)-2020, pag. 340-345, I.S.S.N. 1453 – 1275 I.S.S.N. 2393 – 1426 (on line). https://horticultura.ucv.ro/horticultura/sites/default/files/horticultura/Reviste/Analele/2021/10_63-68_Draghici%201_Anale%20Horti%202021.pdf.
- Reta Drăghici, Georgeta Ciurescu, Gheorghe Matei, Aurelia Diaconu, Ștefan Nanu, Mirela Paraschivu, Iulian Drăghici, Alina Paraschiv, Mihaela Croitoru, Milica Dima, Maria Băjenaru, Florentina Netcu, Daniela Ilie, 2022. Restoring the production capacity and protection of agroecosystems in the area of sandy soils by promoting in culture some species of plants tolerant to thermohydric stress, rye, sorghum, cowpea. ISBN 978-606-11-8228-2, 254 pagini, Editura SITECH, Craiova. https://www.scdcpndabuleni.ro/wp-content/uploads/Refacerea-capacitatii-de-productie-si-protectie-a-agroecosistemelor-din-zona-solurilor-nisipoase-prin-promovarea-in-cultura-a-unor-specii-de-plante-tolerante-la-str.pdf.
- Mirela Paraschivu, Gheorghe Matei, Otilia Cotuna, Marius Paraschivu, Reta Drăghici, 2022. Management of pests and pathogens in rye crop in dry marginal environment in southern Romania. Scientific Papers. Series A. Agronomy, Vol. LXV, No. 1, 2022 ISSN 2285-5785; ISSN CD-ROM 2285-5793; ISSN Online 2285-5807; ISSN-L 2285-5785 pag. 466-474. https://agronomyjournal.usamv.ro/pdf/2022/issue_1/Art68.pdf.
- Grace Adusei, Moses Kwame Aidoo, Amit Kumar Srivastava, James Yaw Asibuo, Thomas Gaiser, 2022. The impact of climate change on the productivity of cowpea (Vigna unguiculata) under three different socio-economic pathways. Italian Journal of Agronomy, 17(4). [CrossRef]
- Nunes C., Moreira R., Pais I., Semedo J., Simões F., Veloso M.M., Scotti-Campos P., 2022. Cowpea physiological responses to terminal drought-comparison between four landraces and a commercial variety. Plants, ISSN: 2223-7747, 11(5), 593. [CrossRef]
- Daniel SIMULESCU, Andreea ZAMFIR, 2015.Dynamics of land use changes in Dăbuleni plain (southwestern Romania). Annals of Valahia University of Târgovişte. Geographical Series 15.2 (2015): 77-84. https://www.researchgate.net/publication/295859232_Dynamics_of_land_use_changes_in_Dabuleni_Plain_Southwestern_Romania.
- Mihai PARICHI, Anca-Luiza STĂNILĂ, Ştefan ISPAS, 2012. Changes in the pedolandscape of the Romanaţi Plain (The Field of Dăbuleni). Scientific Papers. Series A. Agronomy, Vol. LV-2012, ISSN Online 2285-5793; ISSN-L 2285-5785. https://agronomyjournal.usamv.ro/pdf/vol55/Art16.pdf.
- Cotet G., Diaconu A., Nanu S., Paraschiv N. A., Dima M., Mitrea R. 2023. Research on the behavior of some sweet potato genotypes cultivated on the sandy soils of southern Romania. Scientific papers-series b-horticulture, Volume 67 Issue 1 Page 566-571, ISSN 2285-5653. https://horticulturejournal.usamv.ro/pdf/2023/issue_1/Art75.pdf.
- Grace Adusei., Moses Kwame Aidoo, Amit Kumar Srivastava, James Yaw Asibuo, Thomas Gaiser, 2021. The variability of grain yield of some cowpea genotypes in response to phosphorus and water stress under field conditions.Agronomy 11(1),:28. [CrossRef]
- Sinclair T.R., Manandhar A., Ouhoun B., Riar M., Vadez V., Roberts P.A., 2015. Variation among cowpea genotypes in sensitivity of transpiration rate and symbiotic nitrogen. Fixation to soil drying. Crop Science Society of America, Springer, New York, 55(5): 2270-2275.
- Sánchez-Navarro V., Zornoza R., Faz Á., Fernández J. A., 2021. Cowpea crop response to mineral and organic fertilization in S E Spain. Processes, 2021, 9 (5), 822. [CrossRef]
- Lucian Ghinea, Gheorghe Ştefanic, Ana Popescu, Georgeta Oprea, 2007. Research in the field of soil chemistry and biology. Chemistry, Biochemistry, Physiology. Annals N.A.R.D.I. FUNDULEA, VOL. LXXV, 2007, VOLUM JUBILIAR, p 404-429. https://www.incda-fundulea.ro/anale/75/75.22.pdf.
- Moraru P.I., Rusu T., Sopterean M.L., 2010. Tillage control and its effect on erosion. Water management and carbon sequestration. Pro Environment 3 (2010) 541 – 548. https://www.researchgate.net/publication/49607211_Soil_Tillage_Conservation_and_its_Effect_on_Erosion_Control_Water_Management_and_Carbon_Sequestration.
- Tomasz Dudek, Paweł Wolański, Krzysztof Rogut, 2020. Accumulation of organic carbon in soil under various types of highland temperate meadows. Journal of Elementology 25(1):85-96. [CrossRef]
- Wenmin Zhang, Guy Schurgers, Josep Peñuelas, Rasmus Fensholt, Hui Yang, Jing, Tang, Xiaowei Tong, Philippe Ciais & Martin Brandt, 2023. Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation. Nature communication 14, Article number: 965. Article. [CrossRef]
- Xiaoye Gao, Yan He, Yan Chen, Yu Chen, Ming Wang, 2024. Leguminous green manure amendments improve maize yield by increasing N and P fertilizer use efficiency in yellow soil of the Yunnan-Guizhou Plateau. Frontiers in Sustainable Food Systems, 09 February 2024, Sec. Agroecology and Ecosystem Services, Volume 8 – 2024. [CrossRef]
- Patra, A., Singh, R. P., Kundu, M. S., Kumar, G., Malkani, P., Singh, B.K., Choudhury, S., Kundu,A. and Mukherjee, S. 2023. Green Manuring: A Sustainable Approach for Soil Health Improvement. Agriculture & Food E-Newsletter. www.agrifoodmagazine.co.in , Volume 05 -Issue 04; pag. 198-201; E-ISSN2581 – 8317. https://www.researchgate.net/publication/372007803_Green_Manuring_A_Sustainable_Approach_for_Soil_Health_Improvement.
- Abdulraheem Mukhtar Iderawumi, Tobe Olalekan Kamal, 2022. Green Manure for Agricultural Sustainability and Improvement of Soil Fertility. Farming Management 7 (1) : 1-8 (2022). 1. [CrossRef]
- Fernando Munoz, Muñoz, F Villegas, C Moreno and C Posada, 2016. Use of cowpea (Vigna unguiculata) as a green manure and its effect on nitrogen (N) requirement and productivity of sugarcane. Proceedings of the International Society of Sugar Cane Technologists, volume 29, 2016. (researchgate.net). https://www.researchgate.net/publication/313847254_Use_of_cowpea_Vigna_unguiculata_as_a_green_manure_and_its_effect_on_nitrogen_N_requirement_and_productivity_of_sugarcane.
- Rojas-Velázquez, Montserrath, Rodríguez-Ortiz, J. Carlos, Alcalá-Jáuregui, Jorge A., Díaz-Flores, Paola E., Carballo-Méndez, Fernando J., Zúñiga Valenzuela, Elizabeth, 2020. Greenhouse trial of green manures on soil properties, chard production and environmental implications. SciElo Revista mexicana de ciencias agrícolas, Print version ISSN 2007-0934, vol. 11, n. 4. [CrossRef]
- Omolayo J., Olorunwa A., Shi T., Casey B., 2021. Varying drought stress induces morpho-physiological changes in cowpea (Vigna unguiculata L.) genotypes inoculated with Brady rhizobium japonicum. Plant Stress, Volume 2, December 2021, 100033. [CrossRef]
- Buhlebelive Mndzebele, Bhekumthetho Ncube, Melvin Nyathi, Sheku Alfred Kanu, Melake Fessehazion, Tafadzwanashe Mabhaudhi, Stephen Amoo andAlbert Thembinkosi Modi, 2020. Nitrogen Fixation and Nutritional Yield of Cowpea-Amaranth Intercrop. Agronomy 2020, 10(4), 565. [CrossRef]
- Sukitprapanon T.S., Jantamenchai M., Tulaphitak D., Vityakon P., 2020. Nutrient composition of diverse organic residues and the irlong-term effects on available nutrients in a tropical sandy soil. Heliyon, 2020 Nov; 6 (11): e05601., PMCID: PMC7708814, PMID: 33305035. [CrossRef] [PubMed]
- Sukri M.Z, Firgiyanto R., Sugiyarto, Rohman H.F., 2021. The increasing fertility of sandy soils and chili production through the application of organic fertilizers, zeolite and cane blotong. IOP Conference Series: Earth and Environmental Science, Volume 672, The 3rd International Conference on Food and Agriculture 7-8 November 2020, Jember, East Java, Indonesia. [CrossRef]
- Man Singh, A. Singh, S. Singh, R.S. Tripathi, A.K. Singh, D.D. Patra, 2010. Cowpea (Vigna unguiculata L. Walp.) as a green manure to improve the productivity of a menthol mint (Mentha arvensis L.) intercropping system. Industrial Crops and Products, Volume 31, Issue 2, , March 2010, Pages 289-293. [CrossRef]
- Ion P., 1988. The use of green manures as a source of organic matter for the fertilization of sands and sandy soils. Cereals and Technical Plants Magazine, no. 10, Bucharest.
- Davidescu, D., Davidescu, V., 1981. Modern agrochemistry. Editura Acadademia R.S.R., Bucureşti: 34-205. https://anticariat-ursu.ro/agrochimia-moderna__david-davidescu-velicica-davidescu__147379.html?product_id=147379&srsltid=AfmBOoq98xt4OETOIJez_piaDhuAxzJkJhT5gKPSmxKkBtIqoy1wLyeg.
- Popescu C.I., 1964. Experiences regarding increasing the productivity of sands with the help of green manure. Oltenia sands on the left side of Jiului and their exploitation, Craiova. https://www.anticariat-unu.ro/nisipurile-olteniei-din-stanga-jiului-si-valorificarea-lor-vol-vii-supliment-1964-p75030.
- Eliade Gh., Ghinea L., Ștefanic Gh., 1975. Soil microbiologyi. Ed. Ceres, Bucharest. https://www.targulcartii.ro/gh-stefanic/microbiologia-solului-ceres-1975-5251267.
- Ploae P., Marinică Gh., Gheorghe D., Drăghici I., Drăghici Reta, Șoimu T., 2001. Research concerning economic limits to use water by some agricultural crops on the sandy soils of southern Oltenia. Scientific Works S.C.C.C.P.N, Dabuleni, vol. XIII, Edsitura Sitech, Craiova, ISBN 973-657-249-8. https://www.scdcpndabuleni.ro/wp-content/uploads/Lucrari-stiintifice-SCDCPN-Dabuleni-Vol_XIII.pdf.
- Burzo I., 2014. Climate change and its effects on horticultural plants, Ed. Sitech, Craiova. https://www.scdcpndabuleni.ro/wp-content/uploads/Modificarile-climatice-si-efectele-asupra-plantelor-horticole.pdf.
- Xinyi Yang, Meiqi Lu, Yufei Wang, Yiran Wang, Zhijie Liu and Su Chen, 2021, Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7(3), 50; ISSN: 2311-7524. [CrossRef]
- Mihail DUMITRU. Sorina DUMITRU, Irina CALCIU, Victoria MOCANU, Alexandrina MANEA, Nicoleta VRÎNCEANU, Veronica TĂNASE, Marius EFTENE, Constantin CIOBANU, Ion RÎŞNOVEANU Veronica TĂNASE Mihaela PREDA, 2011. Soil quality monitoring in Romania. Ed. Sitech, Craiova 2011. https://www.icpa.ro/proiecte/Proiecte%20nationale/monitoring/atlasICPA.pdf.
- https://www.britannica.com/science/Koppen-climate-classification.
- Alina-Nicoleta PARASCHIV, Aurelia DIACONU, Ștefan NANU, Daniela Valentina POPA, 2023. Research on the dynamics of meteorological phenomena in the south of Oltenia and the establishment of the suitability of the sweet pepper culture for the current climatic conditions, Scientific Papers. Series B, Horticulture, Vol. LXVII, Issue 2, pag. 377-384, PRINT ISSN 2285-5653, CD-ROM ISSN 2285-5661, ONLINE ISSN 2286-1580, ISSN-L 2285-5653. https://horticulturejournal.usamv.ro/pdf/2023/issue_2/Art54.pdf.
- Reta Draghici, Iulian Draghici, Aurelia Diaconu, Mihaela Croitoru, Alina Nicoleta Paraschiv, Milica Dima and Mircea Constantinescu, 2019. Utilization of the thermohydric stress in the psamosols area in Southern Oltenia through the cowpea culture | E3S Web of Conferences (e3s-conferences.org). Volume 112, 2019. 8th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD 2019); Art. No. 03013 ISSN: 2267-1242. [CrossRef]
- Dincă L., Lucaci D., Iacoban C., Ionescu M., 2012a. Methods of analysis of soil properties and solution. Ed. Tehnică Silvică. https://editurasilvica.ro/produs/metode-de-analiza-a-propietatilor-si-solutiei-solului/.
- Dincă L., Spârchez G., Dincă M., Blujdea V., 2012b. Organic carbon concentrations and stocks in Romanian mineral forest soils. Annals of Forest Research 55 (2): 229-241. https://afrjournal.org/index.php/afr/article/view/63/91.
- Marinică Gh., Gheorghe D., Ploae P., Baron Milica, Ciolacu Floarea, Ciuciuc Elena, Croitoru Mihaela, Diaconescu A., Drăghici Reta, Drăghici I., Durău Anica, Ifrim Aurelia, Marcu Florentina, Marinică Alisa, Nanu Şt., Ploae Marieta, Răţoi I., Şearpe Doina, Şoimu T., Toma V., Vladu Florentina, 2003. Research on the farming system for sands and sandy soils. SCDCPN Dăbuleni Scientific Works, vol. XV, SITECH Publishing House, Craiova, ISBN 973-657-514-4, pag. 17 – 27. https://www.scdcpndabuleni.ro/wp-content/uploads/Lucrari-stiintifice-SCDCPN-Dabuleni-Vol_XV.pdf.
- https://www.gwp.org/globalassets/global/gwp-cee_files/regional/idmp-guide-moldova-ro.pdf.
- https://ro.scribd.com/doc/43754560/Irigarea-Culturilor.
- Draghici Reta, 2018. Cowpea, the plant of sandy soils. Sitech publishing house, Craiova, ISBN 978-606-11-6587-2, 183 pages. https://www.scdcpndabuleni.ro/wp-content/uploads/Fasolita-1.pdf.
- Alves Barros J.R., Francislene A., Oliveira Santos J., Silva R.M., Dantas B.F., Natoniel F.M., 2020. Optimal temperature for germination and seedling development in cowpea seeds. Revista Colombiana de Ciencias Hortícolas. [CrossRef]
- Vinu K.S, Ajithkumar B., Arjun Vysak, Harithalekshmi V., Aswathi K.P., 2021. Influence of weather parameters on the growth and yield of cowpea in central zone of Kerala. Journal of Pharmacognosy and Phytochemistry 2021; Sp 10(1): 620-622, E-ISSN: 2278-4136 P-ISSN: 2349-8234. https://www.phytojournal.com/archives/2021/vol10issue1S/PartJ/S-10-1-116-927.pdf.
- Drăghici Reta, Bîrsoghe Cristina, Paraschiv Alina Nicoleta, Dima Milica, Băjenaru Maria Florentina, Netcu Florentina, 2024. Preliminary results regarding the biological potential of some cowpea genotypes studied in different cropping systems under climate change conditions in southern Oltenia. Acta Agricola Romanica Field Crops Tom 6, An 6, Nr. 6.1.1, pag. 63-71, ISSN 2784 – 0948 ISSN – L 2784 – 0948. https://www.asas.ro/Acta%20agricola/ACTA_AGRICOLA_NR.6.1.1.-2024.pdf.
- Qirui Cui, Haizheng Xiong, Yufeng Yufeng, Stephen Eaton, Sora Imamura, Jossie Santamaria, Waltram Ravelombola, Richard Esten Mason, Lisa Wood Leandro Angel Mozzoni, and Ainong Shi, 2020. Evaluation of Drought Tolerance in Arkansas Cowpea Lines at Seedling Stage. HortScience, Volume 55: Issue 7, 1132–1143, Online ISSN: 2327-9834. [CrossRef]
- Anjum, S.A., Xie, X., Wang, L., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal Agricultural Research 6: 2026-2032. [CrossRef]
- Egashira C., Yamauchi T., Miyamoto Y., Yuasa T., Ishibash I. Y., Iwaya-Inoue M., 2016. Physiological responses of cowpea (Vigna unguiculata (L.) Walp) to drought stress during the pod-filling stage. Japanese Society for Cryobiology and Cryotechnology. Elsevier. Tokyo. 62(1): 69-75. [CrossRef]
- Virginia Sánchez-Navarro, Raúl Zornoza, Ángel Faz, Juan A. Fernández, 2019. Does the use of cowpea in rotation with a vegetable crop improve soil quality and crop yield and quality? A field study in SE Spain. European Journal of Agronomy, Volume 107, July 2019, Pages 10-17. [CrossRef]
- Thidar Hlaing, Kyi Moe, Ei Han Kyaw, Kyaw Ngwe, Myat Moe Hlaing, Htay Htay Oo, 2024. Assessment of Green Manure Crops and their Impacts on Mineralizable Nitrogen and Changes of Nutrient Contents in the Soil. Asian Soil Research Journal 8(2):29-38. [CrossRef]
- Neelendra Singh Verma, Deepika Yadav, Monika Chouhan, Charu Bhagat and Priya Kochale, 2023. Understanding Potential Impact of Green Manuring on Crop and Soil: A Comprehensive Review. Biological Forum – An International Journal 15(10): 832-839(2023), SSN No. (Print): 0975-1130ISSN No. (Online): 2249-3239. https://www.researchgate.net/publication/375768329_Understanding_Potential_Impact_of_Green_Manuring_on_Crop_and_Soil_A_Comprehensive_Review#fullTextFileContent.
- An Hu, Rui Huang, Guodao Liu, Dongfen Huang and Hengfu Huan, 2022. Effect of Green Manure Combined with Phosphate Fertilizer on Movement of Soil Organic Carbon Fractions in Tropical Sown Pasture. 2022, Agronomy 2022, 12(5), 1101. [CrossRef]
- Ioana Andra VLAD, Győző GOJI, Szilard BARTHA, 2023. Supply and distribution degree of some macronutrients in soils polluted with heavy metals nearby the city of Copșa mică. Scientific Papers. Series A. Agronomy, Vol. LXVI, No. 2, 2023. ISSN 2285-5785; ISSN CD-ROM 2285-5793; ISSN Online 2285-5807; ISSN-L 2285-5785. https://agronomyjournal.usamv.ro/index.php/scientific-papers/current?id=1649.
- C. Neagu, G. Oprea., 2006. Effect of nitrogen fertilization on organic matter content of cambic chernozem from Fundulea. Annals of the Fundulea National Agricultural Research-Development Institute, 2006, Vol. 73, 151-156 ref. 5. https://www.cabidigitallibrary.org/doi/full/10.5555/20083100014.
- Marcelo Laranjeira Pimentel, Iolanda Maria Soares Reis, Maria Lita Padinha Corrêa Romano, Jailson Sousa de Castro, Carlos Ivan Aguilar Vildoso, Eloi Gasparin, Eliandra Freitas de Sia, Leandro Silva de Sousa, 2023. Green manure, a sustainable strategy to improve soil quality: a case study in an oxisol from northern Brazil. Australian Journal of Crop Science, 17(6):488-497 (2023) ISSN:1835-2707. [CrossRef]
- Zhenfu Wu, Xiaomei Sun, Yueqi Sun, Junying Yan, Yanfeng Zhao, Jie Chen, 2022. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018. Geoderma Volume 408. [CrossRef]
- Mahmoud, F. Seleiman, Nasser Al-Suhaibani, Nawab Ali, Mohammad Akmal, Majed Alotaibi, Yahya Refay, Turgay Dindaroglu, Hafiz Haleem Abdul-Wajid, and Martin Leonardo Battaglia, 2021. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants (Basel). 2021 Feb; 10(2): 259. [CrossRef]
- C. Bora, C.V. C. Bora, C.V. Popescu, 2002. The rational use of irrigation in the central area of Oltenia, Alma Publishing House, Craiova. https://catalog.aman.ro/opac/bibliographic_view/353758;jsessionid=E95657651CF8CFBF5BFE4408C8B3ACB6?pn=opac%2FSearch&q=author_sort%3A%22irigatii%22#do_file_type=all&fq=udc%3A63&fq=material_type%3A+Carte+tip%C4%83rit%C4%83&level=all&material_type=all&ob=asc&q=author_sort%3A%22irigatii%22&sb=relevance&start=0&view=CONTENT.
- Yared Assefa, Scott Staggenborg, P. V. Vara. Prasad, 2010. Grain Sorghum Water Requirement and Responses to Drought Stress: A Review. Crop Management. 9. 10.1094/CM-2010-1109-01-RV. https://www.researchgate.net/publication/260421900.



| Climatic conditions | Calendar month | Period | |||||||||||||
| I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | Annual | I-VIII | VII-X | |
| Average air temperature 2020-2023 (0C) | 2.06 | 4.4 | 6.4 | 11.36 | 17.6 | 21.95 | 25.18 | 25 | 19.6 | 12.93 | 7.25 | 3.35 | 13.09 | 22.43 | 20.68 |
| Rainfall 2020-2023, (mm) | 60.63 | 24.15 | 51.15 | 43.4 | 58.55 | 59.7 | 44.6 | 32.93 | 38.15 | 54 | 59.7 | 45.85 | 572.81 | 195.78 | 169.68 |
| Multiannual average air temperature 2056-2023 (0C) | -1.26 | 1.19 | 5.87 | 11.87 | 16.95 | 21.54 | 23.32 | 22.7 | 17.99 | 11.55 | 5.73 | 0.71 | 11.67 | 21.13 | 18.89 |
| Multiannual rainfall 2056-2023, (mm) | 36.26 | 32.41 | 40.67 | 47.13 | 62.67 | 70.01 | 54.29 | 36.55 | 44.95 | 43 | 44.78 | 49.38 | 562.10 | 223.52 | 178.79 |
| Deviations of average air temperature, compared to the multi-annual average (0C) | 3.32 | 3.21 | 0.53 | -0.51 | 0.65 | 0.41 | 1.86 | 2.3 | 1.61 | 1.38 | 1.52 | 2.64 | 1.42 | 1.31 | 1.79 |
| Deviations of average rainfall, compared to the multi-annual average (mm) | 24.37 | -8.26 | 10.48 | -3.73 | -4.12 | -10.31 | -9.69 | -3.62 | -6.8 | 11 | 14.92 | -3.53 | 79.38 | -27.74 | -9.11 |
| Characteristics | 2020 | 2021 | 2022 | Average | |
| Date of sowing | July 23 | July 29 | July 26 | July 23-29 | |
| Plant emergence date | July 28 | August 6 | August 2 | July 28 - August 6 | |
| The date of formation of the grains in the pod | October 20 | October 15 | October 22 | October 15-22 | |
| No plante/m2 | 55 | 55 | 55 | 55 | |
| Plant height (cm) | 91.6 | 88.3 | 102 | 94 | |
| No. shoots/plant | 2.2 | 1.2 | 3.1 | 2.2 | |
| No. nodules / root | 116 | 95 | 121 | 110.7 | |
| Leaf area index | 11.7 | 12.7 | 13.2 | 12.5 | |
| Biomass weight t/ha | in the flowering phase | 35.5 | 31 | 38.6 | 35.0 |
| in the phase of grain formation in pods | 56.4 | 42.4 | 58.5 | 52.4 | |
| Soil depth (A) |
Culture system (B) |
Ntotal (%) |
P-AL (ppm) |
K-AL (ppm) |
Corg (%) |
pHH2O |
| 0-20 cm | Initial soil fertility status (Control) | 0.064 | 52.333 | 67.000 | 0.592 | 6.913 |
| No green cowpea manure + N80P80K80 | 0.066 | 55.333 | 66.667 | 0.597 | 6.877 | |
| No green cowpea manure + N150P80K80 | 0.073 | 57.333 | 72.333 | 0.599 | 6.783 | |
| With green cowpea manure + N80P80K80 | 0.081** | 64.667** | 79.000 | 0.601 | 6.967 | |
| With green cowpea manure + N150P80K80 | 0.092*** | 69.667*** | 95.667*** | 0.605 | 6.923 | |
| Average depth 0-20 cm (Control) | 0,075 | 59.867 | 76.133 | 0.599 | 6.893 | |
| 20-40 cm | Initial soil fertility status (Control) | 0.051 | 61.667 | 77.333 | 0.422 | 6.563 |
| No green cowpea manure + N80P80K80 | 0.051 | 62.333 | 78.333 | 0.424 | 6.487 | |
| No green cowpea manure + N150P80K80 | 0.061* | 67.667 | 86.333 | 0.425 | 6.417 | |
| With green cowpea manure + N80P80K80 | 0.069** | 68.333 | 88.000 | 0.429 | 6.737 | |
| With green cowpea manure + N150P80K80 | 0.082*** | 71.000* | 96.667** | 0.433 | 6.720 | |
| Average depth 20-40 cm | 0,06300 | 66.200 | 85.333 | 0.4270 | 6.585 | |
| A | LSD 5% | 0.005 | 13.976 | 43.770 | 0.121 | 0.523 |
| LSD 1% | 0.011 | 32.275 | 101.078 | 0.280 | 1.206 | |
| LSD 0,1% | 0.035 | 102.709 | 321.658 | 0.892 | 3.846 | |
| A x B | LSD 5% | 0.010 | 7.964 | 12.658 | 0.028 | 0.199 |
| LSD 1% | 0.014 | 10.969 | 17.435 | 0.038 | 0.274 | |
| LSD 0.1% | 0.019 | 15.101 | 24.002 | 0.053 | 0.378 | |
| Culture system | Ntotal (%) |
P-AL (ppm) |
K-AL (ppm) |
Corg (%) |
pHH2O |
| Initial soil fertility status (Control) | 0.058 | 57.000 | 72.167 | 0.507 | 6.738 |
| No green cowpea manure + N80P80K80 | 0.059 | 58.833 | 72.5 | 0.510 | 6.682 |
| No green cowpea manure + N150P80K80 | 0.067* | 62.5** | 79.333 | 0.512 | 6.600 |
| With green cowpea manure + N80P80K80 | 0.075*** | 66.5*** | 83.500* | 0.515 | 6.852 |
| With green cowpea manure+ N150P80K80 | 0.087*** | 70.333** | 96.167*** | 0.519 | 6.822 |
| LSD 5% | 0.007 | 5.631 | 8.951 | 0.020 | 0.141 |
| LSD 1% | 0.010 | 7.756 | 12.328 | 0.027 | 0.194 |
| LSD 0.1% | 0.014 | 10.678 | 16.972 | 0.037 | 0.267 |
| Average air temperature (0C) | Rainfall (mm) | Average relative air humidity (%) |
| 26.26-28.3 | 0-4 | 44.8-54.5 |
| The experimental variant | Soil moisture (W%) | Average W% | |||
| Culture system | Chemical fertilization | 0-20 cm | 20-40 cm | 40-60 cm | |
| a1. No green cowpea manure | b1. N80P80K80 (control) | 2.80 | 3.30 | 4.07 | 3.39 |
| b2. N150P80K80 | 2.470 | 3.23 | 3.700 | 3.14 | |
| Average a1 | 2,63 | 3.27 | 3.88 | 3.26 | |
| a2. With green cowpea manure | b1. N80P80K80 (control) | 3.97 | 4.77 | 5.63 | 4.79 |
| b2. N150P80K80 | 3.73 | 4.43 | 5.37 | 4.51 | |
| Average a2 | 3,85 | 4.60* | 5.5* | 4.65* | |
| The significance of A | LSD 5% | 1.8 | 0.73 | 0.86 | 1.04 |
| LSD 1% | 4.15 | 1.69 | 1.99 | 2.40 | |
| LSD 0.1% | 13.2 | 5.39 | 6.34 | 7.65 | |
| The significance of A x B | LSD 5% | 0.29 | 0.59 | 0.35 | 0.44 |
| LSD 1% | 0.48 | 0.97 | 0.58 | 0.72 | |
| LSD 0.1% | 0.91 | 1.82 | 1.09 | 1.35 | |
| The experimental variant |
H (m) |
W (%) |
Da (g/cm3) |
PMW(m3/ha) | WC m3/ha) | FCW (m3/ha) | MWC (m3/ha) | WR (m3/ha) | WD (m3/ha) |
WN (m3/ha) |
|
| Culture system | Chemical fertilization | ||||||||||
| No green cowpea manure | N80P80K80 | 0.6 | 3.39 | 1.4 | 284.76 | 168 | 756 | 462 | -177.24 | -471.24 | 471,24 |
| N150P80K80 | 0.6 | 3.14 | 1.4 | 263.76 | 168 | 756 | 462 | -198.24 | -492.24 | 492,24 | |
| Average | 0,6 | 3.265 | 1.4 | 274.26 | 168 | 756 | 462 | -187.74 | -481.74 | 481.74 | |
| With green cowpea manure | N80P80K80 | 0.6 | 4.79 | 1.4 | 402.36 | 168 | 756 | 462 | -59.64 | -353.64 | 353,64 |
| N150P80K80 | 0.6 | 4.51 | 1.4 | 378.84 | 168 | 756 | 462 | -83.16 | -377.16 | 377,16 | |
| Average | 0,6 | 4.65 | 1.4 | 390.6 | 168 | 756 | 462 | -71.4 | -365.4 | 365.4 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).