Submitted:
22 January 2025
Posted:
23 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Bacillus and Its Industrial Potential
4.2. Future Opportunities in Bacillus Research with Big Data and Machine Learning
5. Conclusions
References
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.-a.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef]
- Danilova, I.; Sharipova, M. The practical potential of bacilli and their enzymes for industrial production. Frontiers in microbiology 2020, 11, 1782. [Google Scholar] [CrossRef] [PubMed]
- Akinsemolu, A.A.; Onyeaka, H.; Odion, S.; Adebanjo, I. Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. Journal of Basic Microbiology 2024, e202300614. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Prasad, V.; Lata, C. Bacillus: Plant growth promoting bacteria for sustainable agriculture and environment. In New and future developments in microbial biotechnology and bioengineering; Elsevier: 2019; pp. 43-55.
- Wang, X.; Liu, S.; Ding, X.; Zhang, L.; Lv, X.; Li, J.; Song, C.; Zhang, C.; Wang, S. Coexistence of diverse metabolic pathways promotes p-cresol biodegradation by Bacillus subtilis ZW. International Biodeterioration & Biodegradation 2025, 196, 105933. [Google Scholar]
- Akash, K.; Parthasarathi, R.; Elango, R.; Bragadeeswaran, S. Exploring the intricate studies on low-density polyethylene (LDPE) biodegradation by Bacillus cereus AP-01, isolated from the gut of Styrofoam-fed Tenebrio molitor larvae. Biodegradation 2025, 36, 12. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Achal, V. Enhancing engineering properties of cement mortars through microbial self-healing and community analysis. Construction and Building Materials 2025, 462, 139934. [Google Scholar] [CrossRef]
- Ye, N.; Liu, Z.; Wang, P.; Sun, Y.; He, X. Self-healing of concrete crack based on modified zeolite immobilizing microorganisms. Biochemical Engineering Journal 2025, 213, 109541. [Google Scholar] [CrossRef]
- Wong, D. VOSviewer. Technical Services Quarterly 2018, 35, 219–220. [Google Scholar] [CrossRef]
- Arruda, H.; Silva, E.R.; Lessa, M.; Proença Jr, D.; Bartholo, R. VOSviewer and bibliometrix. Journal of the Medical Library Association: JMLA 2022, 110, 392. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, Y.; Jia, B.; Tao, L.; Li, H.; Wang, J.; Yuan, Z.; Sun, X.; Yao, Y. Four Decades of Bacillus Biofertilizers: Advances and Future Prospects in Agriculture. Microorganisms 2025, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.A.; Sorour, N.M.; Saafan, M.A.; Abbas, R.N. Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Milović, T.; Bulatović, V.; Pezo, L.; Dramićanin, M.; Tomić, A.; Pezo, M.; Šovljanski, O. Enhancing Compressive Strength of Cement by Indigenous Individual and Co-Culture Bacillus Bacteria. Materials 2024, 17, 4975. [Google Scholar] [CrossRef]
- Ivaškė, A.; Gribniak, V.; Jakubovskis, R.; Urbonavičius, J. Bacterial viability in self-healing concrete: A case study of non-ureolytic bacillus species. Microorganisms 2023, 11, 2402. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Ji, Y.; Zhang, H.; Jing, B.; Zeng, X.; Yang, P. Investigation on the mechanical properties of Bacillus subtilis self-healing concrete. Heliyon 2024, 10. [Google Scholar] [CrossRef] [PubMed]
- Safiuddin, M.; Kaish, A.B.M.A.; Woon, C.-O.; Raman, S.N. Early-age cracking in concrete: Causes, consequences, remedial measures, and recommendations. Applied Sciences 2018, 8, 1730. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, Y.; Tang, Z.; Wang, K.; Li, Y.; Li, W. Deterioration of concrete under coupled aggressive actions associated with load, temperature and chemical attacks: A comprehensive review. Construction and Building Materials 2022, 322, 126466. [Google Scholar] [CrossRef]
- Frangopol, D.M.; Soliman, M. Life-cycle of structural systems: recent achievements and future directions. In Structures and infrastructure systems; Routledge: 2019; pp. 46-65.
- Frangopol, D.M.; Lin, K.-Y.; Estes, A.C. Life-cycle cost design of deteriorating structures. Journal of structural engineering 1997, 123, 1390–1401. [Google Scholar] [CrossRef]
- Sharma, T.K.; Alazhari, M.; Heath, A.; Paine, K.; Cooper, R.M. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. Journal of applied microbiology 2017, 122, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.B.G.; Prabhakara, R.; Pushpa, H. Bio mineralisation of calcium carbonate by different bacterial strains and their application in concrete crack remediation. International Journal of Advances in Engineering & Technology 2013, 6, 202. [Google Scholar]
- Du, X.; Si, Z.; Qi, D.; Li, Y.; Huang, L.; Zhang, Y.; Gao, Y. Optimization of spore production and activation conditions of concrete crack healing bacteria and research on crack repair effect. Construction and Building Materials 2023, 394, 132140. [Google Scholar] [CrossRef]
- Ehtisham, R.; Javed, A.; Aslam, F.; Nouman, H.M.; Ahmad, A.; Manzoor, A. Enhancing the Mechanical Properties of Concrete and Self-Healing Phenomena by adding Bacteria, Silica fume and Fibres. Sustainable Structures and Materials, An International Journal 2023, 6, 32–38. [Google Scholar]
- Bağcıoğlu, M.; Fricker, M.; Johler, S.; Ehling-Schulz, M. Detection and identification of Bacillus cereus, Bacillus cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via machine learning based FTIR spectroscopy. Frontiers in microbiology 2019, 10, 902. [Google Scholar] [CrossRef]
- Chen, J.; Jenkins, W.K. Facial recognition with PCA and machine learning methods. 2017; pp. 973-976.
- Sharma, S.; Bhatt, M.; Sharma, P. Face recognition system using machine learning algorithm. 2020; pp. 1162-1168.
- Bachute, M.R.; Subhedar, J.M. Autonomous driving architectures: insights of machine learning and deep learning algorithms. Machine Learning with Applications 2021, 6, 100164. [Google Scholar] [CrossRef]
- Shafaei, S.; Kugele, S.; Osman, M.H.; Knoll, A. Uncertainty in machine learning: A safety perspective on autonomous driving. 2018; pp. 458-464.
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Canadian journal of microbiology 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Xu, X.; Wu, Y.; Niu, T.; Liu, Y.; Li, J.; Du, G.; Liu, L. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metabolic engineering 2018, 50, 109–121. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. A bibliography study of Shewanella oneidensis biofilm. FEMS Microbiology Ecology 2023, 99, fiad124. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Tackling heavy metal pollution: evaluating governance models and frameworks. Sustainability 2023, 15, 15863. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. From bibliography to understanding: water microbiology and human health. Journal of Water and Health 2024, 22, 1911–1921. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Bibliographic Insights into Biofilm Engineering. Acta Microbiologica Hellenica 2024, 69, 3–13. [Google Scholar] [CrossRef]
- Herrmann, L.W.; Letti, L.A.J.; de Oliveira Penha, R.; Soccol, V.T.; Rodrigues, C.; Soccol, C.R. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Biotechnology Advances 2024, 70, 108300. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Mustafa, A.; Hyder, S.; Valipour, M.; Rizvi, Z.F.; Gondal, A.S.; Yousuf, Z.; Iqbal, R.; Daraz, U. Bacillus spp. as bioagents: uses and application for sustainable agriculture. Biology 2022, 11, 1763. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, T.; Qian, C. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Construction and Building Materials 2021, 273, 121740. [Google Scholar] [CrossRef]
- Amiri, Y.; Hassaninasab, S.; Chehri, K.; Zahedi, M. Investigating the effect of adding bacillus bacteria and nano-clay on cement mortar properties. Case Studies in Construction Materials 2022, 17, e01167. [Google Scholar] [CrossRef]
- Golewski, G.L. The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—a review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, D.; Fan, J.; Li, G. A brief review of sealants for cement concrete pavement joints and cracks. Road Materials and Pavement Design 2022, 23, 1467–1491. [Google Scholar] [CrossRef]
- Bano, S.; Jaiswal, G.; Kumar, R.; Tiwari, A.; Karthikeyan, M. Experimental study on the crack repair techniques of concrete structures: A case study. 2023; p. 012006.
- Wang, Y.; Su, F.; Li, P.; Wang, W.; Yang, H.; Wang, L. Microbiologically induced concrete corrosion in the cracked sewer pipe under sustained load. Construction and Building Materials 2023, 369, 130521. [Google Scholar] [CrossRef]
- Anjali, R.; Kumar, S.A.; Gangolu, J.; Abiraami, R. Experimental Study on Self-Healing of Micro-Cracks in Concrete with Combination of Environmentally Friendly Bacteria. Sustainable Structures and Buildings 2024, 95. [Google Scholar]
- Gojević, A.; Netinger Grubeša, I.; Marković, B.; Juradin, S.; Crnoja, A. Autonomous Self-Healing methods as a potential technique for the improvement of concrete’s durability. Materials 2023, 16, 7391. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Riera, D.; Restuccia, L.; Falliano, D.; Ferro, G.A.; Tuliani, J.-M.; Pavese, M.; Lavagna, L. An Overview of Methods to Enhance the Environmental Performance of Cement-Based Materials. Infrastructures 2024, 9, 94. [Google Scholar] [CrossRef]
- Ibrahim, O.A.; Mohamed, A.I.H.; Ibrahim, W.; Abd-Al Ftah, R.O.; Hamed, S.R.; Abd-Elnaby, S.F.M. The influence of adding B. subtilis bacteria on the mechanical and chemical properties of cement mortar. Beni-Suef University Journal of Basic and Applied Sciences 2025, 14, 3. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Ding, Y.; Wang, S. Mechanical performance of strain-hardening cementitious composites (SHCC) with bacterial addition. Journal of Infrastructure Preservation and Resilience 2022, 3, 3. [Google Scholar] [CrossRef]
- Zhang, Z.; Weng, Y.; Ding, Y.; Qian, S. Use of genetically modified bacteria to repair cracks in concrete. Materials 2019, 12, 3912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ding, Y.; Qian, S. Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC). Construction and Building Materials 2019, 196, 195–203. [Google Scholar] [CrossRef]
- Durga, C.S.S.; Venkatesh, C.; Bellum, R.R.; Chaitanya, B.K.; Rao, B.N.M.; Rao, T.M. Influence of Bacillus species on mechanical and microstructural properties of concrete. Multiscale and Multidisciplinary Modeling, Experiments and Design 2024, 7, 5079–5095. [Google Scholar] [CrossRef]
- Šovljanski, O.; Bulatović, V.; Milović, T.; Grahovac, J.; Erceg, T.; Dramićanin, M.; Tomić, A. Bioaugmentation of Industrial Wastewater and Formation of Bacterial–CaCO3 Coupled System for Self-Healing Cement. Buildings 2024, 14, 4011. [Google Scholar] [CrossRef]
- Fazelikia, S.; Abtahi, S.A.; Kargar, M.; Jafarinia, M. Microbial induced calcite precipitation (MICP) potential of ureolytic Bacillus sp. isolated from the soil of eroded ecosystems for stabilizing and improving the fertility of eroded soils. Geomicrobiology Journal 2023, 40, 569–581. [Google Scholar] [CrossRef]
- Nair, P.S.; Gupta, R.; Agrawal, V. Self-healing concrete: a promising innovation for sustainability-a review. Materials Today: Proceedings 2022, 65, 1410–1417. [Google Scholar] [CrossRef]
- Mokhtar, N.; Johari, M.A.M.; Tajarudin, H.A.; Al-Gheethi, A.A.; Algaifi, H.A. A sustainable enhancement of bio-cement using immobilised Bacillus sphaericus: Optimization, microstructural properties, and techno-economic analysis for a cleaner production of bio-cementitious mortars. Journal of Cleaner Production 2021, 318, 128470. [Google Scholar] [CrossRef]
- Zhao, C.-e.; Chen, J.; Ding, Y.; Wang, V.B.; Bao, B.; Kjelleberg, S.; Cao, B.; Loo, S.C.J.; Wang, L.; Huang, W. Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells. ACS Applied Materials & Interfaces 2015, 7, 14501–14505. [Google Scholar]
- Yang, Y.; Ding, Y.; Hu, Y.; Cao, B.; Rice, S.A.; Kjelleberg, S.; Song, H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS synthetic biology 2015, 4, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peng, N.; Du, Y.; Ji, L.; Cao, B. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Applied and environmental microbiology 2014, 80, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.K.; Sivakumar, K.; Liu, X.; Madhaiyan, M.; Ji, L.; Yang, L.; Tang, C.; Song, H.; Kjelleberg, S.; Cao, B. Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnology and Bioengineering 2013, 110, 1831–1837. [Google Scholar] [CrossRef] [PubMed]
- Aqel, H.; Farah, H.; Al-Hunaiti, A. Ecological versatility and biotechnological promise: Comprehensive characterization of the isolated thermophilic Bacillus strains. Plos one 2024, 19, e0297217. [Google Scholar] [CrossRef]
- Zalila-Kolsi, I.; Ben-Mahmoud, A.; Al-Barazie, R. Bacillus amyloliquefaciens: harnessing its potential for industrial, medical, and agricultural applications—a comprehensive review. Microorganisms 2023, 11, 2215. [Google Scholar] [CrossRef]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological applications of Bacillus licheniformis. Critical Reviews in Biotechnology 2021, 41, 609–627. [Google Scholar] [CrossRef]
- Ge, H.; Zhu, Z.; Dai, Y.; Wang, B.; Wu, X. Facial expression recognition based on deep learning. Computer Methods and Programs in Biomedicine 2022, 215, 106621. [Google Scholar] [CrossRef]
- Ali, W.; Tian, W.; Din, S.U.; Iradukunda, D.; Khan, A.A. Classical and modern face recognition approaches: a complete review. Multimedia tools and applications 2021, 80, 4825–4880. [Google Scholar]
- Abolhasani, M.; Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nature Synthesis 2023, 2, 483–492. [Google Scholar] [CrossRef]
- Cai, X.; Giallorenzo, M.; Sarabandi, K. Machine learning-based target classification for MMW radar in autonomous driving. IEEE Transactions on Intelligent Vehicles 2021, 6, 678–689. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Machine learning and its applications in studying the geographical distribution of ants. Diversity 2022, 14, 706. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. A machine learning approach to predicting academic performance in Pennsylvania’s schools. Social Sciences 2023, 12, 118. [Google Scholar] [CrossRef]
- Ding, Y. Machine Learning Model Construction and Testing: Anticipating Cancer Incidence and Mortality. Diseases 2024, 12, 139. [Google Scholar] [CrossRef]
- Harirchi, S.; Sar, T.; Ramezani, M.; Aliyu, H.; Etemadifar, Z.; Nojoumi, S.A.; Yazdian, F.; Awasthi, M.K.; Taherzadeh, M.J. Bacillales: from taxonomy to biotechnological and industrial perspectives. Microorganisms 2022, 10, 2355. [Google Scholar] [CrossRef] [PubMed]
- Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sroczyński, M.; Dzitkowska-Zabielska, M.; Bojarczuk, A.; Skowron, P.M.; Cięszczyk, P. Analysis of industrial Bacillus species as potential probiotics for dietary supplements. Microorganisms 2023, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Nag, M.; Sarkar, T.; Dutta, B.; Ray, R.R. Antibiofilm activity of α-amylase from Bacillus subtilis and prediction of the optimized conditions for biofilm removal by response surface methodology (RSM) and artificial neural network (ANN). Applied Biochemistry and biotechnology 2021, 193, 1853–1872. [Google Scholar] [CrossRef]
- Marimuthu, S.; Rajendran, K. Artificial neural network modeling and statistical optimization of medium components to enhance production of exopolysaccharide by Bacillus sp. EPS003. Preparative Biochemistry & Biotechnology 2023, 53, 136–147. [Google Scholar]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
