Submitted:
17 January 2025
Posted:
17 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results



4. Discussion
4.1. The Case for Effective Bioremediation Methods
4.2. Big Data and Machine Learning for Future Bioremediation Research
5. Conclusions
References
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Singh, M.; Joshi, D.; Singh, J.; Suyal, D.C.; Kumar, A.; Rajput, V.D. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research 2021, 28, 24917–24939. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y. Heavy metal pollution and transboundary issues in ASEAN countries. Water Policy 2019, 21, 1096–1106. [Google Scholar] [CrossRef]
- Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Materials Today: Proceedings 2022, 51, 880–885. [Google Scholar]
- Zerizghi, T.; Guo, Q.; Tian, L.; Wei, R.; Zhao, C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Science of the Total Environment 2022, 814, 152653. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ding, Y. Systematic bibliographic analysis of heavy metal remediation. Water Science & Technology, 2024, wst2024396.
- Sayqal, A.; Ahmed, O.B. [Retracted] Advances in Heavy Metal Bioremediation: An Overview. Applied Bionics and Biomechanics 2021, 2021, 1609149. [Google Scholar] [CrossRef]
- Sreedevi, P.R.; Suresh, K.; Jiang, G. Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. Journal of Water Process Engineering 2022, 48, 102884. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Tackling heavy metal pollution: evaluating governance models and frameworks. Sustainability 2023, 15, 15863. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environmental Pollution 2021, 291, 118209. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. Journal of Cleaner Production 2022, 379, 134043. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation 2021, 22, 101504. [Google Scholar]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tian, Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. Environmental Science and Pollution Research 2021, 28, 20981–20997. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, C.; Zhao, G.; Chen, Y. Versatile mechanisms and enhanced strategies of pollutants removal mediated by Shewanella oneidensis: A review. Journal of Hazardous Materials 2022, 440, 129703. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Cupa, C.; Bassi, A. Investigation of heavy metal removal from salty wastewater and voltage production using Shewanella oneidensis MR-1 nanowires in a dual-chamber microbial fuel cell. Environmental Progress & Sustainable Energy 2024, 43, e14237. [Google Scholar]
- Zhang, P.; Liu, W.-P.; Zhao, T.-L.; Yao, Q.-Z.; Li, H.; Fu, S.-Q.; Zhou, G.-T. Biomineralization of struvite by Shewanella oneidensis MR-1 for phosphorus recovery: Cr (VI) effect and behavior. Journal of Environmental Chemical Engineering 2022, 10, 106923. [Google Scholar] [CrossRef]
- Li, D.; He, H.; Xu, Z.; Deng, H. Investigation on the effect of Cu2+, Mn2+ and Fe3+ on biotreatment of Cr (VI) by Shewanella oneidensis and Bacillus subtilis in bimetallic system. Surfaces and Interfaces 2024, 44, 103742. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Bibliographic Insights into Biofilm Engineering. Acta Microbiologica Hellenica 2024, 69, 3–13. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, S. A Bibliographic Outlook: Machine Learning on Biofilm. Research Directions: Biotechnology Design, 2024; 1–22. [Google Scholar]
- Ma, L.; Du, Y.; Chen, S.; Du, D.; Ye, H.; Zhang, T.C. Highly efficient removal of Cr (VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1. Chemosphere 2022, 287, 132184. [Google Scholar] [CrossRef]
- Zhang, L.; Xi, L.; He, S.; Wen, H.; Tan, S.; Chen, S. Riboflavin derivatives as a novel electron transfer mediator for enhancing Cr (VI) removal by Shewanella oneidensis MR-1. International Biodeterioration & Biodegradation 2024, 195, 105892. [Google Scholar]
- Baskaran, D.; Byun, H.-S. Current trend of polycyclic aromatic hydrocarbon bioremediation: Mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications. Chemical Engineering Journal 2024, 155334. [Google Scholar] [CrossRef]
- Sounderarajan, S.; Karuppusamy, K.; Surya, A.P.V.; Puchalapalli, D.S.R.; Sethi, G.; Ayothiraman, S. Machine learning approach for the effectual production of a novel esterase and its application in bioremediation of dairy effluent. Process Biochemistry 2024, 144, 20–37. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Alviz-Meza, A.; Orozco-Agamez, J.; Quinayá, D.C.P.; Alviz-Amador, A. Bibliometric analysis of fourth industrial revolution applied to material sciences based on Web of Science and Scopus databases from 2017 to 2021. ChemEngineering 2023, 7, 2. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. From bibliography to understanding: water microbiology and human health. Journal of Water and Health 2024, 22, 1911–1921. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. A bibliography study of Shewanella oneidensis biofilm. FEMS Microbiology Ecology 2023, 99, fiad124. [Google Scholar] [CrossRef]
- Bukar, U.A.; Sayeed, M.S.; Razak, S.F.A.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. A method for analyzing text using VOSviewer. MethodsX 2023, 11, 102339. [Google Scholar] [CrossRef]
- Kumar, R.; Saxena, S.; Kumar, V.; Prabha, V.; Kumar, R.; Kukreti, A. Service innovation research: a bibliometric analysis using VOSviewer. Competitiveness Review: An International Business Journal 2024, 34, 736–760. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University-Science 2022, 34, 101865. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Y.; Lin, N.; Wang, R.; Wang, M.; Zhang, X. Iron-based materials for simultaneous removal of heavy metal (loid) s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. Environmental Pollution 2022, 299, 118871. [Google Scholar] [CrossRef]
- Azeez, N.A.; Dash, S.S.; Gummadi, S.N.; Deepa, V.S. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere 2021, 266, 129204. [Google Scholar] [CrossRef] [PubMed]
- Wise Jr, J.P.; Young, J.L.; Cai, J.; Cai, L. Current understanding of hexavalent chromium [Cr (VI)] neurotoxicity and new perspectives. Environment international 2022, 158, 106877. [Google Scholar] [CrossRef] [PubMed]
- den Braver-Sewradj, S.P.; van Benthem, J.; Staal, Y.C.M.; Ezendam, J.; Piersma, A.H.; Hessel, E.V.S. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regulatory Toxicology and Pharmacology 2021, 126, 105045. [Google Scholar] [CrossRef]
- Behrens, T.; Ge, C.; Vermeulen, R.; Kendzia, B.; Olsson, A.; Schüz, J.; Kromhout, H.; Pesch, B.; Peters, S.; Portengen, L. Occupational exposure to nickel and hexavalent chromium and the risk of lung cancer in a pooled analysis of case-control studies (SYNERGY). International journal of cancer 2023, 152, 645–660. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Yao, J.; Xiong, Y.; Zhu, Z.; Yu, X.-Y. Molecular evidence of a toxic effect on a biofilm and its matrix. Analyst 2019, 144, 2498–2503. [Google Scholar] [CrossRef]
- Alvarez, C.C.; Gómez, M.E.B.; Zavala, A.H. Hexavalent chromium: Regulation and health effects. Journal of trace elements in medicine and biology 2021, 65, 126729. [Google Scholar] [CrossRef]
- Ghosh, S.; Jasu, A.; Ray, R.R. Hexavalent chromium bioremediation with insight into molecular aspect: an overview. Bioremediation Journal 2021, 25, 225–251. [Google Scholar] [CrossRef]
- Bhunia, A.; Lahiri, D.; Nag, M.; Upadhye, V.; Pandit, S. Bacterial biofilm mediated bioremediation of hexavalent chromium: a review. Biocatalysis and Agricultural Biotechnology 2022, 43, 102397. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Y.; Hu, Y.; Cao, B.; Rice, S.A.; Kjelleberg, S.; Song, H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS synthetic biology 2015, 4, 815–823. [Google Scholar] [CrossRef]
- Zhao, C.e.; Wu, J.; Ding, Y.; Wang, V.B.; Zhang, Y.; Kjelleberg, S.; Loo, J.S.C.; Cao, B.; Zhang, Q. Hybrid conducting biofilm with built-in bacteria for high-performance microbial fuel cells. ChemElectroChem 2015, 2, 654–658. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Yao, J.; Szymanski, C.; Fredrickson, J.; Shi, L.; Cao, B.; Zhu, Z.; Yu, X.-Y. In situ molecular imaging of the biofilm and its matrix. Analytical chemistry 2016, 88, 11244–11252. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater. Science of The Total Environment 2021, 774, 145762. [Google Scholar] [CrossRef]
- Farooqi, Z.H.; Akram, M.W.; Begum, R.; Wu, W.; Irfan, A. Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects. Journal of Hazardous Materials 2021, 402, 123535. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peng, N.; Du, Y.; Ji, L.; Cao, B. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Applied and environmental microbiology 2014, 80, 1498–1506. [Google Scholar] [CrossRef]
- Xi, L.; He, S.; Qin, Y.; Chen, L.; Tan, S.; Chen, S. Biosynthesis of biogenic ferrous sulfide as a potential electron shuttle for enhanced Cr (VI) removal by Shewanella oneidensis MR-1. Journal of Water Process Engineering 2024, 57, 104725. [Google Scholar] [CrossRef]
- Ma, L.; Chen, N.; Feng, C.; Yang, Q. Recent advances in enhanced technology of Cr (VI) bioreduction in aqueous condition: A review. Chemosphere 2024, 141176. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Albarico, F.P.J.B.; Pandey, A.; Chen, C.-W.; Dong, C.-D. Organic wastes bioremediation and its changing prospects. Science of the Total Environment 2022, 824, 153889. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: the role of microorganisms. Frontiers in Agronomy 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Sharma, B.; Shukla, P. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnology and Applied Biochemistry 2022, 69, 51–60. [Google Scholar] [CrossRef]
- Arunraja, D.; Romauld, S.I.; Devi, P.B.; Thiruvengadam, S.; Kumar, V. Genetically engineered microbes for bioremediation and phytoremediation of contaminated environment. In Metagenomics to bioremediation; Elsevier: 2023; pp. 709-721.
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin 2024. [Google Scholar] [CrossRef]
- Yadav, A.N.; Suyal, D.C.; Kour, D.; Rajput, V.D.; Rastegari, A.A.; Singh, J. Bioremediation and waste management for environmental sustainability. Journal of Applied Biology and Biotechnology 2022, 10, 1–5. [Google Scholar] [CrossRef]
- Nti, I.K.; Quarcoo, J.A.; Aning, J.; Fosu, G.K. A mini-review of machine learning in big data analytics: Applications, challenges, and prospects. Big Data Mining and Analytics 2022, 5, 81–97. [Google Scholar] [CrossRef]
- Lampropoulos, G. Artificial intelligence, big data, and machine learning in industry 4.0. In Encyclopedia of data science and machine learning; IGI Global: 2023; pp. 2101-2109.
- Raju, K.; Chinna Rao, B.; Saikumar, K.; Lakshman Pratap, N. An optimal hybrid solution to local and global facial recognition through machine learning. A fusion of artificial intelligence and internet of things for emerging cyber systems 2022, 203–226. [Google Scholar]
- Geetha, M.; Latha, R.S.; Nivetha, S.K.; Hariprasath, S.; Gowtham, S.; Deepak, C.S. Design of face detection and recognition system to monitor students during online examinations using Machine Learning algorithms. 2021; pp. 1-4.
- Bachute, M.R.; Subhedar, J.M. Autonomous driving architectures: insights of machine learning and deep learning algorithms. Machine Learning with Applications 2021, 6, 100164. [Google Scholar] [CrossRef]
- Cai, X.; Giallorenzo, M.; Sarabandi, K. Machine learning-based target classification for MMW radar in autonomous driving. IEEE Transactions on Intelligent Vehicles 2021, 6, 678–689. [Google Scholar] [CrossRef]
- Ding, Y. Machine Learning Model Construction and Testing: Anticipating Cancer Incidence and Mortality. Diseases 2024, 12, 139. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Machine learning and its applications in studying the geographical distribution of ants. Diversity 2022, 14, 706. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. A machine learning approach to predicting academic performance in Pennsylvania’s schools. Social Sciences 2023, 12, 118. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, Y. Bioinformatics and computational tools in bioremediation and biodegradation of environmental pollutants. In Bioremediation for environmental sustainability; Elsevier: 2021; pp. 421-444.
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Raj, A. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. Science of The Total Environment 2021, 770, 144561. [Google Scholar] [CrossRef]
- Gupta, P.K.; Yadav, B.; Kumar, A.; Himanshu, S.K. Machine learning and artificial intelligence application in constructed wetlands for industrial effluent treatment: advances and challenges in assessment and bioremediation modeling. Bioremediation for Environmental Sustainability 2021, 403–414. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
