Submitted:
16 January 2025
Posted:
17 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Theory
2.1. CRH, CRH1, CRH2, Serotonin
2.2. Anorexia Nervosa (AN)
2.3. Bulimia Nervosa
Evidence
Treatment
3. Discussion
Conflicts of Interest
List of Abbreviations
| ACTH | adrenocorticotropic hormone |
| AN | anorexia nervosa |
| BED | binge-eating disorder |
| BN | bulimia nervosa |
| CRH | corticotropin-releasing hormone |
| CRH1, CRH2 | CRH receptors 1 and 2 |
| EPI | epinephrine |
| GC | glucocorticoid |
| GRH | growth hormone |
| HPA | hypothalamic-pituitary-adrenal (axis) |
| NEP | norepinephrine |
| PVH | hypothalamus paraventricular nucleus |
| SER | serotonin |
| SER1a, SER2a, SER2c, SER3 | SER receptors 1a, 2a, 2c, 3 |
| SERT | SER transporter |
| SNS | sympathetic nervous system |
| SSRI | selective serotonin reuptake inhibitor |
| SST | somatostatin |
| T*AB | The theory of AN and BN presented here |
| TPH | tryptophan hydroxylase |
| WAT | white adipose tissue |
References
- Glasofer, D.R.; Attia, E.; Timothy Walsh, B. Feeding and eating disorders. Psychiatry.
- Kowalska, I.; Karczewska-Kupczewska, M.; Straczkowski, M.; Rubin, R.T. Anorexia nervosa, bulimia nervosa, and other eating disorders. In Endocrinology: Adult and Pediatric, Jameson, L.J., De Groot, L.J., de Kretser, D., Giudice, L.C., Grossman, A., Melmed, S., et al., Eds.; 7th ed.; 2016. [Google Scholar]
- Schaumberg, K.; Welch, E.; Breithaupt, L.; Hübel, C.; Baker, J.H.; Munn-Chernoff, M.A. , et al. The science behind the academy for eating disorders’ nine truths about eating disorders. European Eating Disorders Review 2017, 25, 432–50. [Google Scholar] [CrossRef]
- Treasure, J.; Zipfel, S.; Micali, N.; Wade, T.; Stice, E.; de Medeiros Claudino, A. , et al. Anorexia nervosa. Nature Reviews Disease Primers 2015.
- Slominski, R.M.; Tuckey, R.C.; Manna, P.R.; Jetten, A.M.; Postlethwaite, A.; Raman, C. , et al. Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes & Immunity 2020, 21, 150–68. [Google Scholar]
- Deussing, J.M.; Chen, A. The corticotropin-releasing factor family: physiology of the stress response. Physiological reviews 2018, 98, 2225–86. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Diz-Chaves, Y.; Contarino, A.; Fanelli, F.; Clark, S.; Cota, D. , et al. The corticotrophin-releasing factor/urocortin system regulates white fat browning in mice through paracrine mechanisms. International Journal of Obesity 2015, 39, 408–17. [Google Scholar]
- Inda, C.; Armando, N.G.; dos Santos Claro, P.A.; Silberstein, S. Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocrine Connections 2017, 6, R99–R120. [Google Scholar] [CrossRef]
- Bale, T.L.; Vale, W.W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004, 44, 525–57. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, R.W.; Meyer, K.A.; Gaston, G.; White, A.E.; Lumeng, C.N.; Marks, D.L. Hexosamine biosynthesis is a possible mechanism underlying hypoxia’s effects on lipid metabolism in human adipocytes. PloS one 2013, 8, e71165. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Taché, Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Frontiers in neuroscience 2014, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- McCrimmon, R.J.; Song, Z.; Cheng, H.; McNay, E.C.; Weikart-Yeckel, C.; Fan, X. , et al. Corticotrophin-releasing factor receptors within the ventromedial hypothalamus regulate hypoglycemia-induced hormonal counterregulation. The Journal of clinical investigation 2006, 116, 1723–30. [Google Scholar] [PubMed]
- Carlin, K.M.; Vale, W.W.; Bale, T.L. Vital functions of corticotropin-releasing factor (CRF) pathways in maintenance and regulation of energy homeostasis. Proceedings of the National Academy of Sciences 2006, 103, 3462–7. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, P.; Cleasby, M.; Morton, N.; Kelly, P.; Brownstein, D.; Mustard, K. , et al. Urocortin 3 transgenic mice exhibit a metabolically favourable phenotype resisting obesity and hyperglycaemia on a high-fat diet. Diabetologia 2011, 54, 2392–403. [Google Scholar] [PubMed]
- Li, J.; Qi, D.; Cheng, H.; Hu, X.; Miller, E.J.; Wu, X. , et al. Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proceedings of the National Academy of Sciences 2013, 110, 16133–8. [Google Scholar]
- Warnock, G.; Moechars, D.; Langlois, X.; Steckler, T. In vivo evidence for ligand-specific receptor activation in the central CRF system, as measured by local cerebral glucose utilization. Peptides. 2009, 30, 947–54. [Google Scholar] [CrossRef] [PubMed]
- Kavalakatt, S.; Khadir, A.; Madhu, D.; Koistinen, H.A.; Al-Mulla, F.; Tuomilehto, J. , et al. Urocortin 3 overexpression reduces ER stress and heat shock response in 3T3-L1 adipocytes. Scientific Reports 2021, 11, 15666. [Google Scholar]
- Li, C.; Chen, P.; Vaughan, J.; Lee, K.F.; Vale, W. Urocortin 3 regulates glucose-stimulated insulin secretion and energy homeostasis. Proceedings of the National Academy of Sciences 2007, 104, 4206–11. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.; Wang, L.; Rivier, J.; Grigoriadis, D.; Taché, Y. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. The Journal of physiology 2004, 556, 221–34. [Google Scholar] [CrossRef]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annual review of medicine 2009, 60, 355–66. [Google Scholar] [CrossRef] [PubMed]
- Donner, N.C.; Siebler, P.H.; Johnson, D.T.; Villarreal, M.D.; Mani, S.; Matti, A.J. , et al. Serotonergic systems in the balance: CRHR1 and CRHR2 differentially control stress-induced serotonin synthesis. Psychoneuroendocrinology 2016, 63, 178–90. [Google Scholar] [PubMed]
- Forster, G.L.; Anderson, E.M.; Scholl, J.L.; Lukkes, J.L.; Watt, M.J. Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiology of stress 2018, 9, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.V.; Yuan, P.Q.; Lai, J.; Wong, K.; Chen, M.C.; Ohning, G.V. , et al. Activation of Type 1 CRH receptor isoforms induces serotonin release from human carcinoid BON-1N cells: an enterochromaffin cell model. Endocrinology 2011, 152, 126–37. [Google Scholar] [PubMed]
- Heisler, L.K.; Pronchuk, N.; Nonogaki, K.; Zhou, L.; Raber, J.; Tung, L. , et al. Serotonin activates the hypothalamic–pituitary–adrenal axis via serotonin 2C receptor stimulation. Journal of Neuroscience 2007, 27, 6956–64. [Google Scholar]
- Gorwood, P.; Lanfumey, L.; Viltart, O.; Ramoz, N. 5-HT 2A receptors in eating disorders. 5-HT2A Receptors in the Central Nervous System. 2018; 353–373. [Google Scholar]
- Leibowitz, S.F.; Alexander, J.T. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biological psychiatry 1998, 44, 851–64. [Google Scholar] [CrossRef]
- Harada, Y.; Takayama, K.; Ro, S.; Ochiai, M.; Noguchi, M.; Iizuka, S. , et al. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain. Peptides 2014, 51, 139–44. [Google Scholar] [PubMed]
- Gershon, M.D. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Transactions of the American Clinical and Climatological Association 2012, 123, 268. [Google Scholar] [PubMed]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocrine reviews 2019, 40, 1092–107. [Google Scholar] [CrossRef]
- Gentilcore, D.; Little, T.J.; Feinle-Bisset, C.; Samsom, M.; Smout, A.J.; Horowitz, M. , et al. Role of 5-hydroxytryptamine mechanisms in mediating the effects of small intestinal glucose on blood pressure and antropyloroduodenal motility in older subjects. American Journal of Physiology-Gastrointestinal and Liver Physiology 2007, 293, G692–8. [Google Scholar] [PubMed]
- Babic, T.; Troy, A.; Fortna, S.; Browning, K. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons. Neurogastroenterology & Motility 2012, 24, e476–88. [Google Scholar]
- Pszczolkowski, V.L.; Connelly, M.K.; Beard, A.D.; Benn, A.D.; Laporta, J.; Hernandez, L.L. , et al. Serotonin alters the response to a glucose challenge in lactating cows. Journal of Endocrinology 2023, 257. [Google Scholar]
- Li, Q.; Hosaka, T.; Harada, N.; Nakaya, Y.; Funaki, M. Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Molecular and cellular endocrinology 2013, 365, 25–35. [Google Scholar] [CrossRef]
- Hajduch, E.; Rencurel, F.; Balendran, A.; Batty, I.H.; Downes, C.P.; Hundal, H.S. Serotonin (5-hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. Journal of Biological Chemistry 1999, 274, 13563–8. [Google Scholar] [CrossRef]
- Tudhope, S.J.; Wang, C.C.; Petrie, J.L.; Potts, L.; Malcomson, F.; Kieswich, J. , et al. A novel mechanism for regulating hepatic glycogen synthesis involving serotonin and cyclin-dependent kinase-5. Diabetes 2012, 61, 49–60. [Google Scholar]
- Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F. , et al. The diverse metabolic roles of peripheral serotonin. Endocrinology 2017, 158, 1049–63. [Google Scholar]
- Martín-Cora, F.J.; Fornal, C.A.; Metzler, C.W.; Jacobs, B.L. Insulin-induced hypoglycemia decreases single-unit activity of serotonergic medullary raphe neurons in freely moving cats: relationship to sympathetic and motor output. European Journal of Neuroscience 2002, 16, 722–34. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.M.; Namkung, J.; Go, Y.; Shong, K.E.; Kim, K.; Kim, H. , et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature communications 2015, 6, 6794. [Google Scholar] [PubMed]
- Crane, J.D.; Palanivel, R.; Mottillo, E.P.; Bujak, A.L.; Wang, H.; Ford, R.J. , et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nature medicine 2015, 21, 166–72. [Google Scholar]
- Shong, K.E.; Oh, C.M.; Namkung, J.; Park, S.; Kim, H. Serotonin regulates de novo lipogenesis in adipose tissues through serotonin receptor 2A. Endocrinology and Metabolism 35, 470-9.
- Voronova, I.P. 5-HT receptors and temperature homeostasis. Biomolecules 2021, 11, 1914. [Google Scholar] [CrossRef]
- Hostetler, C.M.; Ryabinin, A.E. The CRF system and social behavior: a review. Frontiers in neuroscience 2013, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Reshetnikov, V.; Kisaretova, P.; Ershov, N.; Merkulova, T.; Bondar, N. Social defeat stress in adult mice causes alterations in gene expression, alternative splicing, and the epigenetic landscape of H3K4me3 in the prefrontal cortex: an impact of early-life stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2021, 106, 110068. [Google Scholar] [CrossRef] [PubMed]
- Szyf, M. Nongenetic inheritance and transgenerational epigenetics. Trends in molecular medicine 2015, 21, 134–44. [Google Scholar] [CrossRef] [PubMed]
- Coplan, J.; Andrews, M.; Rosenblum, L.; Owens, M.; Friedman, S.; Gorman, J. , et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences 1996, 93, 1619–23. [Google Scholar]
- Avishai-Eliner, S.; Eghbal-Ahmadi, M.; Tabachnik, E.; Brunson, K.L.; Baram, T.Z. Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA. Endocrinology 2001, 142, 89–97. [Google Scholar] [CrossRef]
- Sjögren, M.; Lichtenstein, M.B.; Støving, R.K. Trauma experiences are common in anorexia nervosa and related to eating disorder pathology but do not influence weight-gain during the start of treatment. Journal of Personalized medicine 2023, 13, 709. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.C.; Bewell, C.; Blackmore, E.; Woodside, D.B. The impact of childhood sexual abuse in anorexia nervosa. Child abuse & neglect 2006, 30, 257–69. [Google Scholar]
- Johnston, K.D.; Lu, Z.; Rudd, J.A. Looking beyond 5-HT3 receptors: A review of the wider role of serotonin in the pharmacology of nausea and vomiting. European journal of pharmacology 2014, 722, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Tache, Y. Cyclic vomiting syndrome: the corticotropin-releasing-factor hypothesis. Digestive diseases and sciences 1999, 44 (Suppl. 8), 79S–86S. [Google Scholar]
- Kawahito, Y.; Sano, H.; Kawata, M.; Yuri, K.; Mukai, S.; Yamamura, Y. , et al. Local secretion of corticotropin-releasing hormone by enterochromaffin cells in human colon. Gastroenterology 1994, 106, 859–65. [Google Scholar]
- Yang, P. Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. Gut 2009, 58, 1473–9. [Google Scholar]
- Theoharides, T.C. Neuroendocrinology of mast cells: Challenges and controversies. Experimental dermatology 2017, 26, 751–9. [Google Scholar] [CrossRef]
- Kokkotou, E.; Torres, D.; Moss, A.C.; O’Brien, M.; Grigoriadis, D.E.; Karalis, K. , et al. Corticotropin-releasing hormone receptor 2-deficient mice have reduced intestinal inflammatory responses. The Journal of Immunology 2006, 177, 3355–61. [Google Scholar] [PubMed]
- Poglio, S.; De Toni-Costes, F.; Arnaud, E.; Laharrague, P.; Espinosa, E.; Casteilla, L. , et al. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 2010, 28, 2065–72. [Google Scholar] [PubMed]
- Divoux, A.; Moutel, S.; Poitou, C.; Lacasa, D.; Veyrie, N.; Aissat, A. , et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. The Journal of Clinical Endocrinology & Metabolism 2012, 97, E1677–85. [Google Scholar]
- Ayyadurai, S.; Gibson, A.J.; D’Costa, S.; Overman, E.L.; Sommerville, L.J.; Poopal, A.C. , et al. Frontline science: corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. Journal of leukocyte biology 2017, 102, 1299–312. [Google Scholar]
- Mishra, G.; Townsend, K.L. The metabolic and functional roles of sensory nerves in adipose tissues. Nature Metabolism 2023, 5, 1461–74. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Di Nicolantonio, C.; Di Febo, R.; De Crescenzo, F.; Vanderlinden, J. ; Vrieze E, et al. The transition from restrictive anorexia nervosa to binging and purging: a systematic review and meta-analysis. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity 2021, 27, 857–65. [Google Scholar]
- Yamanaka-Takaichi, M.; Mizukami, Y.; Sugawara, K.; Sunami, K.; Teranishi, Y.; Kira, Y. , et al. Stress and nasal allergy: corticotropin-releasing hormone stimulates mast cell degranulation and proliferation in human nasal mucosa. International journal of molecular sciences 2021, 22, 2773. [Google Scholar]
- Hu, P.; Liu, J.; Yasrebi, A.; Gotthardt, J.D.; Bello, N.T.; Pang, Z.P. , et al. Gq protein-coupled membrane-initiated estrogen signaling rapidly excites corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus in female mice. Endocrinology 2016, 157, 3604–20. [Google Scholar] [PubMed]
- Chen, X.N.; Zhu, H.; Meng, Q.Y.; Zhou, J.N. Estrogen receptor-α and-β regulate the human corticotropin-releasing hormone gene through similar pathways. Brain research 2008, 1223, 1–10. [Google Scholar] [CrossRef]
- Hannerfors, A.K.; Hellgren, C.; Schijven, D.; Iliadis, S.I.; Comasco, E.; Skalkidou, A. , et al. Treatment with serotonin reuptake inhibitors during pregnancy is associated with elevated corticotropin-releasing hormone levels. Psychoneuroendocrinology 2015, 58, 104–13. [Google Scholar]
- Bao, A.; Fischer, D.; Wu, Y.; Hol, E.; Balesar, R.; Unmehopa, U. , et al. A direct androgenic involvement in the expression of human corticotropin-releasing hormone. Molecular psychiatry 2006, 11, 567–76. [Google Scholar] [PubMed]
- Green, M.R.; Zeidan, M.; Hodges, T.E.; McCormick, C.M. Age-dependent regulation by androgens of gene expression in the anterior hypothalamus and stress-induced release of adrenal hormones in adolescent and adult male rats. Journal of Neuroendocrinology 2019, 31, e12714. [Google Scholar] [CrossRef] [PubMed]
- Cong, B.; Zhu, X.; Cao, B.; Xiao, J.; Wang, Z.; Ni, X. Estrogens protect myocardium against ischemia/reperfusion insult by up-regulation of CRH receptor type 2 in female rats. International journal of cardiology 2013, 168, 4755–60. [Google Scholar] [CrossRef] [PubMed]
- Kinsey-Jones, J.S.; Li, X.F.; Bowe, J.E.; Lightman, S.L.; O’Byrne, K.T. Corticotrophin-releasing factor type 2 receptor-mediated suppression of gonadotrophin-releasing hormone mRNA expression in GT1-7 cells. Stress 2006, 9, 215–22. [Google Scholar] [CrossRef] [PubMed]
- Baker, F.C.; Siboza, F.; Fuller, A. Temperature regulation in women: effects of the menstrual cycle. Temperature 2020, 7, 226–62. [Google Scholar] [CrossRef]
- Gomez Del Barrio, A.; Ruiz Guerrero, F.; Benito Gonzalez, P.; Perez Fernandez, M.; Sanchez Blanco, L.; Losa Mugica, E. , et al. A retrospective investigation of the prodromal stages of eating disorders and use of health services in young patients the year prior to the diagnosis. Early Intervention in Psychiatry 2022, 16, 162–7. [Google Scholar]
- Kjær, M.; Lange, K. Adrenergic regulation of energy metabolism.
- Grueschow, M.; Stenz, N.; Thörn, H.; Ehlert, U.; Breckwoldt, J.; Brodmann Maeder, M. , et al. Real-world stress resilience is associated with the responsivity of the locus coeruleus. Nature communications 2021, 12, 2275. [Google Scholar]
- Kim, T.W.; Lim, B.V.; Kim, K.; Seo, J.H.; Kim, C.J. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats. Journal of Exercise Rehabilitation 2015, 11, 192. [Google Scholar] [CrossRef]
- Hotta, M.; SHIBASAKI, T.; MASUDA, A.; IMAKI, T.; DEMURA, H.; LING, N.; et al. The responses of plasma adrenocorticotropin and cortisol to corticotropin-releasing hormone (CRH) and cerebrospinal fluid immunoreactive CRH in anorexia nervosa patients. The Journal of Clinical Endocrinology & Metabolism 1986, 62, 319–24. [Google Scholar]
- KAYE, W.H.; GWIRTSMAN, H.E.; GEORGE, D.T.; EBERT, M.H.; JIMERSON, D.C.; TOMAI, T.P.; et al. Elevated cerebrospinal fluid levels of immunoreactive corticotropin-releasing hormone in anorexia nervosa: relation to state of nutrition, adrenal function, and intensity of depression. The Journal of Clinical Endocrinology & Metabolism 1987, 64, 203–8. [Google Scholar]
- Connan, F.; Lightman, S.L.; Landau, S.; Wheeler, M.; Treasure, J.; Campbell, I.C. An investigation of hypothalamic-pituitary-adrenal axis hyperactivity in anorexia nervosa: the role of CRH and AVP. Journal of psychiatric research 2007, 41, 131–43. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.W.; Gwirtsman, H.; Avgerinos, P.C.; Nieman, L.K.; Gallucci, W.T.; Kaye, W. , et al. Abnormal hypothalamic–pituitary–adrenal function in anorexia nervosa. New England Journal of Medicine 1986, 314, 1335–42. [Google Scholar]
- Schmalbach, I.; Herhaus, B.; Pässler, S.; Runst, S.; Berth, H.; Wolff-Stephan, S. , et al. Cortisol reactivity in patients with anorexia nervosa after stress induction. Translational Psychiatry 2020, 10, 275. [Google Scholar] [PubMed]
- Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000, 23, 477–501. [Google Scholar] [CrossRef]
- Regev, L.; Tsoory, M.; Gil, S.; Chen, A. Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge. Biological psychiatry 2012, 71, 317–26. [Google Scholar] [CrossRef] [PubMed]
- Oka, A.; Hadano, S.; Ueda, M.T.; Nakagawa, S.; Komaki, G.; Ando, T. Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients by whole exome sequencing. Heliyon 2024, 10. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, L.; Draghetti, S.; Albert, U.; De Ronchi, D.; Atti, A.R. Rates of comorbid obsessive-compulsive disorder in eating disorders: a meta-analysis of the literature. Journal of affective disorders 2020, 277, 927–39. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Otani, R.; Iguchi, T.; Ishii, R.; Uchida, S.; Okada, A.; et al. Prevalence of autism spectrum disorder and autistic traits in children with anorexia nervosa and avoidant/restrictive food intake disorder. BioPsychoSocial Medicine 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Lechin, F.; van der Dijs, B.; Pardey-Maldonado, B.; Rivera, J.E.; Baez, S.; Lechin, M.E. Anorexia nervosa depends on adrenal sympathetic hyperactivity: opposite neuroautonomic profile of hyperinsulinism syndrome. Diabetes, metabolic syndrome and obesity: targets and therapy 2010, 311-7. [Google Scholar]
- Kaye, W.H.; Gwirtsman, H.E.; George, D.T.; Ebert, M.H. Altered serotonin activity in anorexia nervosa after long-term weight restoration: does elevated cerebrospinal fluid 5-hydroxyindoleacetic acid level correlate with rigid and obsessive behavior? Archives of general psychiatry 1991, 48, 556–62. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.K.; Kaye, W.H.; Meltzer, C.C.; Price, J.C.; Greer, P.; McConaha, C. , et al. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biological psychiatry 2002, 52, 896–906. [Google Scholar] [PubMed]
- Audenaert, K.; Van Laere, K.; Dumont, F.; Vervaet, M.; Goethals, I.; Slegers, G. , et al. Decreased 5-HT2a receptor binding in patients with anorexia nervosa. Journal of Nuclear Medicine 2003, 44, 163–9. [Google Scholar] [PubMed]
- Bailer, U.F.; Frank, G.K.; Henry, S.E.; Price, J.C.; Meltzer, C.C.; Mathis, C.A. , et al. Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biological psychiatry 2007, 61, 1090–9. [Google Scholar] [PubMed]
- Yokokura, M.; Terada, T.; Bunai, T.; Nakaizumi, K.; Kato, Y.; Yoshikawa, E.; et al. Alterations in serotonin transporter and body image-related cognition in anorexia nervosa. NeuroImage: Clinical 2019, 23, 101928. [Google Scholar] [CrossRef] [PubMed]
- Kaye, W.H.; Barbarich, N.C.; Putnam, K.; Gendall, K.A.; Fernstrom, J.; Fernstrom, M. , et al. Anxiolytic effects of acute tryptophan depletion in anorexia nervosa. International Journal of Eating Disorders 2003, 33, 257–67. [Google Scholar] [PubMed]
- Kaye, W.H.; Fudge, J.L.; Paulus, M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nature Reviews Neuroscience 2009, 10, 573–84. [Google Scholar] [CrossRef]
- Baker, J.H.; Schaumberg, K.; Munn-Chernoff, M.A. Genetics of anorexia nervosa. Current psychiatry reports 2017, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Luck, P.; Mikhailidis, P.; Dashwood, M.; Barradas, M.; Sever, P.; Dandona, P. , et al. Platelet hyperaggregability and increased α-adrenoceptor density in anorexia nervosa. The Journal of Clinical Endocrinology & Metabolism 1983, 57, 911–4. [Google Scholar]
- Pirke, K.M.; Kellner, M.; Philipp, E.; Laessle, R.; Krieg, J.C.; Fichter, M.M. Plasma norepinephrine after a standardized test meal in acute and remitted patients with anorexia nervosa and in healthy controls. Biological psychiatry 1992, 31, 1074–7. [Google Scholar] [CrossRef] [PubMed]
- Philipp, E.; Eckert, M.; Tuschl, R.J.; Fichter, M.M.; Pirke, K.M. MHPG in urine of patients with anorexia nervosa and bulimia and of healthy controls. international journal of Eating Disorders 1990, 9, 323–8. [Google Scholar] [CrossRef]
- Heufelder, A.; Warnhoff, M.; Pirke, K. Platelet α2-adrenoceptor and adenylate cyclase in patients with anorexia nervosa and bulimia. The Journal of Clinical Endocrinology & Metabolism 1985, 61, 1053–60. [Google Scholar]
- Koo-Loeb, J.H.; Pedersen, C.; Girdler, S.S. Blunted cardiovascular and catecholamine stress reactivity in women with bulimia nervosa. Psychiatry Research 1998, 80, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Sachs, K.V.; Harnke, B.; Mehler, P.S.; Krantz, M.J. Cardiovascular complications of anorexia nervosa: a systematic review. International Journal of Eating Disorders 2016, 49, 238–48. [Google Scholar] [CrossRef]
- Reas, D.L.; Dahlgren Lindvall, C.; Wonderlich, J. , RøØ Intentional Exposure to Extreme Cold Temperature to Influence Shape and/or Weight and Its Association to Eating Disorder Pathology. Frontiers in Psychology 2019, 10, 2539. [Google Scholar] [PubMed]
- Belizer, C.M.; Vagedes, J. High-resolution infrared body surface temperature and self-perceived warmth distribution in adolescent anorexia nervosa patients. Journal of Psychophysiology 2019, 33. [Google Scholar] [CrossRef]
- Bredella, M.A.; Fazeli, P.K.; Freedman, L.M.; Calder, G.; Lee, H.; Rosen, C.J.; et al. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. The Journal of Clinical Endocrinology & Metabolism 2012, 97, E584–90. [Google Scholar]
- Germain, N.; Genteuil, C.D.; Belleton, G.; Da Silva, T.L.; Exbrayat, C.; Degas, F. , et al. Continuous glucose monitoring assessment in patients suffering from anorexia nervosa reveals chronic prolonged mild hypoglycemia all over the nycthemeron. European Eating Disorders Review 2023, 31, 402–12. [Google Scholar] [PubMed]
- Ilyas, A.; Hübel, C.; Stahl, D.; Stadler, M.; Ismail, K.; Breen, G. , et al. The metabolic underpinning of eating disorders: A systematic review and meta-analysis of insulin sensitivity. Molecular and cellular endocrinology 2019, 497, 110307. [Google Scholar] [PubMed]
- NAKAGAWA, K.; MATSUBARA, M.; OBARA, T.; KUBO, M.; AKIKAWA, K. Responses of pituitary and adrenal medulla to insulin-induced hypoglycemia in patients with anorexia nervosa. Endocrinologia japonica 1985, 32, 719–24. [Google Scholar] [CrossRef]
- Gupta, M.A.; Gupta, A.K.; Voorhees, J.J. Starvation-associated pruritus: a clinical feature of eating disorders. Journal of the American Academy of Dermatology 1992, 27, 118–20. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Taché, Y.F. Activation of brain somatostatin signaling suppresses CRF receptor-mediated stress response. Frontiers in neuroscience 2017, 11, 231. [Google Scholar] [CrossRef]
- Fassler, J.; O’Dorisio, T.; Mekhjian, H.; Gaginella, T. Octreotide inhibits increases in short-circuit current induced in rat colon by VIP, substance P, serotonin and aminophylline. Regulatory peptides 1990, 29, 189–97. [Google Scholar] [CrossRef] [PubMed]
- Rai, U.; Thrimawithana, T.R.; Valery, C.; Young, S.A. Therapeutic uses of somatostatin and its analogues: current view and potential applications. Pharmacology & therapeutics 2015, 152, 98–110. [Google Scholar]
- Lerner, E.N.; van Zanten, E.H.; Stewart, G.R. Enhanced delivery of octreotide to the brain via transnasal iontophoretic administration. Journal of drug targeting 2004, 12, 273–80. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, A.; Tanaka, S. Stimulatory effect of somatostatin on norepineprhine release from rat brain cortex slices. Life Sciences 1981, 28, 903–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, Q.; Sun, W.; Vogel, P.; Heydorn, W.; Yu, X.Q. , et al. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. Journal of Pharmacology and Experimental Therapeutics 2008, 325, 47–55. [Google Scholar] [PubMed]
- Beykloo, M.Y.; Nicholls, D.; Simic, M.; Brauer, R.; Mills, E.; Wong, I.C. Survey on self-reported psychotropic drug prescribing practices of eating disorder psychiatrists for the treatment of young people with anorexia nervosa. BMJ open 2019, 9, e031707. [Google Scholar] [CrossRef]
- Thorey, S.; Blanchet, C.; Guessoum, S.B.; Moro, M.R.; Ludot, M.; Carretier, É. Efficacy and tolerance of second-generation antipsychotics in anorexia nervosa: A systematic scoping review. PLOS ONE 2023, 18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).