Submitted:
16 January 2025
Posted:
16 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiments
2.2. Determination of Phenotypic Characteristics and Data Collection
2.3. Data Statistics
3. Results
3.1. Annual Differences in Quality Characteristics
3.2. Coefficient of Variation of Quantitative Characteristics Among Years
3.3. Annual Differences in Quantitative Characteristics
3.4. Correlation Analysis of Quantitative Characteristics
4. Discussion
4.1. QL and PQ Characteristics Variation of Foxtail Millet Resources
4.2. QN Characteristics Variation of Foxtail Millet Resources
5. Conclusion
Declaration of Competing Interest
Data Availability Statement
References
- Ding, Y.D.; Nie, S. H. ; Wang, X; Hu, X. W.; Feng, G.J.; Geng, H.W.; Zhan, S.S. Genetic diversity of agronomic traits of foxtail millet ( Setaria italica ( L.) Beauv.) mainly bred varieties in xinjiang province,China[J]. Journal of Plant Genetic Resources, 2018, 19, 211–221. [Google Scholar]
- Martin, L.; Messager, E.; Bedianashvili, G.; Rusishvili, N.; Lebedeva, E.; Longford, C.; Hovsepyan, R.; Bitadze, L.; Chkadua, M.; Vanishvili, N.; Le, M.F.; Kakhiani, K.; Abramishvili, M.; Gogochuri, G.; Murvanidze, B.; Giunashvili, G.; Licheli, V.; Salavert, A.; Andre, G.; Herrscher, E. The place of millet in food globalization during Late Prehistory as evidenced by new bioarchaeological data from the Caucasus[J]. Scientific Reports, 2021, 11, 13124. [Google Scholar] [CrossRef] [PubMed]
- Pospieszny, Ł.; Makarowicz, P.; Lewis, J.; Górski, J.; Taras, H.; Włodarczak, P.; Szczepanek, A.; Ilchyshyn, V.; Jagodinska, M.O.; Czebreszuk, J.; Muzolf, P.; Nowak, M.; Polańska, M.; Juras, A.; Chyleński, M.; Wójcik, I.; Lasota-Kuś, A.; Romaniszyn, J.; Tunia, K.; Przybyła, M.M.; Grygiel, R.; Matoga, A.; Makowiecki, D.; Goslar, T. Isotopic evidence of millet consumption in the Middle Bronze Age of East-Central Europe[J]. Journal of Archaeological Science, 2021, 126, 105292. [Google Scholar] [CrossRef]
- Diao, X.M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China[J]. Scientia Agricultura Sinica, 2019, 52, 3943–3949. [Google Scholar]
- Qu, J.J. Chinese academy of agricultural sciences thesis[D].Beijing: Chinese Academy of Agricultural Sciences Thesis, 2021.
- Bian, S.H.; Xing, G.F.; Liang, X.; Zhang, S.W.; Wang, J.N.; Ye, H.Y. Effects of different forms selenium and dosage on foxtail millet growth and physiology at seedling stage[J]. Crops,2023,(01):152-157.
- Li, S.Y.; Cui, Y.J.; Dou, B.F.; Liu, Z.L. Research progress and discussion on related issues of heterosis utilization of foxtail millet [Setaria italica ( L. ) P. Beauv.) in China[J]. Chinese Agricultural Science Bulletin, 2023, 39, 24–32. [Google Scholar]
- Cheng, R.H. The present situation of foxtail millet (Setaria italica Beauv) breeding and production as well as the further research directions in China[J]. Journal of Hebei Agricultural Sciences, 2005, 9, 86–90. [Google Scholar]
- Liu, J.J; Zhao, Z. H. Cultivation technology and extension experiences of hybrid millet in Ethiopia[J]. Journal of Hebei Agricultural Sciences, 2012, 16, 9–12. [Google Scholar]
- Tian, G.; Wang, Y.W.; Li, H.X.; Wang, G.H.; Shi, Q.X. Breeding and studies of foxtail millet hybrid changzagu 2 with herbicide-resistance[J]. Journal of Agricultural Science and Technology. 2009, 11(S2):138-141.
- Jing, X.L.; Li, Z.H.; Mu, T.T.; Zhang, F.Y. simplified cultivation techniques for millet hybrid jingu 50 of herbicide resistance[J]. Crops, 2016, 2, 168–172. [Google Scholar]
- Shi, G.Y.; Yang, C.Y.; Shi, G.S.; Ma, H.F.; Hou, G.L. Analysis of cultivation and management measures on corn breeding in hainan[J]. Crops, 2012, 5, 112–113. [Google Scholar]
- Niu, Y.H.; Li, Y.; Shi, Y.S.; Song, Y.C.; Ma, Z.Y.; Wang, T.Y.; Darmency, H. AFLP Mapping for the Gene Conferring Sethoxydim Resistance in Foxtail Millet (Setaria italica (L. ) Beauv.) [J]. Acta Agronomica Sinica, 2002, 28, 359–362. [Google Scholar]
- Jia, G.Q.; Diao, X.M. Current status and perspectives of researches on foxtail millet (Setaria italica (L. )P. Beauv.): A potential model of plant functional genomics studies[J]. Chinese bulletin of life sciences, 2017, 29, 292–301. [Google Scholar]
- Li, J.L.; Wang, S.B.; Li, Y.J.; Hao, X.Y.; Zong, Y.Z.; Zhang, D.S.; Shen, J.; Shi, X.R.; Li, P. Effects of elevated CO2 concentration on cell structure and stress resistance physiology of setaria italica under drought stress[J]. Chinese Journal of Applied Ecology, 2023, 34, 1281–1289. [Google Scholar] [PubMed]
- Dai, S.T.; Zhu, C.C.; Ma, X.Q.; Qin, N.; Song, Y.H.; Wei, X.; Wang, C.Y.; Li, J.X. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress[J]. Acta Agronomica Sinica, 2023, 49, 2105–2121. [Google Scholar]
- Li, K.Y.; Wang, R.; Zhao, P.Y.; Guo, E.H.; Zhang, A.Y.; Zhang, L. Construction and genetic transformation of millet sibl1 gene promoter and GUS fusion cector[J]. Molecular Plant Breeding, network launch: 2023-02-16.
- Ma, J.Y.; Wang, S.; Li, Y.; Guo, Z.Q.; Wang, J.; Lin, X.H.; Han, Y.C. Effects of planting density on agronomic characteristics and yield of foxtail millet[J]. Crops, 2023,(02):222-228.
- Song, H.; He, Z.; Li, G.Q.; Xie, H.F.; Xing, L.; Li, L.; Wang, S.Y.; Liu, J.R.; Zheng, G.Q. Construction of backbone germplasm bank based on the phenotypic traits of foxtail millet[J]. Journal of China Agricultural University, 2022, 27, 102–115. [Google Scholar]
- Sharma, N.; Niranjan, K. Foxtail millet: Properties, processing, health benefits, and uses[J]. Food Reviews International, 2018, 34, 329–363. [Google Scholar] [CrossRef]
- Riek, D.J.; Calsyn, E.; Everaert, I.; Bockstaele, V.E.; Loose, D.M. AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties[J]. Theoretical and Applied Genetics, 2001, 103, 1254–1265. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, R.K.; Singh, A.K.; Singh, V.P.; Singh, N.K.; Tiwari, S.P.; Mohapatra, T. Suitability of mapped sequence tagged microsatellite site markers for establishing distinctness, uniformity and stability in aromatic rice[J]. Euphytica, 2004, 135, 135–143. [Google Scholar] [CrossRef]
- Arens, P.; Mansilla, C.; Deinum, D.; Cavellini, L.; Morett, Ai.; Rolland, S.; Schoot, H.; Calvache, D.; Ponz, F.; Collonnier, C.; Mathis, R.; Smilde, D.; Caranta, C.; Vosman, B. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing[J]. Theoretical and Applied Genetics, 2010, 120, 655–664. [Google Scholar] [CrossRef]
- Diao, X.M.; Li, W.; Zhao, Z.H.; Zhi, H.; Zhang, W.Y.; Wang, Y.F.; Wang, P. NY/T 2425-2013 Guidelines for the conduct of tests for distinctness, uniformity and stability-Foxtail millet (Setaria italica (L.) Beauv.).Beijing: China Agricultural Press,2013.
- Lv, J.Z.; Wang, H.Y.; Ren, Y.; Ma, J.P.; Zhao, K. Phenotypic evaluation and SSR genetic diversity analysis of foxtail millet cultivars in different ecological regions[J]. Journal of Nuclear Agricultural Sciences, 2023, 37, 471–482. [Google Scholar]
- Xiang, J.S.; Zhang, H.R.; Liu, H.; Suo, L.X.; Jia, S.J.; Zhang, Y.; Shi, J.Q.; Hu, L.Z.; Cai, Y.N. Comparison of phenotypic traits of foxtail millet germplasm resources from different ecological regions[J]. Journal of Agricultural Science and Technology, 2020, 22, 31–41. [Google Scholar]
- Xiang, J.S.; Xu, F.; Suo, L.X.; Cheng, K.; Wang, Y.C.; Meng, H.L.; Zhang, J.L.; Jia, B.; Wang, D.X.; Diao, X.M. Comparison on the phenotypic traits between landraces and cultivars of foxtail millet [Setaria italica (L. ) P. Beauv.] in Northeast China[J]. Journal of Plant Genetic Resources, 2018, 19, 642–656. [Google Scholar]
- Ji, J.J.; Fu, G.Q.; Kou, S.J.; Wang, Y.; Zuo, Z.X.; Yang, D.Z.; Liu, X.J.; Huo, A.H. Quantitative character classification and genetic diversity of new millet varieties based on DUS testing[J]. Seed, 2022, 41, 17–27. [Google Scholar]
- Liu, S.N. Analysis and evaluation of phenotypic diversity of ornamental crabapple[D]. Zhengzhou: Henan Agricultural University,2022.
- Zhang, B.B.; Cai, Z.X.; Shen, Z.J.; Yan, J.; Ma, R.J.; Yu, M.L. Diversity analysis of phenotypic characters in germplasm resources of ornamental peaches[J]. Scientia Agricultura Sinica, 2021, 54, 2406–2420. [Google Scholar]
- Xiang, J.S.; Zhi, H.; Yong, H.; Tang, S.; Wang, C.M.; Jia, G.Q.; Jia, Y.C.; Diao, X.M. Phenotypic analysis of panicle development mutants of foxtail millet [Setaria italica (L. ) P. Beauv.] [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29, 1603–161. [Google Scholar]





| No. | Test year | Deposit number | Sources |
|---|---|---|---|
| 1 | 2021-2022 | XIN20619 | Hebei |
| 2 | 2021-2022 | XIN20621 | Hebei |
| 3 | 2021-2022 | XIN25046 | Hebei |
| 4 | 2021-2022 | XIN25049 | Hebei |
| 5 | 2021-2022 | XIN26180 | Hebei |
| 6 | 2021-2022 | XIN26181 | Shandong |
| 7 | 2021-2022 | XIN26183 | Hebei |
| 8 | 2021-2022 | XIN26184 | Hebei |
| 9 | 2021-2022 | XIN26778 | Shaanxi |
| 10 | 2021-2022 | XIN26779 | Shaanxi |
| 11 | 2021-2022 | XIN27067 | Hebei |
| 12 | 2021-2022 | XIN27068 | Hebei |
| 13 | 2021-2022 | XIN27069 | Hebei |
| 14 | 2021-2022 | XIN28314 | Hebei |
| 15 | 2021-2022 | XIN28315 | Hebei |
| 16 | 2021-2022 | XIN28317 | Hebei |
| 17 | 2021-2022 | XIN28318 | Hebei |
| 18 | 2021-2022 | XIN28649 | Guangdong |
| 19 | 2021-2022 | ZJK20171001 | Hebei |
| 20 | 2021-2022 | ZJK20171002 | Hebei |
| 21 | 2021-2022 | ZJK20171003 | Hebei |
| 22 | 2021-2022 | ZJK20171005 | Hebei |
| 23 | 2021-2022 | ZJK20171006 | Hebei |
| 24 | 2021-2022 | ZJK20171007 | Hebei |
| 25 | 2021-2022 | ZJK20171008 | Hebei |
| 26 | 2021-2022 | ZJK20171009 | Hebei |
| 27 | 2021-2022 | ZJK20171010 | Hebei |
| 28 | 2021-2022 | ZJK20171011 | Hebei |
| 29 | 2021-2022 | ZJK20171012 | Hebei |
| 30 | 2021-2022 | ZJK20171013 | Hebei |
| 31 | 2021-2022 | ZJK20171014 | Hebei |
| 32 | 2021-2022 | ZJK20171015 | Hebei |
| 33 | 2021-2022 | ZJK20171016 | Hebei |
| 34 | 2021-2022 | ZJK20171017 | Hebei |
| 35 | 2021-2022 | ZJK20171018 | Hebei |
| 36 | 2021-2022 | ZJK20171019 | Hebei |
| 37 | 2021-2022 | ZJK20171020 | Hebei |
| 38 | 2021-2022 | ZJK20171021 | Hebei |
| 39 | 2021-2022 | ZJK20171022 | Hebei |
| 40 | 2021-2022 | ZJK20171023 | Hebei |
| 41 | 2021-2022 | ZJK20171024 | Hebei |
| 42 | 2021-2022 | ZJK20171025 | Hebei |
| 43 | 2021-2022 | ZJK20171026 | Hebei |
| 44 | 2021-2022 | ZJK20171027 | Hebei |
| 45 | 2021-2022 | ZJK20171028 | Inner Mongolia |
| 46 | 2021-2022 | ZJK20171029 | Inner Mongolia |
| 47 | 2022-2023 | ZJK20171030 | Inner Mongolia |
| 48 | 2021-2022 | ZJK20171031 | Inner Mongolia |
| 49 | 2022-2023 | ZJK20181001 | Shanxi |
| 50 | 2022-2023 | ZJK20181002 | Shanxi |
| 51 | 2022-2023 | ZJK20181003 | Shanxi |
| 52 | 2022-2023 | ZJK20181003B | Shanxi |
| 53 | 2022-2023 | ZJK20181004 | Shanxi |
| 54 | 2022-2023 | ZJK20181004B | Shanxi |
| 55 | 2022-2023 | ZJK20181005 | Hebei |
| 56 | 2022-2023 | ZJK20181006 | Hebei |
| 57 | 2022-2023 | ZJK20181006B | Hebei |
| 58 | 2022-2023 | ZJK20181007 | Hebei |
| 59 | 2022-2023 | ZJK20181008 | Shanxi |
| 60 | 2022-2023 | ZJK20181009 | Shanxi |
| 61 | 2022-2023 | ZJK20181010 | Shanxi |
| 62 | 2022-2023 | XIN09882 | Shandong |
| 63 | 2022-2023 | XIN24684 | Inner Mongolia |
| 64 | 2022-2023 | XIN28946 | Hebei |
| 65 | 2022-2023 | XIN28947 | Shanxi |
| 66 | 2022-2023 | XIN29471 | Hebei |
| 67 | 2022-2023 | XIN30208 | Inner Mongolia |
| 68 | 2022-2023 | XIN30209 | Shandong |
| 69 | 2022-2023 | XIN31919 | Hebei |
| Characteristics | Character code | Type of expression | Method of observation | States and code of expression |
|---|---|---|---|---|
| First leaf: shape of tip | char1 | PQ | VG | pointed(1)pointed to rounded(2)rounded(3) |
| Seedling: leaf color | char2 | PQ | VG | yellowish green(1)green(2)light purple(3)dark purple (4) |
| Seedling: leaf sheath color | char3 | PQ | VG | green(1)light purple(2)medium purple(3) |
| Seedling: leaf posture | char4 | PQ | VG | upright(1)semi-upright(2)spreading(3)drooping(4) |
| Seedling: anthocyanin coloration of pulvinus | char5 | PQ | VG | absent or weak(1)medium(2)strong(3) |
| Time of heading | char6 | QN | MG | very early(1)early(3)medium(5)late(7)very late(9) |
| Plant: leaf posture | char7 | PQ | VG | upright(1)semi-upright(2)spreading(3)drooping(4) |
| Panicle: length of bristles | char8 | QN | VG | short(3)medium(5)long(7) |
| Panicle: bristles color | char9 | PQ | VG | green(1)yellow(2)purple(3) |
| Anther: color | char10 | PQ | VG | white(1)yellow(2)brown(3) |
| The penultimate leaf: length of blade | char11 | QN | MS/MG | short(1)medium(3)long(5) |
| The penultimate leaf: width of blade | char12 | QN | MS/MG | narrow(1)medium(3)broad(5) |
| Panicle: color of glume | char13 | PQ | VG | yellowish green(1)green(2)red(3)light purple(4)medium purple(5) |
| Stem: length | char14 | QN | MS/MG | very short(1)short(3)medium(5)long(7)very long(9) |
| Stem: diameter | char15 | QN | MS/MG | narrow(3)medium(5)broad(7) |
| Plant: color | char16 | PQ | VG | yellow(1)green(2)light purple(3)medium purple(4) |
| Plant: number of elongated internodes | char17 | QN | MG | few(1)medium(3)many(5) |
| Plant: number of culms per panicle | char18 | QN | MS | few(1)medium(3)many(5) |
| Panicle: peduncle attitude | char19 | PQ | VG | erect(1) semi-erect(2)strong curve(3)claw(4) |
| Panicle: peduncle length | char20 | QN | MS | short(3)medium(5)long(7) |
| Panicle: type | char21 | PQ | VG | conical(1)spindle(2)cylindrical(3)club(4)duck mouth(5)cat foot(6)branched(7) |
| Panicle: length | char22 | QN | MG | very short(1)short(3)medium(5)long(7)very long(9) |
| Panicle: diameter | char23 | QN | MS | narrow(3)medium(5)broad(7) |
| Panicle: density | char24 | QN | VG | lax(1)lax to medium(2)medium(3)medium to dense(4)dense(5) |
| Panicle: single-grain number | char25 | QN | MG | very few(1)few(3)medium(5)many(7)very many(9) |
| Panicle: single panicle weight | char26 | QN | MS | very low(1)low(3)medium(5)high(7)very high(9) |
| Panicle: grain yield per panicle | char27 | QN | MS | low(1)medium(2)high(3) |
| 1000 grain weight | char28 | QN | MG | low(1)medium(2)high(3) |
| Grain: shape | char29 | PQ | VG | narrow ovate(1)medium ovate(2)circular(3) |
| Grain: color | char30 | PQ | VG | white(1)yellow(2)red(3)brown(4)grey(5)black(6) |
| Dehusked grain: color | char31 | PQ | VG | white(1)grey green(2)light yellow(3)medium yellow(4) |
| Endosperm: type | char32 | QL | VG | waxy(1)non-waxy(2) |
| Year | parameter | Chr.6(d) | Chr.8 | Chr.11(cm) | Chr.12(cm) | Chr.14(cm) | Chr.15(mm) | Chr.17 | Chr.18 | Chr.20(cm) | Chr.22(cm) | Chr.23(mm) | Chr.24 | Chr.25 | Chr.26(g) | Chr.27(%) | Chr.28(g) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2021 | Min | 52.00 | 2 | 32.38 | 2.43 | 48.32 | 6.10 | 12.80 | 1.00 | 9.65 | 8.275 | 17.20 | 2.00 | 10.00 | 6.96 | 19.06 | 2.28 |
| Max | 84.00 | 7 | 56.72 | 3.74 | 183.65 | 10.93 | 16.85 | 6.05 | 36.16 | 28.97 | 29.80 | 4.00 | 92.00 | 29.79 | 76.73 | 3.56 | |
| M | 66.11 | 4 | 41.74 | 2.90 | 105.65 | 8.48 | 15.08 | 2.38 | 23.06 | 22.51 | 25.02 | 3.49 | 50.38 | 15.61 | 61.09 | 2.90 | |
| SD | 7.63 | 1.25 | 4.99 | 0.27 | 32.79 | 1.08 | 0.96 | 1.05 | 6.50 | 4.15 | 2.79 | 0.55 | 18.56 | 4.89 | 11.89 | 0.29 | |
| CV | 11.54 | 31.25 | 11.95 | 9.31 | 31.03 | 12.74 | 6.37 | 44.12 | 28.19 | 18.44 | 11.15 | 15.76 | 36.84 | 31.33 | 19.46 | 10.00 | |
| 2022 | Min | 52.00 | 3 | 36.15 | 2.37 | 100.35 | 6.65 | 11.70 | 1.10 | 21.35 | 20.20 | 20.50 | 1.00 | 5.00 | 3.05 | 19.59 | 2.033 |
| Max | 81.00 | 6 | 70.82 | 4.59 | 212.95 | 10.93 | 19.15 | 4.40 | 46.55 | 36.50 | 37.30 | 4.00 | 117.00 | 34.85 | 93.23 | 3.92 | |
| M | 65.86 | 4.20 | 51.83 | 3.37 | 162.60 | 8.91 | 14.37 | 1.79 | 31.45 | 26.82 | 27.80 | 3.38 | 62.85 | 22.22 | 73.55 | 3.10 | |
| SD | 7.38 | 0.98 | 6.15 | 0.36 | 23.67 | 0.88 | 1.39 | 0.71 | 5.78 | 3.21 | 3.32 | 0.64 | 22.01 | 5.65 | 11.72 | 0.32 | |
| CV | 11.21 | 23.33 | 11.87 | 10.68 | 14.56 | 9.88 | 9.67 | 39.66 | 18.38 | 11.97 | 11.94 | 18.93 | 35.02 | 25.43 | 15.93 | 10.32 | |
| 2023 | Min | 48 | 3 | 32.66 | 2.76 | 117.30 | 6.41 | 11.20 | 1.00 | 20.08 | 15.72 | 20.30 | 1.00 | 74.00 | 16.59 | 70.80 | 2.29 |
| Max | 80 | 7 | 51.51 | 4.91 | 179.95 | 11.13 | 18.45 | 2.80 | 38.37 | 32.91 | 40.20 | 4.00 | 205.00 | 44.59 | 84.40 | 3.46 | |
| M | 62.54 | 4.38 | 45.58 | 3.51 | 141.46 | 8.39 | 13.62 | 1.34 | 28.56 | 25.26 | 28.76 | 3.08 | 112.04 | 23.08 | 76.91 | 2.93 | |
| SD | 8.01 | 1.31 | 4.11 | 0.51 | 18.31 | 1.20 | 1.61 | 0.52 | 5.45 | 3.72 | 4.76 | 0.78 | 35.77 | 6.12 | 4.03 | 0.31 | |
| CV | 12.81 | 29.91 | 9.02 | 14.53 | 12.94 | 14.30 | 11.82 | 38.81 | 19.08 | 14.73 | 16.55 | 25.32 | 31.93 | 26.52 | 5.24 | 10.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).