Submitted:
12 December 2024
Posted:
14 December 2024
You are already at the latest version
Abstract
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with Rhizobium bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability. These factors affect key processes, including rhizobia survival, nodule formation, and nitrogenase activity, ultimately determining the growth and productivity of legumes. This review synthesizes current knowledge on legume-rhizobium interactions under varying abiotic conditions. It highlights the impact of salinity and acidity in limiting nodule development, soil temperature in regulating microbial community dynamics, and moisture availability in modulating metabolic and hormonal responses during drought and waterlogging. Moreover, the role of essential nutrients, including nitrogen, phosphorus, potassium, and trace elements such as iron, molybdenum, and boron, in optimizing symbiosis is critically analyzed.
Keywords:
1. Introduction
2. Soil Salinity
3. Soil pH
4. Soil Temperature
5. Soil Moisture Content
6. Light
7. Nutrient’s Content in the Soil
8. Conclusions
Author Contributions
Data Availability Statement
Conflicts of Interest
References
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Çakor, Ö.; Uçarlo, C.; Tarhan, Ç.; Pekmez, M.; Tyrgut-Kara, N. Nutritional and health benefits of legumes and their distinctive genomic properties. Food Sci. Technol. 2019, 39, 1–12. [Google Scholar] [CrossRef]
- Ekholuenetale, M.; Tudeme, G.; Onikan, A.; Ekholuenetale, C.E. Socioeconomic inequalities in hidden hunger, undernutrition, and overweight among under-five children in 35 sub-Saharan Africa countries. J. Egypt Public Health Assoc. 2020, 95, 9. [Google Scholar] [CrossRef] [PubMed]
- Ibeanu, V.N.; Edeh, C.G.; Ani, P.N. Evidence-based strategy for prevention of hidden hunger among adolescents in a suburb of Nigeria. BMC Public Health. 2020, 20, 1683. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Pulido, M. I.; Sánchez-González, C.; Godos, J.; Speciani, A.; Galvano, F.; Grosso, G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutrition. 2017, 20, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Jach, M.E.; Sajnaga, E.; Ziaja, M. Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils. Biology. 2022, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Mejia, E.G.; Dia, V.P. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer and Metastasis Reviews. 2010, 29, 511–528. [Google Scholar] [CrossRef]
- Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef]
- Zambrowicz, A.; Timmer, M.; Polanowski, A.; Lubec, G.; Trziszka, T. Manufacturing of peptides exhibiting biological activity. J. Amino Acids. 2013, 44, 315–320. [Google Scholar] [CrossRef]
- Duranti, M. Grain legume proteins and nutraceutical properties. Fitoterapia. 2006, 77, 67–82. [Google Scholar] [CrossRef]
- Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The health benefits of sweet lupin seed flours and isolated proteins. J. Funct. Foods. 2015, 18, 550–563. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A. Legumes – use for nutritional and feeding purposes. J. Elementol. 2020, 25, 835–849. [Google Scholar] [CrossRef]
- Voisin, A.S.; Guéguen, J.; Huyghe, C.; Jeuffroy, M.H.; Magrini, M.B.; Meynard, J.M.; Mougel, C.; Pellerin, S.; Pelzer, E. Legumes for feed, food, biomaterials and bioenergy in Europe: A review. Agron. Sustain. Dev. 2014, 34, 361–380. [Google Scholar] [CrossRef]
- Meena, R.S.; Meena, V.S.; Meena, S.K.; Verma, J.P. The needs of healthy soils for a healthy world. Journal of Cleaner Production. 2015, 102, 560–561. [Google Scholar] [CrossRef]
- Deakin, W.J.; Broughton, W.J. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 2009, 7, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: an overview. Chem. biol. technol. agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Kocira, A.; Staniak, M.; Tomaszewska, M.; Kornas, R.; Cymerman, J.; Panasiewicz, K.; Lipińska, H. Legume cover crops as one of the elements of strategic weed management and soil quality improvement. A review. Agriculture. 2020, 10, 394. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front. sustain. food syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 969–989. [Google Scholar] [CrossRef]
- Martinez-Espinosa, R.M.; Cole, J.A.; Richardson, D.J.; Wartmough, N.J. Enzymology and ecology of the nitrogen cycle. Biochem. Soc. Trans. 2011, 39, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Podleśna, A. The process of N2 fixation by leguminous plants as a source of nitrogen for cultivated crops. Studia i Raporty IUNG-PIB, [in Polish]. 2018; 56, 71–85. [Google Scholar] [CrossRef]
- Wielbo, J.; Skorupska, A. Ewolucja układu symbiotycznego Rhizobium – rośliny motylkowate. Postępy Mikrobiologii, 2003; 42, 263–283. [Google Scholar]
- Oldroyd, G.E.; Dixon, R. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 2014, 26, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Krug, E.C.; Winstanley, D. The need for comprehensive and consistent treatment of the nitrogen cycle in nitrogen cycling mass balance studies: I. Terrestial nitrogen cycle. Sci. Total Environ. 2002, 293, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Oleńska, E. Asocjacja symbiotyczna roślin bobowatych z ryzobiami. In Różnorodność biologiczna – od komórki do ekosystemu. Funkcjonowanie roślin i grzybów. Środowisko-Eksperyment-Edukacja; Bajguz, A., Ciereszko, I.; Publisher: Polskie Towarzystwo Botaniczne, 2015; p. 187–200 [in Polish]; 2015. [Google Scholar]
- Hirsch, A.M. Development biology of legume nodulation. New Phytol. 1992, 122, 211–237. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.R.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. Agron. Sustain. Dev. 2012; 32, 329–364. [Google Scholar] [CrossRef]
- Martyniuk, S. The importance of biological fixation of atmospheric nitrogen in ecological agriculture. Int. J. Res. Appl. Sci. Eng. Technol, 2008; 53, 9–14. [Google Scholar]
- Lepetit, M.; Brouquisse, R. Control of the rhizobium–legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires interorgan systemic signaling. Front. Plant Sci. 2023, 14, 1114840. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, M.H.; Bagy, M.K.; El-enany, A.W.E.S.; Bashandy, S.R. Activation of Rhizobium tibeticum with flavonoids en-hances nodulation, nitrogen fixation, and growth of fenugreek (Trigonella foenumgraecum L.) grown in cobalt-polluted soil. Arch. Environ. Contam. Toxicol. 2014, 66, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alla, M.H.; Nafady, N.A.; Bashandy, S.R.; Hassan, A.A. Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere 2019, 10, 100148. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Abdel Wahab, A.M. Survival of Rhizobium leguminosarum biovar viceae subjected to heat, drought and salinity in soil. Biol. Plant. 1995, 37, 131–137. [Google Scholar] [CrossRef]
- Kocoń, A. Indicators of symbiotic N2 fixation depending on the varied nitrogen nutrition of faba beans. Fragm. Agron, [in Polish]. 1999; 2, 50–61. [Google Scholar]
- Catroux, G.; Hartmann, A.; Revellin, C. Trends in rhizobial inoculant production and use. Plant Soil, 2001, 230, 21–30. [Google Scholar] [CrossRef]
- Deaker, R.; Roughley, R. J.; Kennedy, I. R. Legume seed inoculation technology – A review. Soil Biol. Biochem. 2004, 36(8), 1275–1288. [Google Scholar] [CrossRef]
- Brzezińska, A.; Mrozek-Niećko, A. Effect of selected micronutrient seed fertilizers on the viability of Bradyrhizobium japonicum. Prog. Plant Prot. 2021, 61(1), 17–23. [Google Scholar]
- Sujkowska, M. The course of the infection process in the symbiotic system of leguminous plants - Rhizobium. Wiadomości Botaniczne 2009, 53(1/2), 35–53. [in Polish].
- Bernard, T.; Pocard, J. A.; Perroud, B.; Le Rudulier, D. Variations in the response of salt-stressed Rhizobium strains to betaines. Arch. Microbiol. 1986, 143, 359–364. [Google Scholar] [CrossRef]
- Gouffi, K.; Pica, N.; Pichereau, V.; Blanco, B. Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl. Environ. Microbiol. 1999, 65, 1491–1500. [Google Scholar] [CrossRef]
- Pereira, S.I. A.; Lima, A.I.G.; Figueira, E.M.A.P. Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy metal contamination: effect on protein expression. Appl. Soil Ecol. 2006, 33, 286–293. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Lin, M.-H.; Gresshoff, P.M. Regulation of legume nodulation by acidic growth conditions. Plant Signal. Behav. 2013, 8, e23426. [Google Scholar] [CrossRef] [PubMed]
- Dabessa, A.; Abebe, Z.; Bekele, S. Limitations and strategies to enhance biological nitrogen fixation in sub-humid tropics of Western Ethiopia. J. Agric. Biotech. Sustain. Dev. 2018, 10, 122–131. [Google Scholar] [CrossRef]
- Hawkins, J.P.; Oresnik, I.J. The rhizobium-legume symbiosis: co-opting successful stress management. Front. Plant Sci. 2022, 12, 796045. [Google Scholar] [CrossRef]
- Nakei, M.D.; Venkataramana, P.B.; Ndakidemi, P.A. Soybean-nodulating rhizobia: ecology, characterization, diversity, and growth promoting functions. Front. sustain. food syst. 2022, 6, 824444. [Google Scholar] [CrossRef]
- Lebrazi, S.; Fikri Benbrahim, K. Environmental stress conditions affecting the N2 fixing rhizobium-legume symbiosis and adaptation mechanisms. Afr. J. Microbiol. Res. 2014, 8, 4053–4061. [Google Scholar] [CrossRef]
- Arayangkcon, T.; Schomberg, H.H.; Weaver, R.W. Nodulation and N2 fixation of guar at high root temperature. Plant Soil. 1990, 126, 209–213. [Google Scholar] [CrossRef]
- Michiels, J.; Verreth, C.; Vanderleyden, J. Effects of temperature stress on bean nodulating Rhizobium strains. Appl. Environ. Microbiol. 1994, 60, 601994. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, M.D.A.; Damo, J.L.C. Symbiosis under abiotic stress and its challenges. In Symbiosis in nature. IntechOpen. 2023. [Google Scholar] [CrossRef]
- Duzan, H.M.; Zhou, X.; Souleimanov, A.; Smith, D.L. Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 2004, 55, 2641–2646. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Geng, J.-C.; Sha, X.-Y.; Zhao, Y.-X.; Hu, T.-M.; Yang, P.-Z. Effect of rhizobium symbiosis on low-temperature tolerance and antioxidant response in alfalfa (Medicago sativa L.). Frontiers in Plant Science. 2019, 10, 538. [Google Scholar] [CrossRef]
- Phadtare, S.; Inouye, M. The cold shock response. EcoSal Plus. 2008, 3, 33–45. [Google Scholar] [CrossRef]
- Pan, B.; Smith, O.L. Genistein and daidzein concentrations and contents in seedling roots of three soybean cultivars grown under three-foot zone temperatures. J. Agron. Crop Sci. 1998, 180, 77–82. [Google Scholar] [CrossRef]
- de Lira Juniora, M.; Limaa, A.S.T.; Arruda, J.R.F.; Smith, D.L. Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol. Biochem. 2005, 37, 235–239. [Google Scholar] [CrossRef]
- Chammakhi, C.; Boscari, A.; Pacoud, M.; Aubert, G.; Mhadhbi, H.; Brouquisse, R. Nitric oxide metabolic pathway in drought-stressed nodules of faba bean (Vicia faba L.). Int. J. Mol. Sci. 2022, 23, 13057. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Aragóon, R.; Palacios, J.M.; Ramírez-Parra, E. Rhizobial symbiosis promotes drought tolerance in Vicia sativa and Pisum sativum. Environ. Exp. Bot. 2023, 208, 105268. [Google Scholar] [CrossRef]
- Bogati, K.; Walczak, M. The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy. 2022, 12, 189. [Google Scholar] [CrossRef]
- Chieb, M.; Gachomo, E.W. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol. 2023, 23, 407. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Barbour, M.M.; Brendel, O.; Cabrera, H.M.; Carriquí, M.; Díaz-Espejo, A.; Douthe, C.; Dreyer, E.; Ferrio, J.P.; Gago, J.; Gallé, A.; Galmés, J.; Kodama, N.; Medrano, H.; Niinemets, Ü.; Peguero-Pina, J.J.; Pou, A.; Ribas-Carbó, M.; Tomás, M.; Tosens, T.; Warren, C.R. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 2012, 193-194, 70–84. [Google Scholar] [CrossRef]
- Miransari, M.; Riahi, H.; Eftekhar, F.; Minaie, A.; Smith, D. L. Improving soybean (Glycine max L.) N2 fixation under stress. J. Plant Growth Regul., 2013, 32, 909–921. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Cope, K.R. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes. J Exp Bot. 2021, 72, 5285–5299. [Google Scholar] [CrossRef]
- de Freitas, I.C.; Ferreira, E.A.; Alves, M.A.; de Oliveira, J.C.; Frazão, L.A. Growth, nodulation, production, and physiology of leguminous plants in integrated production systems. Agrosyst Geosci Environ 2023, 6, e20343. [Google Scholar] [CrossRef]
- Furlan, A.; Llanes, A.; Luna, V.; Castro, S. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-bradyrhizobium sp. Int. Sch. Res. Notices. 2012, 318083. [Google Scholar] [CrossRef]
- Kasper, S.; Christoffersen, B.; Soti, P.; Racelis, A. Abiotic and biotic limitations to nodulation by leguminous cover crops in south Texas. Agric. 2019, 9, 209. [Google Scholar] [CrossRef]
- Herrmann, L.; Chotte, J.L.; Thuita, M.; Lesueur, D. Effects of cropping systems, maize residues application and N fertilization on promiscuous soybean yields and diversity of native rhizobia in Central Kenya. Pedobiologia (Jena) 2014, 57, 75–85. [Google Scholar] [CrossRef]
- McCulloch, L. A.; Piotto, D.; Porder, S. Drought and soil nutrients effects on symbiotic nitrogen fixation in seedlings from eight Neotropical legume species. Biotropica. 2021, 53, 703–713. [Google Scholar] [CrossRef]
- Nishida, H.; Suzaki, T. Nitrate-mediated control of root nodule symbiosis. Curr. Opin. Plant Biol. 2018, 44, 129–136. [Google Scholar] [CrossRef]
- Zargar, S.M.; Gupta, N.; Nazir, M.; Mahajan, R.; Malik, F.A.; Sofi, N.R.; Shikari, A.B.; Salgotra, R.K. Impact of drought on photosynthesis: molecular perspective. Plant Gene 2017, 11, 154–159. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Raizada, M.N. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol Biochem 2017, 105, 177–196. [Google Scholar] [CrossRef]
- Lumactud, R.A.; Dollete, D.; Liyanage, D.K.; Szczyglowski, K.; Hill, B.; Thilakarathna, M.S. The effect of drought stress on nodulation, plant growth, and nitrogen fixation in soybean during early plant growth. J Agron Crop Sci 2023, 209, 345–354. [Google Scholar] [CrossRef]
- Marquez-Garcia, B.; Shaw, D.; Cooper, J.W.; Karpinska, B.; Quain, M.D.; Makgopa, E.M.; Kunert, K.; Foyer, C.H. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max). Ann Bot. 2015, 116, 497–510. [Google Scholar] [CrossRef]
- Michalek, S. The impact of drought on nodulation, root growth, and shoot development in Polish soybean varieties. Zesz. Probl. Postęp. Nauk Rol. 2004, 496, 267–274. [in Polish]. [Google Scholar]
- Sadeghipour, O.; Abbasi, S. Soybean Response to Drought and Seed Inoculation. World Appl. Sci. J. 2012, 17, 55–60. [Google Scholar]
- Golińska, B.; Mądrzak, C. Competition between rhizobial strains nodulating leguminous plants. Biotechnologia, 1999, 3, 106–121. [in Polish]. [Google Scholar]
- Robson, R. L.; Postgate, J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 1980, 34, 183–207. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; De Lara-Del Rey, I.A.; Magadlela, A. Shining a light on symbiosis: N-fixing bacteria boost legume growth under varied light conditions. Agriculture. 2024, 14, 164. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Haichar, F.E.Z.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biology and Biochemistry. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- de Bruijn, F.J. Biological nitrogen fixation. in Principles of plant-microbe interactions. In Microbes for sustanaible agriculture. Cham: Springer International Publishing. Switzerland. 2015, 215–224. [CrossRef]
- Saturno, D.F.; Cerezini, P.; Moreira da Silva, P.M.; Oliveira, A.B.; de Oliveira, M.C.N.; de Hungria, M.; Noguiera, M.A. Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. J. Plant Nutr. 2017, 40, 1690–1701. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Ramakrishnan, V.V.G.A. Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: a critical review. J. Pollut. Eff. Cont. 2015, 3, 1–28. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Al-Amri, S.M.; El-Enany, A.-W.E. Enhancing rhizobium–legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture. 2023, 13, 2092. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Xiao, J.; Tang, L.; Zheng, Y. Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean. Scientific Reports. 2019, 9, 4818. [Google Scholar] [CrossRef] [PubMed]
- Ralston, E.J.; Imsande, J. Nodulation of hydroponically grown soybean plants and inhibition of nodule development by nitrate. J. Exp. Bot. 1983, 34, 1371–1378. [Google Scholar] [CrossRef]
- Ono, Y.; Fukasawa, M.; Sueyoshi, K.; Ohtake, N.; Sato, T.; Tanabata, S.; Toyota, R.; Higuchi, K; Saito, A. ; Ohyama, T. Application of nitrate, ammonium, or urea changes the concentrations of ureides, urea, amino acids and other metabolites in xylem sap and in the organs of soybean plants (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2021, 22, 4573. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, C.; Liu, H.; Lyu, X.; Xiao, F.; Zhao, S.; Ma, C.; Yan, C.; Liu, Z.; Li, H.; Wang, X.; Gong, Z. Systemic regulation of nodule structure and assimilated carbon distribution by nitrate in soybean. Front. Plant Sci. 2023, 14, 1101074. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhang, C.; Huang, Y.; Chen, H.; Yuan, S.; Zhou, X. Characteristics and research progress of legume nodule senescence. Plants. 2021, 10, 1103. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Specht, J.E.; Cassman, K.G.; Walters, D.T.; Weiss, A.; Dobermann, A. Growth and nitrogen fixation in high-yielding soybean: Impact of nitrogen fertilization. J. Agron. 2009, 101(4), 958–970. [Google Scholar] [CrossRef]
- NIu, Y.F.; Chai, R.S.; Jin, G.L.; Wang, H.; Tang, C.X.; Zhang, Y.S. Responses of root architecture development to low phosphorus availability: a review. Ann. Bot. 2013, 112, 391–408. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhao, J.; Tian, J.; Chen, L.; Sun, Z.; Guo, Y.; Lu, X.; Gu, M.; Xu, G.; Liao, H. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol. 2012, 159, 1634–1643. [Google Scholar] [CrossRef]
- Vauclare, P.; Bligny, R.; Gout, E.; Widmer, F. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C-and 31P-nuclear magnetic resonance spectroscopy study. FEMS Microbiology Letters 2013, 343, 49–56. [Google Scholar] [CrossRef]
- Chen, L.; Qin, L.; Zhou, L.; Li, X.; Chen, Z.; Sun, L.; Wang, W.; Lin, Z.; Zhao, J.; Yamaji, N.; Ma, J.F.; Gu, M.; Xu, G.; Liao, H.A. Nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytol. 2019, 221, 2013–2025. [Google Scholar] [CrossRef]
- Pueyo, J.J.; Quiñones, M.A.; de la Peña, T.C.; Fedorova, E.E.; Lucas, M.M. Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Front. Plant Sci. 2021, 12, 644218. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, Z.; Zhou, H.; He, Y.; Liu, Y.; Lai, Y.; Zheng, J.; Li, X.; Liao, H. GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. Plant J. 2021, 107, 525–543. [Google Scholar] [CrossRef]
- Zhong, Y.; Tian, J.; Li, X.; Liao, H. Cooperative interactions between nitrogen fixation and phosphorus nutrition in legumes. New Phytologist. 2023, 237, 734–745. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Zhang, Z.; Yang, A.; Liu, D. Effect of phosphorus supply levels on nodule nitrogen fixation and nitrogen accumulation in soybean (Glycine max L.). Agronomy. 2022, 12, 2802. [Google Scholar] [CrossRef]
- Sulieman, S.; Tran, L.S.P. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 2015, 239, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Korir, H.; Mungai, N.W.; Thuita, M.; Hamba, Y.; Masso, C. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 2017, 8, 141. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, J.; Liao, H.; He, Y.; Nian, H.; Hu, Y.; Qiu, L.; Dong, Y.; Yan, X. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin. Sci. Bull. 2004, 49, 1611–1620. [Google Scholar] [CrossRef]
- Kuang, R.; Liao, H.; Yan, XL.; Dong, Y. Phosphorus and nitrogen interactions in field-grown soybean as related to genetic attributes of root morphological and nodular traits. J. Integr. Plant Biol. 2005, 47, 549–559. [Google Scholar] [CrossRef]
- Yeremko, L.; Hanhur, V.; Staniak, M. Effect of mineral fertilization and seed inoculation with microbial preparation on seed and protein yield of pea (Pisum sativum L.). Agronomy. 2024, 14, 1004. [Google Scholar] [CrossRef]
- Domínguez-Ferreras, A.; Muñoz, S.; Olivares, J.; Soto, M.J.; Sanjuan, J. Role of potassium uptake systems in Sinorhizobium melilotу osmoadaptation and symbiotic performance. J. Bacteriol. 2009, 191, 2133–2143. [Google Scholar] [CrossRef]
- Saleem, M.; Elahi, E.; Gandahi, A.W.; Bhatti, S.M.; Saleem, M.B.; Ibrahim, H.; Ali, M. Effect of sulphur application on growth, oil content and yield of sunflower. Sarhad J. Agric. 2019, 35, 1198–1203. [Google Scholar] [CrossRef]
- Rawal, V.K. Role of sulphur in legume crops. J. Pharm. Innov. 2022, 11, 2127–2131. [Google Scholar]
- Becana, M.; Wienkoop, S.; Matamoros, M.A. Sulfur transport and metabolism in legume root nodules. Front. Plant Sci. 2018, 9, 1434. [Google Scholar] [CrossRef]
- Speck, J.J.; James, E.K.; Sugawara, M.; Sadowsky, M.J.; Gyaneshwar, P. An alkane sulfonate monooxygenase is required for symbiotic nitrogen fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110T. App. Environ. Microbiol. 2019, 85, e01552–19. [Google Scholar] [CrossRef]
- Dawar, R.; Karan, S.; Bhardwaj, S.; Meena, D.K.; Padhan, S.R.; Reddy, K.S.; Bana, R.S. Role of sulphur fertilization in legume crops: a comprehensive review. Int. J. Plant Sci. 2023, 35, 718–727. [Google Scholar] [CrossRef]
- Barczak, B. Sulfur as a nutrient shaping the yield and quality of selected cultivated crops.. Rozprawy nr 144, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz, 2010, pp. 131. [in Polish].
- Pacyna, S.; Schulz, M.; Scherer, H.W. Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (Vicia faba minor L.). Biol. Fertil. Soils 2006, 42, 324–329. [Google Scholar] [CrossRef]
- Miwa, H.; Sun, J.; Oldroyd, G.E.D.; Downie, J.A. Analysis of nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus. Mol. plant-microb. interact. 2006, 19, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Capoen, W.; Den Herder, J.; Sun, J.; Verplancke, C.; De Keyser, A.; De Rycke, R.; Goormachtig, S.; Oldroyd, G.; Holsters, M. Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. Plant Cell. 2009, 21, 1526–1540. [Google Scholar] [CrossRef]
- Cao, H.-R.; Peng, W.-T.; Nie, M.-M.; Bai, S.; Chen, C.-Q.; Liu, Q.; Guo, Z.-L.; Liao, H.; Chen, Z.-H. Carbon-nitrogen trading in symbiotic nodules depends on magnesium import. Curr. Biol. 2022, 32, 4337–4349.e5. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Winkler, W.C. Magnesium-sensing riboswitches in bacteria. RNA Biology. 2010, 7, 77–83. [Google Scholar] [CrossRef]
- Peng, W.T.; Zhang, L.D.; Zhou, Z.; Fu, C.; Chen, Z.C.; Liao, H. Magnesium promotes root nodulation through facilitation of carbohydrate allocation in soybean. Physiol. Plant. 2018, 163, 372–385. [Google Scholar] [CrossRef]
- Brear, E.M.; Day, D.A.; Smith, P.M.S. Iron: an essential micronutrient for the legume–rhizobium symbiosis. Front. Plant Sci. 2013, 4, 352. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, Z.; Wu, W.; Ling, H.-Q.; Kong, D. Iron in the symbiosis of plants and microorganisms. Plants. 2023, 12, 1958. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Nath, R. Prospects of molybdenum fertilization in grain legumes – A review. J. Plant Nutr. 2022, 45, 1425–1440. [Google Scholar] [CrossRef]
- Bittner, F. Molybdenum metabolism in plants and crosstalk to iron. Front. Plant Sci. 2014, 5, 28. [Google Scholar] [CrossRef]
- Bochniarz, J.; Bochniarz, M.; Lenartowicz, W. Effect of potassium and nitrogen fertilization on productivity of faba bean (Vicia faba minor) grown for seeds. Pam. Pul. [in Polish]. 1987; 89. [Google Scholar]
- Zhou, J.; Sun, X.; Chen, C.; Chen, J. The effect of molybdenum fertilizer on the growth of grass-legume mixtures related to symbiotic rhizobium. Agronomy. 2023, 13, 495. [Google Scholar] [CrossRef]
- Delgado, M.J.; Bedmar, E.J.; Downie, J.A. Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv. Microb. Physiol. 1998, 40, 191–231. [Google Scholar] [CrossRef] [PubMed]
- Carranca, C.; De Varennes, A.; Rolston, D. Biological nitrogen fixation by fababean, pea and chickpea, under field conditions, estimated by the 15N isotope dilution technique. Eur. J. Agron. 1999, 10(1), 49–56. [Google Scholar] [CrossRef]
- Redondo-Nieto, M.; Wilmort, A.R.; El-Hamdaoui, A.; Bonilla, I.; Bolaños, L. Relationship between boron and calcium in the N2-fixing legume–rhizobia symbiosis. Plant Cell Environ. 2003, 26, 1905–1915. [Google Scholar] [CrossRef]
- Fabiano, C.C.; Tezotto, T.; Favarin, J.L.; Polacco, J.C.; Mazzafera, P. Essentiality of nickel in plants: a role in plant stresses. Frontiers in Plant Science. 2015, 6, 754. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Q.; Zhang, D.-X.; Zhang, Z.-Y.; Xu, A.; Jiang, Y.-L.; Chen, Z.-C. Metal nutrition and transport in the process of symbiotic nitrogen fixation. Plant Commun. 2024, 5, 100829. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wei, X.; Ling, J.; Chen, J. Cobalt: an essential micronutrient for plant growth? Front. Plant Sci. 2021, 12, 768523. [Google Scholar] [CrossRef]
- Ma, J.; Song, Z.; Yang, J.; Wang, Y.; Han, H. (2021). Cobalt ferrite nanozyme for efficient symbiotic nitrogen fixation via regulating reactive oxygen metabolism. Environmental Science: Nano. 2021, 8, 188–203. [Google Scholar] [CrossRef]
- León-Mediavilla, J.; Senovilla, M.; Montiel, J.; Gil-Díez, P.; Saez, Á.; Kryvoruchko, I.S.; Reguera, M.; Udvardi, M.K.; Imperial, J.; González-Guerrero, M. MtMTP2-facilitated zinc transport into intracellular compartments is essential for nodule development in Medicago truncatula. Front. Plant Sci. 2018, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M. R.; White, P. J.; Hammond, J. P.; Zelko, I.; Lux, A. (2007). Zinc in plants. New Phytologist. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, G.W. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust. J. Exp. Agric. 2001, 41, 417–433. [Google Scholar] [CrossRef]
- Weisany, W.; Raei, Y.; Allahverdipoor, K. H. Role of some of mineral nutrients in biological nitrogen fixation. Bull. Env. Pharmacol. Life Sci. 2013, 2, 77–84. [Google Scholar]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. (2020). Manganese in plants: from acquisition to subcellular allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.M.; Ludden, P.W. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu. Rev. Microbiol. 2008, 62, 93–111. [Google Scholar] [CrossRef]
- Tripathi, R.; Tewari, R.; Singh, K.P.; Keswani, C.; Minkina, T.; Srivastava, A.K.; De Corato, U.; Sansinenea, E. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Front. Plant Sci. 2022, 13, 3116. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 756120. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.; Peiter, E.; Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 2018, 69, 909–954. [Google Scholar] [CrossRef] [PubMed]
- Bethelenfalvay, G.; Franson, R. Manganese toxicity alleviated by mycorrhizae in soybean. J. Plant Nutr. 1989, 12(8), 953–970. [Google Scholar] [CrossRef]
- Nogueira, M.; Magalhaes, G.; Cardoso, E. Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J. Plant Nutr. 2007, 27(1), 141–156. [Google Scholar] [CrossRef]
- El-Jaoual, T.; Cox, D.A. Manganese toxicity in plants. J. Plant Nutr. 2008, 21(2), 353–386. [Google Scholar] [CrossRef]
- Sanchez-Pardo, B.; Fernandez-Pascual, M.; Zornoza, P. Copper microlocalisation, ultrastructural alterations and antioxidant responses in the nodules of white lupin and soybean plants grown under conditions of copper excess. Environ. Exp. Botany 2012, 84, 52–60. [Google Scholar] [CrossRef]
- Swędrzyńska, D.; Sawicka, A. The effect of copper on bacteria of the genus Azospirillum in the rhizosphere of maize and wheatseedlings. Water-Environ.-Rural Areas 2010, 10(2), 167–178.

| Type | Species | Host-legume |
|---|---|---|
| Rhizobium |
R. leguminosarum bv. viciae R. leguminosarum bv. phaseoli R. leguminosarum bv. trifolii R. leguminosarum bv. etli |
vetch, peas, lentils, chickling vetch beans clover beans, common bean |
| Bradyrhizobium |
B. japonicum B. elkani |
soybean common bean |
| Sinorhizobium |
S. meliloti S. fredii |
melilot, alfalfa, fenugreek soybean, common bean |
| Mezorhizobium |
M. loti M. huakuii |
lotus, lupin Chinese milk vetch |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
