Submitted:
28 November 2024
Posted:
28 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Characteristics of Honey Robbing
2.1. Identification of Honey Robbing
2.2. Time and Scope of Occurrence of Honey Robbing
3. Causes of Honey Robbing
3.1. Environmental Factors
3.2. Colony Management
3.3. Biological Factors
4. Impact of Honey Robbing on Beekeeping
4.1. Impact on the Robbed Colony
4.2. Impact on the Robbing Colony
4.3. Impact on the Beekeeping Industry
5. Strategies to Prevent and Manage Honey Robbing
5.1. Improving Colony Management Practices
5.2. Strengthening Resource Security
5.3. Adjusting the Structure of the Colony
5.4. Introducing Preventive Measures After Honey Robbing
6. Research Progress on Honey Robbing
6.1. Hotspots and Challenges in Honey Robbing Research
6.2. Possible Future Research Directions
7. Conclusions
Author Contributions
Funding
Ethics Approval and Consent to Participate
Data Availability Statement
Conflicts of Interest
References
- Ryan Willingham, J.K., and James Ellis. Robbing Behavior in Honey Bees. EDIS 2021, ENY-163, 163. [CrossRef]
- Rittschof, C.C.; Nieh, J.C. Honey robbing: could human changes to the environment transform a rare foraging tactic into a maladaptive behavior? Curr Opin Insect Sci 2021, 45, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Garbuzov, M.; Balfour, N.J.; Shackleton, K.; Al Toufailia, H.; Scandian, L.; Ratnieks, F.L.W. Multiple methods of assessing nectar foraging conditions indicate peak foraging difficulty in late season. Insect Conserv Diver 2020, 13, 532–542. [Google Scholar] [CrossRef]
- Grume, G.J.; Biedenbender, S.P.; Rittschof, C.C.; Foraging, Q.; Robbing, S. Honey robbing causes coordinated changes in foraging and nest defence in the honey bee, Apis mellifera. Animal Behaviour 2021, 173, 53–65. [Google Scholar] [CrossRef]
- Seeley, T.D.; Seeley, R.H.; Akratanakul, P. Colony defense strategies of the honeybees in Thailand. Ecological Monographs 1982, 52, 43–63. [Google Scholar] [CrossRef]
- Paar, J.; Oldroyd, B.P.; Huettinger, E.; Kastberger, G. Drifting of workers in nest aggregations of the giant honeybee. Apidologie 2002, 33, 553–561. [Google Scholar] [CrossRef]
- von Zuben, L.G.; Schorkopf, D.L.P.; Elias, L.G.; Vaz, A.L.L.; Favaris, A.P.; Clososki, G.C.; Bento, J.M.S.; Nunes, T.M. Interspecific chemical communication in raids of the robber bee (Lestrimelitta limao). Insectes Sociaux 2016, 63, 339–347. [Google Scholar] [CrossRef]
- Free, J.B. The behaviour of robber honeybees. Behaviour 1954, 7, 233–240. [Google Scholar] [CrossRef]
- Muszynska, J. Characterization of robber bees. Pszczelnicze Zeszyty Naukowe 1993, 37, 3–9. [Google Scholar]
- Tashakkori, R.; Buchanan, G.B.; Craig, L.M.; Ieee. Analyses of Audio and Video Recordings for Detecting a Honey Bee Hive Robbery. In Proceedings of the Annual IEEE SoutheastCon Conference, Electr Network, 2020, 2020; pp. 1-6.
- Okada, I. Observations on the robbing behaviour of honeybees, with special reference to European and Japanese species. Honeybee Science 1983, 4, 29–36. [Google Scholar]
- Butler, C.G.F., J. B. The behaviour of worker honeybees at the hive entrance. Behaviour 1951, 4, 262–291. [Google Scholar] [CrossRef]
- Couvillon, M.J.; Schürch, R.; Ratnieks, F.L.W. Waggle Dance Distances as Integrative Indicators of Seasonal Foraging Challenges. Plos One 2014, 9, e93495. [Google Scholar] [CrossRef] [PubMed]
- Descamps, C.; Quinet, M.; Jacquemart, A.-L. Climate change–induced stress reduce quantity and alter composition of nectar and pollen from a bee-pollinated species (Borago officinalis, Boraginaceae). Frontiers in Plant Science 2021, 12, 755843. [Google Scholar] [CrossRef] [PubMed]
- Schulz, D.J.; Huang, Z.Y.; Robinson, G.E. Effects of colony food shortage on behavioral development in honey bees. Behavioral Ecology and Sociobiology 1998, 42, 295–303. [Google Scholar] [CrossRef]
- Theisen-Jones, H.; Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 2016, 93, 90–97. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Zhang, S.W.; Wang, Z.L.; Yan, W.Y.; Zeng, Z.J. Cross-modal interaction between visual and olfactory learning in Apis cerana. Journal of Comparative Physiology A 2014, 200, 899–909. [Google Scholar] [CrossRef]
- Samson-Robert, O.; Labrie, G.; Chagnon, M.; Fournier, V. Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. Plos One 2014, 9, e108443. [Google Scholar] [CrossRef] [PubMed]
- Leska, A.; Nowak, A.; Nowak, I.; Górczynska, A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021, 26, 5080. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, T.M.; Calla, B.; Berenbaum, M.R.; Stone, C.M. Specific phytochemicals in floral nectar up-regulate genes involved in longevity regulation and xenobiotic metabolism, extending mosquito life span. Ecol Evol 2021, 11, 8363–8380. [Google Scholar] [CrossRef]
- Hernández, I.G.; Palottini, F.; Macri, I.; Galmarini, C.R.; Farina, W.M. Appetitive behavior of the honey bee Apis mellifera in response to phenolic compounds naturally found in nectars. Journal of Experimental Biology 2019, 222, jeb189910. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, X.J.; Zhu, X.J.; Chen, L.; Zhou, S.J.; Huang, Z.Y.; Zhou, B.F. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees. Plos One 2016, 11, e0154547. [Google Scholar] [CrossRef]
- Ostwald, M.M.; da Silva, C.R.B.; Seltmann, K.C. How does climate change impact social bees and bee sociality? J Anim Ecol 2024, 93, 1610–1621. [Google Scholar] [CrossRef] [PubMed]
- Climate change impacts on honeybee spread and activity: A scientific review. Chelonian Research Foundation 2023, 18, 531–554. [CrossRef]
- Buchori, D.; Rizali, A.; Larasati, A.; Hidayat, P.; Ngo, H.; Gemmil-Herren, B. Natural habitat fragments obscured the distance effect on maintaining the diversity of insect pollinators and crop productivity in tropical agricultural landscapes. Heliyon 2019, 5, e01425. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Brennan, G.L.; Lowe, A.; Creer, S.; Ford, C.R.; de Vere, N. Shifts in honeybee foraging reveal historical changes in floral resources. Communications Biology 2021, 4, 37. [Google Scholar] [CrossRef] [PubMed]
- Neumüller, U.; Burger, H.; Schwenninger, H.R.; Hopfenmüller, S.; Krausch, S.; Weiss, K.; Ayasse, M. Prolonged blooming season of flower plantings increases wild bee abundance and richness in agricultural landscapes. Biodivers Conserv 2021, 30, 3003–3021. [Google Scholar] [CrossRef]
- Adams, E.C. How to become a beekeeper: learning and skill in managing honeybees. Cultural Geographies 2018, 25, 31–47. [Google Scholar] [CrossRef]
- Sperandio, G.; Simonetto, A.; Carnesecchi, E.; Costa, C.; Hatjina, F.; Tosi, S.; Gilioli, G. Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. Sci Total Environ 2019, 696, 133795. [Google Scholar] [CrossRef]
- Vanengelsdorp, D.; Evans, J.D.; Donovall, L.; Mullin, C.; Frazier, M.; Frazier, J.; Tarpy, D.R.; Hayes, J.; Pettis, J.S. "Entombed Pollen": A new condition in honey bee colonies associated with increased risk of colony mortality. J Invertebr Pathol 2009, 101, 147–149. [Google Scholar] [CrossRef]
- Steinhauer, N.; VanEngelsdorp, D.; Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci Total Environ 2021, 753, 141629. [Google Scholar] [CrossRef]
- DeGrandi-Hoffman, G.; Collins, A.; Martin, J.H.; Schmidt, J.O.; Spangler, H.G. Nest defense behavior in colonies from crosses between africanized and European honeybees (Apis mellifera L) (Hymenoptera: Apidae). Journal of Insect Behavior 1998, 11, 37–45. [Google Scholar] [CrossRef]
- Collins, A.M.; Rinderer, T.E. Genetics of defensive behavior I; 1991; pp. 309-328.
- Ma, C.; Zhang, L.C.; Feng, M.; Fang, Y.; Hu, H.; Han, B.; Meng, L.F.; Li, J.K. Metabolic profiling unravels the effects of enhanced output and harvesting time on royal jelly quality. Food Res Int 2021, 139, 109974. [Google Scholar] [CrossRef] [PubMed]
- Cronin, A.L.; Federici, P.; Doums, C.; Monnin, T. The influence of intraspecific competition on resource allocation during dependent colony foundation in a social insect. Oecologia 2012, 168, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Atallah, J.; Levine, J.D. Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev 2017, 92, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Alaux, C.; Sinha, S.; Hasadsri, L.; Hunt, G.J.; Guzmán-Novoa, E.; DeGrandi-Hoffman, G.; Uribe-Rubio, J.L.; Southey, B.R.; Rodriguez-Zas, S.; Robinson, G.E. Honey bee aggression supports a link between gene regulation and behavioral evolution. Proceedings of the National Academy of Sciences of the United States of America 2009, 106, 15400–15405. [Google Scholar] [CrossRef] [PubMed]
- Barron, A.B. Death of the bee hive: understanding the failure of an insect society. Curr Opin Insect Sci 2015, 10, 45–50. [Google Scholar] [CrossRef]
- Kuszewska, K.; Woyciechowski, M. Risky robbing is a job for short-lived and infected worker honeybees. Apidologie 2014, 45, 537–544. [Google Scholar] [CrossRef]
- Lucas, C.; Ben-Shahar, Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021, 35, 168–178. [Google Scholar] [CrossRef]
- Charbonneau, D.; Dornhaus, A. Workers 'specialized' on inactivity: Behavioral consistency of inactive workers and their role in task allocation. Behavioral Ecology and Sociobiology 2015, 69, 1459–1472. [Google Scholar] [CrossRef]
- Rittschof, C.C.; Vekaria, H.J.; Palmer, J.H.; Sullivan, P.G. Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee (Apis mellifera). Journal of Neuroscience Research 2019, 97, 991–1003. [Google Scholar] [CrossRef]
- Nouvian, M.; Reinhard, J.; Giurfa, M. The defensive response of the honeybee. Journal of Experimental Biology 2016, 219, 3505–3517. [Google Scholar] [CrossRef] [PubMed]
- Peck, D.T.; Seeley, T.D. Mite bombs or robber lures? The roles of drifting and robbing in transmission from collapsing honey bee colonies to their neighbors. Plos One 2019, 14, e0218392. [Google Scholar] [CrossRef] [PubMed]
- Kulhanek, K.; Garavito, A.; VanEngelsdorp, D. Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees. Sci Rep-Uk 2021, 11, 7092. [Google Scholar] [CrossRef] [PubMed]
- Arun Kumar, A.K.; Sharma, S.K. Impact of robbing and its management in Apis mellifera L. colonies during toria (Brassica campestris var. toria) bloom. Pest Management and Economic Zoology 2005, 13, 43–47. [Google Scholar]
- El Agrebi, N.; Steinhauer, N.; Tosi, S.; Leinartz, L.; De Graaf, D.C.; Saegerman, C. Risk and protective indicators of beekeeping management practices. Sci Total Environ 2021, 799, 149381. [Google Scholar] [CrossRef] [PubMed]
- Tavárez, H.S., Sara M. Galbraith, and Nilsa A Bosque Pérez. La selección de lugares por apicultores de Costa Rica es influenciada por el uso de terreno, sus recursos florales y la calidad de la carretera. The Journal of Agriculture of the University of Puerto Rico 2018, 102 (1-2), 21-37.
- Egerer, M.; Kowarik, I. Confronting the Modern Gordian Knot of Urban Beekeeping. Trends Ecol Evol 2020, 35, 956–959. [Google Scholar] [CrossRef]
- Dynes, T.L.; Berry, J.A.; Delaplane, K.S.; Brosi, B.J.; de Roode, J.C. Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. Plos One 2019, 14, e0216286. [Google Scholar] [CrossRef]
- Sammataro, D.; Weiss, M. Comparison of productivity of colonies of honey bees, Apis mellifera, supplemented with sucrose or high fructose corn syru. J Insect Sci 2013, 13, 19. [Google Scholar] [CrossRef]
- Gilioli, G.; Sperandio, G.; Hatjina, F.; Simonetto, A. Towards the development of an index for the holistic assessment of the health status of a honey bee colony. Ecol Indic 2019, 101, 341–347. [Google Scholar] [CrossRef]
- Tarpy, D.R.; Hatch, S.; Fletcher, D.J.C. The influence of queen age and quality during queen replacement in honeybee colonies. Animal Behaviour 2000, 59, 97–101. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, K.A.; Khan, S.A.; Ghramh, H.A.; Gul, A. Comparative assessment of various supplementary diets on commercial honey bee (Apis mellifera) health and colony performance. Plos One 2021, 16, e0258430. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Escudero, A.; Maria Iriondo, J.; Martinez-Vilalta, J.; Valladares, F. Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology 2012, 18, 797–805. [Google Scholar] [CrossRef]
- Nouvian, M.; Deisig, N.; Reinhard, J.; Giurfa, M. Seasonality, alarm pheromone and serotonin: insights on the neurobiology of honeybee defence from winter bees. Biol Letters 2018, 14, 20180337. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, L.; Thamm, M.; Scheiner, R. Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera). Journal of Insect Physiology 2018, 106, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Hasenjager, M.J.; Franks, V.R.; Leadbeater, E. From dyads to collectives: a review of honeybee signalling. Behavioral Ecology and Sociobiology 2022, 76, 124. [Google Scholar] [CrossRef]
- Seeley, T.D. The tremble dance of the honey bee: message and meanings. Behavioral Ecology and Sociobiology 1992, 31, 375–383. [Google Scholar] [CrossRef]
- Lam, C.; Li, Y.L.; Landgraf, T.; Nieh, J. Dancing attraction: followers of honey bee tremble and waggle dances exhibit similar behaviors. Biol Open 2017, 6, 810–817. [Google Scholar] [CrossRef]
- Nieh, J.C. A Negative Feedback Signal That Is Triggered by Peril Curbs Honey Bee Recruitment. Current Biology 2010, 20, 310–315. [Google Scholar] [CrossRef]
- Phan, P.T.; Rankin, E.E.W.; Purcell, J. Formica francoeuri responds to pheromones and defensive chemical cues of social bees. Insectes Sociaux 2020, 67, 547–556. [Google Scholar] [CrossRef]
- Lischinsky, J.E.; Lin, D. Neural mechanisms of aggression across species. Nature Neuroscience 2020, 23, 1317–1328. [Google Scholar] [CrossRef]
- Singh, R.; Gobrogge, K. Aggression Unleashed: Neural Circuits from Scent to Brain. Brain Sci 2024, 14, 794. [Google Scholar] [CrossRef]
- Rittschof, C.C.; Robinson, G.E. Manipulation of colony environment modulates honey bee aggression and brain gene expression. Genes Brain and Behavior 2013, 12, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Sabandal, J.M.; Sabandal, P.R.; Kim, Y.C.; Han, K.A. Concerted Actions of Octopamine and Dopamine Receptors Drive Olfactory Learning. J Neurosci 2020, 40, 4240–4250. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.N.; Zhang, Z.N.; Feng, W.J.; Zhao, Y.H.; Aldanondo, A.; Sanchez, M.G.D.; Paoli, M.; Rolland, A.; Li, Z.G.; Nie, H.Y.; et al. Food wanting is mediated by transient activation of dopaminergic signaling in the honey bee brain. Science 2022, 376, 508-+. [Google Scholar] [CrossRef]
- Raza, M.F.; Wang, T.B.; Li, Z.G.; Nie, H.Y.; Giurfa, M.; Husain, A.; Hlavác, P.; Kodrik, M.; Ali, M.A.; Rady, A.; et al. Biogenic amines mediate learning success in appetitive odor conditioning in honeybees. J King Saud Univ Sci 2022, 34, 101928. [Google Scholar] [CrossRef]
- Haddad, N.J.; Adjlane, N.; Saini, D.; Menon, A.; Krishnamurthy, V.; Jonklaas, D.; Tomkins, J.P.; Loucif-Ayad, W.; Horth, L. Whole-genome sequencing of north African honey bee to assess its beneficial traits. Entomol Res 2018, 48, 174–186. [Google Scholar] [CrossRef]
- Bresnahan, S.T.; Lee, E.; Clark, L.; Ma, R.; Rangel, J.; Grozinger, C.M.; Li-Byarlay, H. Examining parent-of-origin effects on transcription and RNA methylation in mediating aggressive behavior in honey bees (Apis mellifera). Bmc Genomics 2023, 24, 305. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.; Duan, X.L.; Li, J.H.; Huang, W.F.; Evans, J.D.; DeGrandi-Hoffman, G.; Chen, Y.P.; Huang, S.K. RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Infection in the European Honey Bee, Microorganisms 2021, 9, 505. [Google Scholar] [CrossRef]
- Qiao, H.H.; Wu, J.T.; Zhang, X.D.; Luo, J.; Wang, H.; Ming, D. The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System. Front Chem 2021, 9, 786354. [Google Scholar] [CrossRef]
- Braga, A.R.; Gomes, D.G.; Rogers, R.; Hassler, E.E.; Freitas, B.M.; Cazier, J.A. A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture 2020, 169, 105161. [Google Scholar] [CrossRef]
- Vardakas, P.; Mainardi, G.; Minaud, E.; Patalano, S.; Rebaudo, F.; Requier, F.; Steffan-Dewenter, I.; Hatjina, F. Unveiling beekeepers' use and preference of precision apiculture systems. J Apicult Res 2024, 1–10. [Google Scholar] [CrossRef]
- Dong, S.H.; Gu, G.Y.; Lin, T.; Wang, Z.Q.; Li, J.J.; Tan, K.; Nieh, J.C. An inhibitory signal associated with danger reduces honeybee dopamine levels. Current Biology 2023, 33, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
