Submitted:
15 January 2025
Posted:
16 January 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Problem Formulation
2.1. Defining Sensory Devices
2.2. Defining Sensory Devices Generations and Advancements
2.3. Defining Sensory Devices Properties
- Accuracy: measuring how close is the measurement of the sensory device to the actual value of the property that is being measured. As such, high accuracy is translated to minimal error and reliable and accurate results for varying conditions, [40].
- Tolerance: measures and defines the acceptable range of deviation from a specified value of the values and conditions the sensor can withstand without failing or producing incorrect readings, [41].
- Distinctness: refers to a sensor’s ability to differentiate the values between small changes in the measured parameter. As such, sensors with high distinctness can detect fine variations in the input signal.
- Repeatability: refers to the ability of a sensor to provide the same measurement results under the same conditions over multiple trials thus ensuring reliability and consistent performance, [44].
- Sensitivity: refers to the sensor's ability to detect small changes in an input parameter. As such, a sensor with high sensitivity provides minimal variations thus ensuring long-term minoring of crucial environmental and operational changes and conditions, [45].
2.4. Most Known and Widely Used Types of Sensors
2.4.1. Sensors for Measuring Temperature
- Contact thermometers: they can produce the desired reading by coming into contact with the system whose temperature is being measured, i.e. by measuring their temperature. In this category, the accuracy of the measurement depends to a large extent on the extent to which thermal equilibrium has been established between the thermometer and the system, [46]
- Remote thermometers: they can give the desired indication of the thermal radiation of the system and indirectly calculate the temperature, since physical contact between the thermometer and the system to be measured is not considered necessary, [47].
2.4.2. Sensors for Optics
2.4.3. Sensors for Electrical Resistivity
2.4.4. Thermistor Sensors
2.4.5. Sensors for Measuring Pressure
2.4.6. Rubber Pressure Sensors
2.4.7. Capacitive Pressure Sensors
2.4.8. Level Pressure Sensors
2.4.9. Sensors for Measuring Humidity
2.4.10. Sensors for Measuring Speed
2.4.11. Sensors for Measuring Distance
2.4.12. Force-Weight Sensors
2.4.13. Concise Outline of Sensor Types
3. Comparison of Mini computing solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflict of Interest
Sample Availability
References
- Taherkordi, A. , Eliassen, F. , & Horn, April). From IoT big data to IoT big services. In Proceedings of the symposium on applied computing (pp. 485-491)., G. (2017. [Google Scholar] [CrossRef]
- Gazis, A. (2021). What is it? The Internet of Things explained. Academia Letters. [CrossRef]
- Gazis, A. , & Gazi, T. (2021). Big data applications in industry fields. ( 2021, 63(2), 50–51. [Google Scholar] [CrossRef]
- Pramanik, S. , & Bandyopadhyay, S. K. (2023). Analysis of big data. In Encyclopedia of data science and machine learning (pp. 97-115). IGI Global. www.doi.org/10.4018/978-1-7998-9220-5.
- Rodriguez-Garcia, P. , Li, Y., Lopez-Lopez, D., & Juan, A. A. (2023). Strategic decision making in smart home ecosystems: A review on the use of artificial intelligence and Internet of things. Internet of Things. [CrossRef]
- Gui, J. , Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: Algorithms, theory, and applications. IEEE transactions on knowledge and data engineering. [CrossRef]
- Pal, J. , Patra, R., Nedevschi, S., Plauche, M., & Pawar, U. S. (2009). The case of the occasionally cheap computer: Low-cost devices and classrooms in the developing regions. Information Technologies & International Development.
- Parapi, J. M. O. , Maesaroh, L. I., Basuki, B., & Masykuri, E. S. (2020). Virtual education: A brief overview of its role in the current educational system. Scripta: English Department Journal. [CrossRef]
- Kim, S. W. , & Lee, Y. (2016). Development of a software education curriculum for secondary schools. ( 2016, 21(8), 127–141. [Google Scholar] [CrossRef]
- Kong, S. C. (2016). A framework of curriculum design for computational thinking development in K-12 education. Journal of Computers in Education. [CrossRef]
- Ali, M. , Vlaskamp, J. H. A., Eddin, N. N., Falconer, B., & Oram, C. (2013, September). Technical development and socioeconomic implications of the Raspberry Pi as a learning tool in developing countries. In 2013 5th Computer Science and Electronic Engineering Conference (CEEC) (pp. 103-108). IEEE. [CrossRef]
- Kurkovsky, S. , & Williams, C. (2017, June). Raspberry Pi as a platform for the Internet of Things projects: Experiences and lessons. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science Education (pp. 64-69). [Google Scholar] [CrossRef]
- Alex David, S. , S., & Rizwana Parveen, A. (2018). Raspberry Pi in computer science and engineering education. In Intelligent Embedded Systems: Select Proceedings of ICNETS2, Volume II (pp. [CrossRef]
- Alharbi, F. (2024). Integrating the internet of things in electrical engineering education. International Journal of Electrical Engineering & Education, 61(2), 258-275. [CrossRef]
- Ng, D. T. K. , Su, J., Leung, J. K. L., & Chu, S. K. W. (2023). Artificial intelligence (AI) literacy education in secondary schools: a review. Interactive Learning Environments. [CrossRef]
- Margulieux, L. E. , Shapiro, B. R., & Calandra, B. D. (2024). Recommendations for Computer Science Education in Colleges of Education. [CrossRef]
- McGettrick, A. , Theys, M. D., Soldan, D. L., & Srimani, P. K. (2003). Computer engineering curriculum in the new millennium. K. ( 2003, 46(4), 456–462. [Google Scholar] [CrossRef]
- Zhao, W. (2015, March). Enriching engineering curricula with a course on cutting-edge computer technologies. In 2015 IEEE Integrated STEM Education Conference (pp. 44-48). IEEE. [CrossRef]
- Irigoyen, E. , Larzabal, E., & Priego, R. (2013). Low-cost platforms used in Control Education: An educational case study. IFAC Proceedings Volumes. [CrossRef]
- Afreen, R. (2014). Bring your device (BYOD) in higher education: Opportunities and challenges. International Journal of Emerging Trends & Technology in Computer Science, 3242. [Google Scholar]
- McCrady-Spitzer, S. K. , Manohar, C. U., Koepp, G. A., & Levine, J. A. (2015). Low-cost and scalable classroom equipment to promote physical activity and improve education. Journal of Physical Activity and Health. [CrossRef]
- Buń, P. K. , Wichniarek, R., Górski, F., Grajewski, D., Zawadzki, P., & Hamrol, A. (2016). Possibilities and determinants of using low-cost devices in virtual education applications. EURASIA Journal of Mathematics, Science and Technology Education. [CrossRef]
- Gazis, A. (2023). The advancement of microsensors in the age of IoT and Industry 4.0. Advances in Analytic Science. [CrossRef]
- Kiran Kolluri, S. S. , & Ananiah Durai, S. (2024). Wearable micro-electro-mechanical systems pressure sensors in health care: Advancements and trends—A review. IET Wireless Sensor System. [CrossRef]
- Yamasaki, H. (1996). What are intelligent sensors? In Handbook of sensors and actuators (Vol. 3, pp. 1-17). Elsevier Science BV, /: https, 9780. [Google Scholar]
- Zeisel, D. (2003). Development of future sensor generations: commercial vs. technological aspects. In Molecular Electronics: Bio-sensors and Bio-computers, S: Dordrecht. [CrossRef]
- Niu, H. , Yin, F., Kim, E. S., Wang, W., Yoon, D. Y., Wang, C.,... & Kim, N. Y. (2023). Advances in flexible sensors for intelligent perception systems enhanced by artificial intelligence. Y. ( 2023, 5(5), e12412. [Google Scholar] [CrossRef]
- Glisic, B. (2022). Concise historical overview of strain sensors used in the monitoring of civil structures: The first one hundred years. Sensors. [CrossRef]
- Levis, P. , Gay, D., Handziski, V., Hauer, J. H., Greenstein, B., Turon, M.,... & Wolisz, A. (2005). T2: A second-generation os for embedded sensor networks. Technical Report TKN-05-007, /: Networks Group, Technische Universitat Berlin. https, 2784. [Google Scholar]
- Gervais-Ducouret, S. (2011, February). Next smart sensors generation. In 2011 IEEE Sensors Applications Symposium (pp. 193-196). IEEE. [CrossRef]
- Reago, D. A. , Horn, S. B., Campbell Jr, J., & Vollmerhausen, R. H. (1999, July). Third-generation imaging sensor system concepts. In Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X (Vol. 3701, pp. 108-117). SPIE. [CrossRef]
- Bonnaud, O. (2020). The technological challenges of microelectronics for the next generations of connected sensors. Int. J. Plasma Environ. Sci. Technol, 3405. [Google Scholar]
- Sony, S. , Laventure, S., & Sadhu, A. (2019). A literature review of next-generation smart sensing technology in structural health monitoring. Structural Control and Health Monitoring, 1002. [Google Scholar]
- Mukhopadhyay, S. C. , Jayasundera, K. P., & Fuchs, A. (Eds.). (2012). Advancement in sensing technology: New developments and practical applications (Vol. 1). Springer Science & Business Media. [CrossRef]
- Kalsoom, T. , Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in sensor technologies in the era of smart factory and industry 4.0. ( 2020, 20(23), 6783. [Google Scholar] [CrossRef]
- Ullo, S. L. , & Sinha, G. R. (2021). Advances in IoT and smart sensors for remote sensing and agriculture applications. R. ( 2021, 13(13), 2585. [Google Scholar] [CrossRef]
- Chaudhary, V. , Kaushik, A., Furukawa, H., & Khosla, A. (2022). Towards 5th generation AI and IoT-driven sustainable intelligent sensors based on 2d mxenes and borophene. ECS Sensors Plus, 1(1), 013601. [CrossRef]
- Deroco, P. B. , Wachholz Junior, D., & Kubota, L. T. (2023). Paper-based wearable electrochemical sensors: a new generation of analytical devices. Electroanalysis. [CrossRef]
- Chakravarthi, V. S. (2020). A practical approach to VLSI system on chip (SoC) design. Springer International Publishin, 1720. [Google Scholar]
- Zappi, P. , Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., & Tröster, G. (2008). Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In Wireless Sensor Networks: 5th European Conference, EWSN 2008, Bologna, Italy, -February 1, 2008. Proceedings (pp. 17-33). Springer Berlin Heidelberg. 30 January. [CrossRef]
- Chouikhi, S. , El Korbi, I., Ghamri-Doudane, Y., & Saidane, L. A. (2015). A survey on fault tolerance in small and large scale wireless sensor networks. Computer Communications. [CrossRef]
- Wang, F. , & Theuwissen, A. (2017). Linearity analysis of a CMOS image sensor. ( 2017, 29, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Ji, B. , Zhou, Q., Lei, M., Ding, S., Song, Q., Gao, Y.,... & Zhou, B. (2021). Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small. [CrossRef]
- Keegan, K. G. , Kramer, J., Yonezawa, Y., Maki, H., Pai, P. F., Dent, E. V.,... & Reed, S. K. (2011). Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. American journal of veterinary research, 72(9), 1156-1163. [CrossRef]
- Vig, J. R. , & Walls, F. L. (2000, June). A review of sensor sensitivity and stability. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No. 00CH37052) (pp. 30-33). IEEE. [Google Scholar] [CrossRef]
- Mnati, M. J. , Chisab, R. F., Al-Rawi, A. M., Ali, A. H., & Van den Bossche, A. (2021). An open-source non-contact thermometer using low-cost electronic components. HardwareX. [CrossRef]
- Zhao, Y. , & Bergmann, J. H. (2023). Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review. Sensors. [CrossRef]
- Li, S. , Liu, G., Li, R., Li, Q., Zhao, Y., Huang, M.,... & Su, Y. (2021). Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS nan. [CrossRef]
- Javaid, M. , Haleem, A., Rab, S., Singh, R. P., & Suman, R. (2021). Sensors for daily life: A review. Sensors International. [CrossRef]
- Udd, E. , & Spillman Jr, W. B. (Eds.). (2024). Fiber optic sensors: an introduction for engineers and scientists. John Wiley & Sons. [CrossRef]
- Venketeswaran, A. , Lalam, N., Wuenschell, J., Ohodnicki Jr, P. R., Badar, M., Chen, K. P.,... & Buric, M. (2022). Recent advances in machine learning for fiber optic sensor applications. Advanced Intelligent Systems. [CrossRef]
- Kilinc, N. , Sanduvac, S., & Erkovan, M. (2022). Platinum-nickel alloy thin films for low-concentration hydrogen sensor application. Journal of Alloys and Compounds. [CrossRef]
- Claggett, T. J. , Worrall, R. W., Clayton, W. A., & Lipták, B. G. (2022). Resistance Temperature Detectors (RTDs). In Temperature Measurement, /: eBook ISBN9781003063919. https, 9781. [Google Scholar]
- Kilinc, N. , & Erkovan, M. (2023). Nanostructured Platinum and Platinum Alloy-Based Resistive Hydrogen Sensors: A Review. Engineering Proceedings. [CrossRef]
- Reverter, F. (2021). A tutorial on thermal sensors in the 200th anniversary of the Seebeck effect. IEEE Sensors Journal, 2213. [Google Scholar] [CrossRef]
- Liu, R. , He, L., Cao, M., Sun, Z., Zhu, R., & Li, Y. (2021). Flexible temperature sensors. ( 2021, 9, 539678. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, K. (2024, September). Enhanced Dual-Slope-Based Digitizer for 4-Wire Connected Resistive Sensors. In 2024 IEEE Region 10 Symposium (TENSYMP) (pp. 1-4). IEEE. [CrossRef]
- Webster, E. (2021). A critical review of the common thermocouple reference functions. Metrologia. [CrossRef]
- Yeager, C. J. , & Courts, S. S. (2001). A review of cryogenic thermometry and common temperature sensors. S. ( 2001, 1(4), 352–360. [Google Scholar] [CrossRef]
- Huang, X. , Davies, M., Moseley, D. A., Gonzales, J. T., Weijers, H. W., & Badcock, R. A. (2022). Sensitive fiber optic sensor for rapid hot-spot detection at cryogenic temperatures. IEEE Sensors Journal. [CrossRef]
- Giansanti, D. , & Maccioni, G. (2007). Development and testing of a wearable Integrated Thermometer sensor for skin contact thermography. Medical engineering & physics. [CrossRef]
- Yoon, H. W. , Khromchenko, V., & Eppeldauer, G. P. (2019). Improvements in the design of thermal-infrared radiation thermometers and sensors. Optics Express. [CrossRef]
- Fairuz Omar, A. (2013). Fiber Optic Sensors: An Introduction for Engineers and Scientists. Sensor Review. [CrossRef]
- Karapanagiotis, C. , & Krebber, K. (2023). Machine learning approaches in Brillouin distributed fiber optic sensors. ( 2023, 23(13), 6187. [Google Scholar] [CrossRef]
- Huang, M. F. , Salemi, M., Chen, Y., Zhao, J., Xia, T. J., Wellbrock, G. A.,... & Aono, Y. (2019). First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. Journal of Lightwave Technology. [CrossRef]
- Alwis, L. , Sun, T., & Grattan, K. T. V. (2016). Developments in optical fiber sensors for industrial applications. Optics & Laser Technology. [CrossRef]
- Del Villar, I. , & Matias, I. R. (Eds.). (2020). Optical Fibre Sensors: Fundamentals for Development of Optimized Devices. John Wiley & Sons, /: https, 9261. [Google Scholar]
- Allsop, T. , & Neal, R. (2021). A review: Application and implementation of optic fiber sensors for gas detection. Sensors. [CrossRef]
- Kuswanto, H. , Abimanyu, I., & Dwandaru, W. S. B. (2022). Increasing the Sensitivity of Polymer Optical Fiber Sensing Element in Detecting Humidity: Combination of Macro and Micro Bendings. Trends in Sciences. [CrossRef]
- Miliou, A. (2021, July). In-fiber interferometric-based sensors: Overview and recent advances. In Photonics (Vol. 8, No. 7, p. 265). MDPI. [CrossRef]
- Zhu, C. , Zheng, H., Ma, L., Yao, Z., Liu, B., Huang, J., & Rao, Y. (2023). Advances in fiber-optic extrinsic Fabry–Perot interferometric physical and mechanical sensors: A review. IEEE Sensors Journal. [CrossRef]
- Khan, R. , Gul, B., Khan, S., Nisar, H., & Ahmad, I. (2021). Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagnosis and Photodynamic Therapy. [CrossRef]
- Caucheteur, C. , Guo, T., & Albert, J. (2016). Polarization-assisted fiber Bragg grating sensors: Tutorial and review. Journal of Lightwave Technology, 35(16), 3311-3322. [CrossRef]
- Sasagawa, K. , Okada, R., Haruta, M., Takehara, H., Tashiro, H., & Ohta, J. (2022). Polarization image sensor for highly sensitive polarization modulation imaging based on stacked polarizers. ( 2022, 69(6), 2924–2931. [Google Scholar] [CrossRef]
- Ning, Y. N. , Meldrum, A., Shi, W. J., Meggitt, B. T., Palmer, A. W., Grattan, K. T. V., & Li, L. (1998). Bragg grating sensing instrument using a tunable Fabry-Perot filter to detect wavelength variations. Measurement Science and Technology, 1088. [Google Scholar]
- Sang, W. , Huang, S., Chen, J., Dai, X., Liu, H., Zeng, Y.,... & Shao, Y. (2023). Wavelength sequential selection technique for high-throughput multi-channel phase interrogation surface plasmon resonance imaging sensing. Talanta. [CrossRef]
- Fengjie, X. , Zongfu, J., Xiaojun, X., & Yifeng, G. (2007). High-diffractive-efficiency defocus grating for wavefront curvature sensing. JOSA A. [CrossRef]
- Mohammadi, M. , Seifouri, M., & Olyaee, S. (2024). The rotation sensing based on the Sagnac effect in silicon-integrated optical gyroscope with noise considerations. Optical and Quantum Electronics. [CrossRef]
- Choi, W. S. , Shim, K. M., Chong, K. H., An, J. E., Kim, C. J., & Park, B. Y. (2023). Sagnac effect compensations and locked states in a ring laser gyroscope. Y. ( 2023, 23(3), 1718. [Google Scholar] [CrossRef]
- Sophocleous, M. (2017). Electrical resistivity sensing methods and implications. Electrical Resistivity and Conductivity, 5441. [Google Scholar]
- Piro, N. S. , Mohammed, A. S., & Hamad, S. M. (2023). Electrical resistivity measurement, piezoresistivity behavior and compressive strength of concrete: a comprehensive review. Materials Today Communications. [CrossRef]
- Pant, U. , Meena, H., Gupta, G., Bapna, K., & Shivagan, D. D. (2022). Evaluation of self-heating effect in platinum resistance thermometers. Measurement. [CrossRef]
- Kako, S. (2023). A Comparative Study about Accuracy Levels of Resistance Temperature Detectors RTDs Composed of Platinum, Copper, and Nickel. Al-Nahrain Journal for Engineering Sciences, 26(3), 216-225. [CrossRef]
- Rusby, R. , & Pearce, J. (2024, October). Full-range interpolations for long-stem standard platinum resistance thermometers down to the triple point of argon. In AIP Conference Proceedings (Vol. 3230, No. 1). AIP Publishing. [CrossRef]
- Qu, W. , & Wlodarski, W. (2000). A thin-film sensing element for ozone, humidity and temperature. Sensors and Actuators B: Chemical. [CrossRef]
- Elangovan, K. , Antony, A., & Sreekantan, A. C. (2021). Simplified digitizing interface architectures for three-wire connected resistive sensors: Design and comprehensive evaluation. IEEE Transactions on Instrumentation and Measurement. [CrossRef]
- Reverter, F. (2022). A microcontroller-based interface circuit for three-wire connected resistive sensors. IEEE Transactions on Instrumentation and Measurement. [CrossRef]
- Bodic, M. Z. , Aleksic, S. O., Rajs, V. M., Damnjanovic, M. S., & Kisic, M. G. (2023). Thermally Coupled Thick Film Thermistors: Main Properties and Applications. IEEE Sensors Journal. [CrossRef]
- Wang, H. (2023). Experimental Research on the Stability of Negative Temperature Coefficient Thermistors. IEEE Instrumentation & Measurement Magazine. [CrossRef]
- Chatterjee, N. , Bhattacharyya, B., Dey, D., & Munshi, S. (2019). A combination of an astable multivibrator and microcontroller for thermistor-based temperature measurement over the internet. IEEE Sensors Journal,. [CrossRef]
- Liu, Z. , Huo, P., Yan, Y., Shi, C., Kong, F., Cao, S.,... & Yao, J. (2024). Design of a Negative Temperature Coefficient Temperature Measurement System Based on a Resistance Ratio Model. ( 2024, 24(9), 2780. [Google Scholar] [CrossRef] [PubMed]
- Corsi, C. (2007). Smart sensors. Infrared physics & technology. [CrossRef]
- Wei, H. , Gu, J., Ren, F., Zhang, L., Xu, G., Wang, B.,... & Li, Y. (2021). Smart materials for dynamic thermal radiation regulation. ( 2021, 17(35), 2100446. [Google Scholar] [CrossRef]
- Yuan, H. , Zhang, Q., Zhou, T., Wu, W., Li, H., Yin, Z.,... & Jiao, T. (2024). Progress and challenges in flexible capacitive pressure sensors: Microstructure designs and applications. Chemical Engineering Journal. [CrossRef]
- Lu, Y. , Qu, X., Zhao, W., Ren, Y., Si, W., Wang, W.,... & Dong, X. (2020). Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research. [CrossRef]
- Zhi, C. , Shi, S., Si, Y., Fei, B., Huang, H., & Hu, J. (2023). Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. ( 2023, 8(5), 2201161. [Google Scholar] [CrossRef]
- Mishra, R. B. , El-Atab, N., Hussain, A. M., & Hussain, M. M. (2021). Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Advanced materials technologies. [CrossRef]
- Wang, Y. , Xi, K., Mei, D., Liang, G., & Chen, Z. (2016). A flexible tactile sensor array based on pressure conductive rubber for contact force measurement and slip detection. ( 2016, 28(3), 378–385. [Google Scholar] [CrossRef]
- Mondal, B. , Roy, J. K., Mondal, N., & Sarkar, R. (2016, November). An approach to design a Bourdon tube pressure transmitter for remote measurement. In 2016 10th International Conference on Sensing Technology (ICST) (pp. 1-6). IEEE. [CrossRef]
- Szelitzky, E. , Kuklyte, J., Mândru, D., & O'Connor, N. E. (2014). Low-cost angular displacement sensors for biomechanical applications review. Journal of Biomedical Engineering and Technology, 1269. [Google Scholar]
- Dong, C. , Bai, Y., Zou, J., Cheng, J., An, Y., Zhang, Z.,... & Li, N. (2024). Flexible capacitive pressure sensor: Material, structure, fabrication and application. Nondestructive Testing and Evaluation. [CrossRef]
- Ha, K. H. , Huh, H., Li, Z., & Lu, N. (2022). Soft capacitive pressure sensors: trends, challenges, and perspectives. ACS nano. [CrossRef]
- Zhou, Q. , Liu, X., Luo, S., Jiang, X., Yang, D., & Yuan, W. (2023). Design and numerical simulation of capacitive pressure sensor based on silicon carbide. IEEE Sensors Journal. [CrossRef]
- Vorathin, E. , Hafizi, Z. M., Ismail, N., & Loman, M. (2020). Review of high-sensitivity fiber-optic pressure sensors for low-pressure sensing. Optics & Laser Technology. [CrossRef]
- Lai, C. W. , Lo, Y. L., Yur, J. P., & Chuang, C. H. (2011). Application of fiber Bragg grating level sensor and Fabry-Perot pressure sensor to simultaneous measurement of liquid level and specific gravity. IEEE Sensors Journal. [CrossRef]
- Farahani, H. , Wagiran, R., & Hamidon, M. N. (2014). Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. [CrossRef]
- Sajid, M. , Khattak, Z. J., Rahman, K., Hassan, G., & Choi, K. H. (2022). Progress and future of relative humidity sensors: a review from a materials perspective. Bulletin of Materials Science. [CrossRef]
- El-Sheimy, N. , & Youssef, A. (2020). Inertial sensors technologies for navigation applications: State of the art and future trends. Satellite Navigation. [CrossRef]
- Abduljawwad, M. , Khaleel, M., Ogedengbe, T. S., & Abraheem, S. (2023). Sensors for daily utilization. Int. J. Electr. Eng. and Sustain.
- Balestrieri, E. , Daponte, P., De Vito, L., & Lamonaca, F. (2021). Sensors and measurements for unmanned systems: An overview. Sensors. [CrossRef]
- Zhmud, V. A. , Kondratiev, N. O., Kuznetsov, K. A., Trubin, V. G., & Dimitrov, L. V. (2018, May). Application of ultrasonic sensor for measuring distances in robotics. In Journal of Physics: Conference Series, 0321. [Google Scholar] [CrossRef]
- Ye, Y. , Zhang, C., He, C., Wang, X., Huang, J., & Deng, J. (2020). A review on applications of capacitive displacement sensing for capacitive proximity sensor. ( 2020, 8, 45325–45342. [Google Scholar] [CrossRef]
- Gazis, A. , & Katsiri, E. (2020). A wireless sensor network for underground passages: Remote sensing and wildlife monitoring. Engineering reports. [CrossRef]
- Russel, A. , Karda, J., Jain, P., Kale, S., & Khaire, P. (2016). Simulation and Experimental Study for Selection of Gauge Area Cross-Section of ‘S’Type Load Cell. https://www.academia. 8914. [Google Scholar]
- Hastawan, A. F. , Haryono, S., Utomo, A. B., Hangga, A., Setiyawan, A., Septiana, R.,... & Triantino, S. B. (2021, March). Comparison of testing load cell sensor data sampling method based on the variation of time delay. In IOP Conference Series: Earth and Environmental Science (Vol. 700, No. 1, p. 012018). IOP Publishing. [CrossRef]
- Zhang, L. , Zhu, J., Li, Y., & Jin, Y. (2021, October). Automation Level of Measurement and Development of Load Cells. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (pp. 387-391). [CrossRef]
- Upadhyay, D.; Sampalli, S.; Plourde, B. (2020). Vulnerabilities’ Assessment and Mitigation Strategies for the Small Linux Server, Onion Omega2. Electronics. [CrossRef]
- Clark, L. (2019) What is the ASUS Tinker Board? In Practical Tinker Board: Getting Started and Building Projects with the ASUS Single-Board Computer. [CrossRef]
- Kratz, S.; Monroy-Hernández, A.; Vaish, R. Components. In Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology. [CrossRef]
- Mekala, R.; Sathya, M. (2023) Raspberry Pi-based Smart Energy Meter Using Internet of Things with Artificial Intelligence. Eng. World, 5079. [Google Scholar] [CrossRef]
- Tamayo, J. D. , Reyes, A. M., Andrada, E. J., Amores, S. M., & Garcia, J. O. (2024). Deployment and Evaluation of ChromeOS. International Journal of Multidisciplinary, 2474. [Google Scholar] [CrossRef]
| Sensor Type | Reference Number |
|---|---|
| Temperature Sensors | [23,46,47] |
| Contact Thermometers | [46,47] |
| Remote Thermometers | [48,65] |
| Optic Sensors | [50,51] |
| Electrical Resistivity Sensors | [53,54] |
| Thermistor Sensors | [88,91] |
| Pressure Sensors | [94,95] |
| Humidity Sensors | [106,107] |
| Speed Sensors | [49,108] |
| Distance Sensors | [111,112] |
| Force -Weight Sensors | [114,116] |
| Device | CPU Model | CPU Technology | RAM | Speed | Power | Operating Systems | Recommended Programming Languages |
|---|---|---|---|---|---|---|---|
| Raspberry Pi 4 Model B | Quad-core 1.5GHz Arm Cortex-A72 | ARMv8-A | 1-8GB LPDDR4 |
1.5 GHz |
5V 3A |
Raspberry Pi OS, Ubuntu | Python, C, C++, Java, Scratch |
| Raspberry Pi 3 Model B | Quad Core 1.2GHz Broadcom BCM2837 | ARMv8-A (32-bit) | 1GB LPDDR2 |
1.2 GHz |
5V 2.5A |
Raspberry Pi OS, Ubuntu | Python, C, C++, Java, Scratch |
| Onion Omega2+ | 580 MHz MIPS | MIPS 24KEc | 128MB DDR2 |
580 MHz |
3.3V 0.18A |
OpenWrt, Debian | Python, JavaScript, C++ |
| ASUS Tinker Board S | Quad-core 1.8 GHz RK3288-CG.W | ARM Cortex-A17 | 2GB LPDDR3 |
1.8 GHz |
5V 1.6A |
TinkerOS, Armbian | Python, C, C++, Java |
| Nvidia Jetson Nano | Quad-core ARM Cortex-A57 | ARMv8-A | 4GB LPDDR4 | 921 MHz | 5V 2A |
Ubuntu-based JetPack OS: Linux4Tegra, Jetson Linux, Ambian | Python, C, C++, CUDA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
