Submitted:
13 November 2024
Posted:
15 November 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Problem Formulation
2.1. Defining Sensory Devices
2.2. Defining Sensory Devices Generations and Advancements
2.3. Defining Sensory Devices Properties
- Accuracy: measuring how close is the measurement of the sensory device to the actual value of the property that is being measured. As such, high accuracy is translated to minimal error and reliable and accurate results for varying conditions, [40].
- Tolerance: measures and defines the acceptable range of deviation from a specified value of the values and conditions the sensor can withstand without failing or producing incorrect readings, [41].
- Distinctness: refers to a sensor’s ability to differentiate the values between small changes in the measured parameter. As such, sensors with high distinctness can detect fine variations in the input signal.
- Repeatability: refers to the ability of a sensor to provide the same measurement results under the same conditions over multiple trials thus ensuring reliability and consistent performance, [44].
- Sensitivity: refers to the sensor's ability to detect small changes in an input parameter. As such, a sensor with high sensitivity provides minimal variations thus ensuring long-term minoring of crucial environmental and operational changes and conditions, [45].
2.4. Most Known and Widely Used Types of Sensors
2.4.1. Sensors for Measuring Temperature
- Contact thermometers: they can produce the desired reading by coming into contact with the system whose temperature is being measured, i.e. by measuring their temperature. In this category, the accuracy of the measurement depends to a large extent on the extent to which thermal equilibrium has been established between the thermometer and the system, [46]
- Remote thermometers: they can give the desired indication of the thermal radiation of the system and indirectly calculate the temperature, since physical contact between the thermometer and the system to be measured is not considered necessary, [47].
2.4.2. Sensors for Optics
2.4.3. Sensors for Electrical Resistivity
2.4.4. Thermistor Sensors
2.4.5. Sensors for Measuring Pressure
2.4.6. Rubber Pressure Sensors
2.4.7. Capacitive Pressure Sensors
2.4.8. Level Pressure Sensors
2.4.9. Sensors for Measuring Humidity
2.4.10. Sensors for Measuring Speed
2.4.11. Sensors for Measuring Distance
2.4.12. Force-Weight Sensors
2.4.13. Concise Outline of Sensor Types
3. Comparison of Mini Computing Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Taherkordi, A. Eliassen, F., & Horn, G. (2017, April). From IoT big data to IoT big services. In Proceedings of the symposium on applied computing (pp. 485-491). [CrossRef]
- Gazis, A. What is it? The Internet of Things explained. Academia Letters 2021, 2. [Google Scholar] [CrossRef]
- Gazis, A. , & Gazi, T. Big data applications in industry fields. ITNOW 2021, 63, 50–51. [Google Scholar] [CrossRef]
- Pramanik, S. & Bandyopadhyay, S. K. (2023). Analysis of big data. In Encyclopedia of data science and machine learning (pp. 97-115). IGI Global.
- Rodriguez-Garcia, P. , Li, Y., Lopez-Lopez, D., & Juan, A. A. Strategic decision making in smart home ecosystems: A review on the use of artificial intelligence and Internet of things. Internet of Things 2023, 22, 100772. [Google Scholar] [CrossRef]
- Gui, J. , Sun, Z., Wen, Y., Tao, D., & Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. IEEE transactions on knowledge and data engineering 2021, 35, 3313–3332. [Google Scholar] [CrossRef]
- Pal, J. , Patra, R., Nedevschi, S., Plauche, M., & Pawar, U. S. The case of the occasionally cheap computer: Low-cost devices and classrooms in the developing regions. Information Technologies & International Development 2009, 5, 49. [Google Scholar]
- Buń, P. K. , Wichniarek, R., Górski, F., Grajewski, D., Zawadzki, P., & Hamrol, A. Possibilities and determinants of using low-cost devices in virtual education applications. EURASIA Journal of Mathematics, Science and Technology Education 2016, 13, 381–394. [Google Scholar] [CrossRef]
- Kim, S. W. , & Lee, Y. Development of a software education curriculum for secondary schools. Journal of The Korea Society of Computer and Information 2016, 21, 127–141. [Google Scholar] [CrossRef]
- Kong, S. C. A framework of curriculum design for computational thinking development in K-12 education. Journal of Computers in Education 2016, 3, 377–394. [Google Scholar] [CrossRef]
- Ali, M. Vlaskamp, J. H. A., Eddin, N. N., Falconer, B., & Oram, C. (2013, September). Technical development and socioeconomic implications of the Raspberry Pi as a learning tool in developing countries. In 2013 5th Computer Science and Electronic Engineering Conference (CEEC) (pp. 103-108). IEEE. [CrossRef]
- Kurkovsky, S. & Williams, C. (2017, June). Raspberry Pi as a platform for the Internet of Things projects: Experiences and lessons. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science Education (pp. 64-69). [CrossRef]
- Alex David, S. Ravikumar, S., & Rizwana Parveen, A. (2018). Raspberry Pi in computer science and engineering education. In Intelligent Embedded Systems: Select Proceedings of ICNETS2, Volume II (pp. 11-16). Springer Singapore. [CrossRef]
- Alharbi, F. Integrating the internet of things in electrical engineering education. International Journal of Electrical Engineering & Education 2024, 61, 258–275. [Google Scholar] [CrossRef]
- Ng, D. T. K. , Su, J., Leung, J. K. L., & Chu, S. K. W. Artificial intelligence (AI) literacy education in secondary schools: a review. Interactive Learning Environments 2023, 1–21. [Google Scholar] [CrossRef]
- Margulieux, L. E. Shapiro, B. R., & Calandra, B. D. (2024). Recommendations for Computer Science Education in Colleges of Education. Authorea Preprints. [CrossRef]
- McGettrick, A. , Theys, M. D., Soldan, D. L., & Srimani, P. K. Computer engineering curriculum in the new millennium. IEEE Transactions on Education 2003, 46, 456–462. [Google Scholar] [CrossRef]
- Zhao, W. (2015, March). Enriching engineering curricula with a course on cutting-edge computer technologies. In 2015 IEEE Integrated STEM Education Conference (pp. 44-48). IEEE. [CrossRef]
- Irigoyen, E. , Larzabal, E., & Priego, R. Low-cost platforms used in Control Education: An educational case study. IFAC Proceedings Volumes 2013, 46, 256–261. [Google Scholar] [CrossRef]
- Afreen, R. Bring your device (BYOD) in higher education: Opportunities and challenges. International Journal of Emerging Trends & Technology in Computer Science 2014, 3, 233–236, https://www.researchgate.net/publication/324216221_Bring_Your_Own_Device_BYOD_in_higher_education_Opportunities_and_challenges. [Google Scholar]
- McCrady-Spitzer, S. K. , Manohar, C. U., Koepp, G. A., & Levine, J. A. Low-cost and scalable classroom equipment to promote physical activity and improve education. Journal of Physical Activity and Health 2015, 12, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Buń, P. K. , Wichniarek, R., Górski, F., Grajewski, D., Zawadzki, P., & Hamrol, A. Possibilities and determinants of using low-cost devices in virtual education applications. EURASIA Journal of Mathematics, Science and Technology Education 2016, 13, 381–394. [Google Scholar] [CrossRef]
- Gazis, A. The advancement of microsensors in the age of IoT and Industry 4.0. Advances in Analytic Science 2023, 1, 122. [Google Scholar] [CrossRef]
- Kiran Kolluri, S. S. , & Ananiah Durai, S. Wearable micro-electro-mechanical systems pressure sensors in health care: Advancements and trends—A review. IET Wireless Sensor Systems. 2024. [Google Scholar] [CrossRef]
- Yamasaki, H. (1996). What are intelligent sensors? In Handbook of sensors and actuators (Vol. 3, pp. 1–17). Elsevier Science BV. eBook ISBN: 9780080523903.
- Zeisel, D. (2003). Development of future sensor generations: commercial vs. technological aspects. In Molecular Electronics: Bio-sensors and Bio-computers (pp. 417-425). Dordrecht: Springer Netherlands. https://shop.elsevier.com/books/intelligentsensors/yamasaki/978‐0‐444‐89515‐8. [CrossRef]
- Niu, H. , Yin, F., Kim, E. S., Wang, W., Yoon, D. Y., Wang, C.,... & Kim, N. Y. Advances in flexible sensors for intelligent perception systems enhanced by artificial intelligence. InfoMat 2023, 5, e12412. [Google Scholar] [CrossRef]
- Glisic, B. Concise historic overview of strain sensors used in the monitoring of civil structures: The first one hundred years. Sensors 2022, 22, 2397. [Google Scholar] [CrossRef]
- Levis, P. Gay, D., Handziski, V., Hauer, J. H., Greenstein, B., Turon, M., ... & Wolisz, A. (2005). T2: A second-generation os for embedded sensor networks. Technical Report TKN-05-007, Telecommunication Networks Group, Technische Universitat Berlin. https://www.academia.edu/2784288/T2_A_second_generation_os_for_embedded_sensor_networks.
- Gervais-Ducouret, S. (2011, February). Next smart sensors generation. In 2011 IEEE Sensors Applications Symposium (pp. 193-196). IEEE. [CrossRef]
- Reago, D. A. Horn, S. B., Campbell Jr, J., & Vollmerhausen, R. H. (1999, July). Third-generation imaging sensor system concepts. In Infrared Imaging Systems: Design, Analysis, Modeling, and Testing X (Vol. 3701, pp. 108–117). SPIE. [CrossRef]
- Bonnaud, O. The technological challenges of microelectronics for the next generations of connected sensors. Int. J. Plasma Environ. Sci. Technol 2020, 14, 1–8, https://www.researchgate.net/publication/340599904_The_technological_challenges_of_microelectronics_for_the_next_generations_of_connected_sensors. [Google Scholar]
- Sony, S. , Laventure, S., & Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring. Structural Control and Health Monitoring 2019, 26, e2321. [Google Scholar]
- Mukhopadhyay, S. C. Jayasundera, K. P., & Fuchs, A. (Eds.). (2012). Advancement in sensing technology: New developments and practical applications (Vol. 1). Springer Science & Business Media. [CrossRef]
- Kalsoom, T. , Ramzan, N., Ahmed, S., & Ur-Rehman, M. Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors 2020, 20, 6783. [Google Scholar] [CrossRef]
- Ullo, S. L. , & Sinha, G. R. Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing 2021, 13, 2585. [Google Scholar] [CrossRef]
- Chaudhary, V. , Kaushik, A., Furukawa, H., & Khosla, A. Towards 5th generation AI and IoT-driven sustainable intelligent sensors based on 2d mxenes and borophene. ECS Sensors Plus 2022, 1, 013601. [Google Scholar] [CrossRef]
- Deroco, P. B. , Wachholz Junior, D., & Kubota, L. T. Paper-based wearable electrochemical sensors: a new generation of analytical devices. Electroanalysis 2023, 35, e202200177. [Google Scholar] [CrossRef]
- Chakravarthi, V. S. (2020). A practical approach to VLSI system on chip (SoC) design. Springer International Publishing. https://www.springerprofessional.de/a-practical-approach-to-vlsi-system-on-chip-soc-design/17208494.
- Zappi, P. Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., & Tröster, G. (2008). Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In Wireless Sensor Networks: 5th European Conference, EWSN 2008, Bologna, Italy, January 30-February 1, 2008. Proceedings (pp. 17-33). Springer Berlin Heidelberg. [CrossRef]
- Chouikhi, S. , El Korbi, I., Ghamri-Doudane, Y., & Saidane, L. A. A survey on fault tolerance in small and large scale wireless sensor networks. Computer Communications 2015, 69, 22–37. [Google Scholar] [CrossRef]
- Wang, F. , & Theuwissen, A. Linearity analysis of a CMOS image sensor. Electronic imaging 2017, 29, 84–90. [Google Scholar] [CrossRef]
- Ji, B. , Zhou, Q., Lei, M., Ding, S., Song, Q., Gao, Y.,... & Zhou, B. Gradient architecture-enabled capacitive tactile sensor with high sensitivity and ultrabroad linearity range. Small 2021, 17, 2103312. [Google Scholar] [CrossRef]
- Keegan, K. G. , Kramer, J., Yonezawa, Y., Maki, H., Pai, P. F., Dent, E. V.,... & Reed, S. K. Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. American journal of veterinary research 2011, 72, 1156–1163. [Google Scholar] [CrossRef]
- Vig, J. R. & Walls, F. L. (2000, June). A review of sensor sensitivity and stability. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No. 00CH37052) (pp. 30-33). IEEE. [CrossRef]
- Mnati, M. J. , Chisab, R. F., Al-Rawi, A. M., Ali, A. H., & Van den Bossche, A. An open-source non-contact thermometer using low-cost electronic components. HardwareX 2021, 9, e00183. [Google Scholar] [CrossRef]
- Zhao, Y. , & Bergmann, J. H. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review. Sensors 2023, 23, 7439. [Google Scholar] [CrossRef]
- Li, S. , Liu, G., Li, R., Li, Q., Zhao, Y., Huang, M.,... & Su, Y. Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS nano 2021, 16, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M. , Haleem, A., Rab, S., Singh, R. P., & Suman, R. Sensors for daily life: A review. Sensors International 2021, 2, 100121. [Google Scholar] [CrossRef]
- Udd, E. & Spillman Jr, W. B. (Eds.). (2024). Fiber optic sensors: an introduction for engineers and scientists. John Wiley & Sons. [CrossRef]
- Venketeswaran, A. , Lalam, N., Wuenschell, J., Ohodnicki Jr, P. R., Badar, M., Chen, K. P.,... & Buric, M. Recent advances in machine learning for fiber optic sensor applications. Advanced Intelligent Systems 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Kilinc, N. , Sanduvac, S., & Erkovan, M. Platinum-nickel alloy thin films for low-concentration hydrogen sensor application. Journal of Alloys and Compounds 2022, 892, 162237. [Google Scholar] [CrossRef]
- Claggett, T. J. Worrall, R. W., Clayton, W. A., & Lipták, B. G. (2022). Resistance Temperature Detectors (RTDs). In Temperature Measurement (pp. 75-84). CRC Press. eBook ISBN9781003063919. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003063919-13/resistance-temperature-detectors-rtds-claggett-worrall-clayton-lipt%C3%A1k.
- Kilinc, N. , & Erkovan, M. Nanostructured Platinum and Platinum Alloy-Based Resistive Hydrogen Sensors: A Review. Engineering Proceedings 2023, 48, 18. [Google Scholar] [CrossRef]
- Reverter, F. A tutorial on thermal sensors in the 200th anniversary of the Seebeck effect. IEEE Sensors Journal 2021, 21, 22122–22132. [Google Scholar] [CrossRef]
- Liu, R. , He, L., Cao, M., Sun, Z., Zhu, R., & Li, Y. Flexible temperature sensors. Frontiers in Chemistry 2021, 9, 539678. [Google Scholar] [CrossRef]
- Reverter, F. A tutorial on thermal sensors in the 200th anniversary of the Seebeck effect. IEEE Sensors Journal 2021, 21, 22122–22132. [Google Scholar] [CrossRef]
- Webster, E. A critical review of the common thermocouple reference functions. Metrologia 2021, 58, 025004. [Google Scholar] [CrossRef]
- Yeager, C. J. , & Courts, S. S. A review of cryogenic thermometry and common temperature sensors. IEEE Sensors Journal 2001, 1, 352–360. [Google Scholar] [CrossRef]
- Huang, X. , Davies, M., Moseley, D. A., Gonzales, J. T., Weijers, H. W., & Badcock, R. A. Sensitive fiber optic sensor for rapid hot-spot detection at cryogenic temperatures. IEEE Sensors Journal 2022, 22, 11775–11782. [Google Scholar] [CrossRef]
- Giansanti, D. , & Maccioni, G. Development and testing of a wearable Integrated Thermometer sensor for skin contact thermography. Medical engineering & physics 2007, 29, 556–565. [Google Scholar] [CrossRef]
- Yoon, H. W. , Khromchenko, V., & Eppeldauer, G. P. Improvements in the design of thermal-infrared radiation thermometers and sensors. Optics Express 2019, 27, 14246–14259. [Google Scholar] [CrossRef]
- Fairuz Omar, A. Fiber Optic Sensors: An Introduction for Engineers and Scientists. Sensor Review 2013, 33. [Google Scholar] [CrossRef]
- Karapanagiotis, C. , & Krebber, K. Machine learning approaches in Brillouin distributed fiber optic sensors. Sensors 2023, 23, 6187. [Google Scholar] [CrossRef]
- Huang, M. F. , Salemi, M., Chen, Y., Zhao, J., Xia, T. J., Wellbrock, G. A.,... & Aono, Y. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. Journal of Lightwave Technology 2019, 38, 75–81. [Google Scholar] [CrossRef]
- Alwis, L. , Sun, T. , & Grattan, K. T. V. Developments in optical fiber sensors for industrial applications. Optics & Laser Technology 2016, 78, 62–66. [Google Scholar] [CrossRef]
- Del Villar, I. & Matias, I. R. (Eds.). (2020). Optical Fibre Sensors: Fundamentals for Development of Optimized Devices. John Wiley & Sons. ISBN: 978-1-119-53479-2. https://www.wiley.com/en-us/Optical+Fibre+Sensors%3A+Fundamentals+for+Development+of+Optimized+Devices-p-9781119534792.
- Allsop, T. , & Neal, R. A review: Application and implementation of optic fiber sensors for gas detection. Sensors 2021, 21, 6755. [Google Scholar] [CrossRef]
- Kuswanto, H. , Abimanyu, I. , & Dwandaru, W. S. B. Increasing the Sensitivity of Polymer Optical Fiber Sensing Element in Detecting Humidity: Combination of Macro and Micro Bendings. Trends in Sciences 2022, 19, 3200–3200. [Google Scholar] [CrossRef]
- Miliou, A. In-fiber interferometric-based sensors: Overview and recent advances. Photonics 2021, 8, 265. [Google Scholar] [CrossRef]
- Zhu, C. , Zheng, H., Ma, L., Yao, Z., Liu, B., Huang, J., & Rao, Y. Advances in fiber-optic extrinsic Fabry–Perot interferometric physical and mechanical sensors: A review. IEEE Sensors Journal 2023, 23, 6406–6426. [Google Scholar] [CrossRef]
- Khan, R. , Gul, B., Khan, S., Nisar, H., & Ahmad, I. Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagnosis and Photodynamic Therapy 2021, 33, 102192. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, C. , Guo, T., & Albert, J. Polarization-assisted fiber Bragg grating sensors: Tutorial and review. Journal of Lightwave Technology 2016, 35, 3311–3322. [Google Scholar] [CrossRef]
- Sasagawa, K. , Okada, R., Haruta, M., Takehara, H., Tashiro, H., & Ohta, J. Polarization image sensor for highly sensitive polarization modulation imaging based on stacked polarizers. IEEE Transactions on Electron Devices 2022, 69, 2924–2931. [Google Scholar] [CrossRef]
- Ning, Y. N. , Meldrum, A., Shi, W. J., Meggitt, B. T., Palmer, A. W., Grattan, K. T. V., & Li, L. Bragg grating sensing instrument using a tunable Fabry-Perot filter to detect wavelength variations. Measurement Science and Technology 1998, 9, 599. [Google Scholar]
- Sang, W. , Huang, S., Chen, J., Dai, X., Liu, H., Zeng, Y.,... & Shao, Y. Wavelength sequential selection technique for high-throughput multi-channel phase interrogation surface plasmon resonance imaging sensing. Talanta 2023, 258, 124405. [Google Scholar] [CrossRef]
- Fengjie, X. , Zongfu, J., Xiaojun, X., & Yifeng, G. High-diffractive-efficiency defocus grating for wavefront curvature sensing. JOSA A 2007, 24, 3444–3448. [Google Scholar] [CrossRef]
- Mohammadi, M. , Seifouri, M., & Olyaee, S. The rotation sensing based on the Sagnac effect in silicon-integrated optical gyroscope with noise considerations. Optical and Quantum Electronics 2024, 56, 1–22. [Google Scholar] [CrossRef]
- Choi, W. S. , Shim, K. M., Chong, K. H., An, J. E., Kim, C. J., & Park, B. Y. Sagnac effect compensations and locked states in a ring laser gyroscope. Sensors 2023, 23, 1718. [Google Scholar] [CrossRef]
- Sophocleous, M. Electrical resistivity sensing methods and implications. Electrical Resistivity and Conductivity 2017, 10, 67748. [Google Scholar]
- Piro, N. S. , Mohammed, A. S., & Hamad, S. M. Electrical resistivity measurement, piezoresistivity behavior and compressive strength of concrete: a comprehensive review. Materials Today Communications 2023, 106573. [Google Scholar] [CrossRef]
- Pant, U. , Meena, H., Gupta, G., Bapna, K., & Shivagan, D. D. Evaluation of self-heating effect in platinum resistance thermometers. Measurement 2022, 203, 111994. [Google Scholar] [CrossRef]
- Kako, S. A Comparative Study about Accuracy Levels of Resistance Temperature Detectors RTDs Composed of Platinum, Copper, and Nickel. Al-Nahrain Journal for Engineering Sciences 2023, 26, 216–225. [Google Scholar] [CrossRef]
- Pant, U. Meena, H., Gupta, G., Bapna, K., & Shivagan, D. D. (2022). Evaluation of self-heating effect in platinum resistance thermometers. Measurement, 203, 111994. [CrossRef]
- Qu, W. , & Wlodarski, W. A thin-film sensing element for ozone, humidity and temperature. Sensors and Actuators B: Chemical 2000, 64, 42–48. [Google Scholar] [CrossRef]
- Elangovan, K. , Antony, A., & Sreekantan, A. C. Simplified digitizing interface architectures for three-wire connected resistive sensors: Design and comprehensive evaluation. IEEE Transactions on Instrumentation and Measurement 2021, 71, 1–9. [Google Scholar] [CrossRef]
- Reverter, F. Two proposals of a simple analog conditioning circuit for remote resistive sensors with a three-wire connection. Sensors 2024, 24, 422. [Google Scholar] [CrossRef]
- Bodic, M. Z. , Aleksic, S. O., Rajs, V. M., Damnjanovic, M. S., & Kisic, M. G. Thermally Coupled Thick Film Thermistors: Main Properties and Applications. IEEE Sensors Journal 2023. [Google Scholar] [CrossRef]
- Wang, H. Experimental Research on the Stability of Negative Temperature Coefficient Thermistors. IEEE Instrumentation & Measurement Magazine 2023, 26, 42–47. [Google Scholar] [CrossRef]
- Chatterjee, N. , Bhattacharyya, B., Dey, D., & Munshi, S. A combination of an astable multivibrator and microcontroller for thermistor-based temperature measurement over the internet. IEEE Sensors Journal 2019, 19, 3252–3259. [Google Scholar] [CrossRef]
- Liu, Z. , Huo, P., Yan, Y., Shi, C., Kong, F., Cao, S.,... & Yao, J. Design of a Negative Temperature Coefficient Temperature Measurement System Based on a Resistance Ratio Model. Sensors 2024, 24, 2780. [Google Scholar] [CrossRef]
- Corsi, C. Smart sensors. Infrared physics & technology 2007, 49, 192–197. [Google Scholar] [CrossRef]
- Wei, H. , Gu, J., Ren, F., Zhang, L., Xu, G., Wang, B.,... & Li, Y. Smart materials for dynamic thermal radiation regulation. Small 2021, 17, 2100446. [Google Scholar] [CrossRef]
- Mishra, R. B. , El-Atab, N., Hussain, A. M., & Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Advanced materials technologies 2021, 6, 2001023. [Google Scholar] [CrossRef]
- Lu, Y. , Qu, X., Zhao, W., Ren, Y., Si, W., Wang, W.,... & Dong, X. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research 2020. [Google Scholar] [CrossRef]
- Zhi, C. , Shi, S., Si, Y., Fei, B., Huang, H., & Hu, J. Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. Advanced Materials Technologies 2023, 8, 2201161. [Google Scholar] [CrossRef]
- Mishra, R. B. , El-Atab, N., Hussain, A. M., & Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Advanced materials technologies 2021, 6, 2001023. [Google Scholar] [CrossRef]
- Wang, Y. , Xi, K., Mei, D., Liang, G., & Chen, Z. A flexible tactile sensor array based on pressure conductive rubber for contact force measurement and slip detection. Journal of Robotics and Mechatronics 2016, 28, 378–385. [Google Scholar] [CrossRef]
- Mondal, B. Roy, J. K., Mondal, N., & Sarkar, R. (2016, November). An approach to design a Bourdon tube pressure transmitter for remote measurement. In 2016 10th International Conference on Sensing Technology (ICST) (pp. 1-6). IEEE. [CrossRef]
- Szelitzky, E. , Kuklyte, J., Mândru, D., & O'Connor, N. E. Low-cost angular displacement sensors for biomechanical applications review. Journal of Biomedical Engineering and Technology 2014, 2, 21–28, https://pubs.sciepub.com/jbet/2/2/3/index.html#:~:text=This%20paper%20reviews%20the%20existing%20low%20cost%20easy%20to%20manipulate. [Google Scholar]
- Mishra, R. B. , El-Atab, N., Hussain, A. M., & Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Advanced materials technologies 2021, 6, 2001023. [Google Scholar] [CrossRef]
- Ha, K. H. , Huh, H., Li, Z., & Lu, N. Soft capacitive pressure sensors: trends, challenges, and perspectives. ACS nano 2022, 16, 3442–3448. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q. , Liu, X., Luo, S., Jiang, X., Yang, D., & Yuan, W. Design and numerical simulation of capacitive pressure sensor based on silicon carbide. IEEE Sensors Journal 2023. [CrossRef]
- Vorathin, E. , Hafizi, Z. M., Ismail, N., & Loman, M. Review of high-sensitivity fiber-optic pressure sensors for low-pressure sensing. Optics & Laser Technology 2020, 121, 105841. [Google Scholar] [CrossRef]
- Lai, C. W. , Lo, Y. L., Yur, J. P., & Chuang, C. H. Application of fiber Bragg grating level sensor and Fabry-Perot pressure sensor to simultaneous measurement of liquid level and specific gravity. IEEE Sensors Journal 2011, 12, 827–831. [Google Scholar] [CrossRef]
- Farahani, H. , Wagiran, R., & Hamidon, M. N. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef]
- Sajid, M. , Khattak, Z. J., Rahman, K., Hassan, G., & Choi, K. H. Progress and future of relative humidity sensors: a review from a materials perspective. Bulletin of Materials Science 2022, 45, 238. [Google Scholar] [CrossRef]
- El-Sheimy, N. , & Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satellite Navigation 2020, 1, 2. [Google Scholar] [CrossRef]
- Javaid, M. , Haleem, A., Rab, S., Singh, R. P., & Suman, R. Sensors for daily life: A review. Sensors International 2021, 2, 100121. [Google Scholar] [CrossRef]
- Balestrieri, E. , Daponte, P., De Vito, L., & Lamonaca, F. Sensors and measurements for unmanned systems: An overview. Sensors 2021, 21, 1518. [Google Scholar] [CrossRef]
- Zhmud, V. A. , Kondratiev, N. O., Kuznetsov, K. A., Trubin, V. G., & Dimitrov, L. V. Application of ultrasonic sensor for measuring distances in robotics. Journal of Physics: Conference Series 2018, 1015, 032189. [Google Scholar] [CrossRef]
- Ye, Y. , Zhang, C., He, C., Wang, X., Huang, J., & Deng, J. A review on applications of capacitive displacement sensing for capacitive proximity sensor. Ieee Access 2020, 8, 45325–45342. [Google Scholar] [CrossRef]
- Gazis, A. , & Katsiri, E. A wireless sensor network for underground passages: Remote sensing and wildlife monitoring. Engineering reports 2020, 2, e12170. [Google Scholar] [CrossRef]
- Russel, A. Karda, J., Jain, P., Kale, S., & Khaire, P. (2016). Simulation and Experimental Study for Selection of Gauge Area Cross-Section of ‘S’Type Load Cell. https://www.academia.edu/89142605/Simulation_and_Experimental_Study_for_Selection_of_Gauge_Area_Cross_Section_of_S_Type_Load_Cell.
- Hastawan, A. F. , Haryono, S., Utomo, A. B., Hangga, A., Setiyawan, A., Septiana, R.,... & Triantino, S. B. Comparison of testing load cell sensor data sampling method based on the variation of time delay. IOP Conference Series: Earth and Environmental Science 2021, 700, 012018. [Google Scholar] [CrossRef]
- Zhang, L. Zhu, J., Li, Y., & Jin, Y. (2021, October). Automation Level of Measurement and Development of Load Cells. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (pp. 387-391). [CrossRef]
- Kumar, H. A Systematic Approach for Investigations of a Force Transducer. Global Sci-Tech 2015, 7, 141–145, https://www.indianjournals.com/ijor.aspx?target=ijor:gst&volume=7&issue=3&article=004. [Google Scholar]
- Upadhyay, D.; Sampalli, S.; Plourde, B. Vulnerabilities’ Assessment and Mitigation Strategies for the Small Linux Server, Onion Omega2. Electronics 2020, 9, 967. [Google Scholar] [CrossRef]
- Clark, L.; Clark, L. (2019) What is the ASUS Tinker Board? In Practical Tinker Board: Getting Started and Building Projects with the ASUS Single-Board Computer:3–11. [CrossRef]
- Kratz, S.; Monroy-Hernández, A.; Vaish, R. (2022). What’s Cooking? Olfactory Sensing Using Off-the-Shelf Components. In Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology; Oct 29; pp. 1–3. [CrossRef]
- Anwaar, W.; Shah, M.A. Energy Efficient Computing: A Comparison of Raspberry Pi with Modern Devices. Energy 2015, 4. https://www.researchgate.net/publication/298790432_Energy_Efficient_Computing_A_Comparison_of_Raspberry_PI_with_Modern_Devices.
- Vujović, V. Maksimović, (2014). M. Raspberry Pi as a Wireless Sensor Node: Performances and Constraints. In 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO); IEEE: May 26; pp. 1013–1018. [CrossRef]
- Mekala, R.; Sathya, M. (2023) Raspberry Pi-based Smart Energy Meter Using Internet of Things with Artificial Intelligence. Eng. World. 5. E-ISSN: 2692-5079. [CrossRef]
- Mathe, S.E.; Pamarthy, A.C.; Kondaveeti, H.K.; Vappangi, S. A Review on Raspberry Pi and Its Robotic Applications. In 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP); IEEE: 2022 Feb 12; pp. 1–6. [CrossRef]
- Lundstrom, M. Moore's law forever? Science 2003, 299, 210–211. [Google Scholar] [CrossRef]
- Theis, T. N. , & Wong, H. S. P. The end of Moore's law: A new beginning for information technology. Computing in science & engineering 2017, 19, 41–50. [Google Scholar] [CrossRef]
- Perry, T. S. S. (2018). Move over, to Moore's law. Make way for Huang's law [Spectral Lines]. IEEE Spectrum, 55, 7-7. Tamayo, J. D., Reyes, A. M., Andrada, E. J., Amores, S. M., & Garcia, J. O. Deployment and Evaluation of ChromeOS. International Journal of Multidisciplinary: Applied Business and Education Research 2024, 5, 2474–2479. [Google Scholar] [CrossRef]
- Tamayo, J. D. , Reyes, A. M., Andrada, E. J., Amores, S. M., & Garcia, J. O. Deployment and Evaluation of ChromeOS. International Journal of Multidisciplinary: Applied Business and Education Research 2024, 5, 2474–2479. [Google Scholar] [CrossRef]
| Sensor Type | References | Reference Number |
| Temperature Sensors | Gazis et al. (2023), Zhao & Bergmann (2023), Mnati et al. (2021) |
[108,109,111] |
| Contact Thermometers | Mnati et al. (2021), Zhao & Bergmann (2023) |
[110,111] |
| Remote Thermometers | Li et al. (2021), Huang et al. (2019) |
[112,113] |
| Optic Sensors | Udd & Spillman (2024), Venketeswaran et al. (2022) | [120,122] |
| Electrical Resistivity Sensors | Claggett et al. (2022), Kilinc & Erkovan (2023) | [130,131] |
| Thermistor Sensors | Bodic et al. (2023), Liu et al. (2024) |
[137,138] |
| Pressure Sensors | Mishra et al. (2021), Lu et al. (2020) |
[140,141] |
| Humidity Sensors | Farahani et al. (2014), Sajid et al. (2022) | [148,149] |
| Speed Sensors | Javaid et al. (2021), El-Sheimy & Youssef (2020) |
[150,151] |
| Distance Sensors | Zhmud et al. (2018), Ye et al. (2020) |
[160,162] |
| Force -Weight Sensors | Russel et al. (2016), Zhang et al. (2021) |
[172,173] |
| Sensor Type | References | Reference Number |
| Temperature Sensors | Mnati et al. (2021), Zhao & Bergmann (2023) |
[110,111] |
| Fiber Optic Sensors | Udd & Spillman (2024), Huang et al. (2023) | [120,122] |
| Pressure Sensors | Mishra et al. (2021), Lu et al. (2020) |
[140,141] |
| Humidity Sensors | Sajid et al. (2022), Farahani et al. (2014) |
[148,149] |
| Device | CPU Model | RAM | RAM Technology |
Speed | Power |
|---|---|---|---|---|---|
| Raspberry Pi 4 Model B | Quad-core 1.5GHz Arm Cortex-A72 | 1-8GB | LPDDR4 | 1.5 GHz |
5V 3A |
| Raspberry Pi 3 Model B | Quad Core 1.2GHz Broadcom BCM2837 | 1GB | LPDDR2 | 1.2 GHz |
5V 2.5A |
| Onion Omega2+ | 580 MHz MIPS | 128MB | DDR2 | 580 MHz |
3.3V 0.18A |
| ASUS Tinker Board S | Quad-core 1.8 GHz RK3288-CG.W | 2GB | LPDDR3 | 1.8 GHz |
5V 1.6A |
| Nvidia Jetson Nano | Quad-core ARM Cortex-A57 | 4GB | LPDDR4 | 921 MHz | 5V 2A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
