Submitted:
08 November 2024
Posted:
11 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.3. Determination of Antioxidant Activity Using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.4. Determination Total Phenolic Compounds (TPC)
2.5. Determination of Total Flavonoid Content (TFC)
2.6. Determination of Total Carotenoid Content (TCC)
3. Results and Discussion
3.1. Determination of Ferric Reducing Antioxidant Power (FRAP)
3.2. Determination of Antioxidant Activity Using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
3.3. Determination Total Phenolic Compounds (TPC)
3.4. Determination of Total Flavonoid Content (TFC)
3.5. Determination of Total Carotenoid Content (TCC)
3.6. Determination of PUFA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brewer, M. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Falowo, A.; Fayemi, P.; Muchenje, V. Natural Antioxidants Against Lipid-Protein Oxidative Deterioration in Meat and Meat Products: A Review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Melilli, M.; Pagliaro, A.; Scandurra, S.; Gentile, C.; Stefano, V. Omega-3 Rich Foods: Durum Wheat Spaghetti Fortified with Portulaca oleracea. Food Biosci. 2020, 37, 100730. [Google Scholar] [CrossRef]
- Patel, S. Portulaca oleracea: An Untapped Bioactive Repository for Health Amelioration. In Medicinal Plants as Anti-infectives: Current Knowledge and New Perspectives; Ahmad, I., Aqil, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 43–52. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Li, C.; Lin, H.; Yang, C.; Chu, Y.; Lee, T.; Chen, J. Comparison of Various Solvent Extracts and Major Bioactive Components from Portulaca oleracea for Antioxidant, Anti-Tyrosinase, and Anti-α-Glucosidase Activities. Antioxidants 2022, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zheng, B.; Deng, N.; Wang, H.; Li, T.; Liu, R. Effects of Ethyl Acetate Fractional Extract from Portulaca oleracea L. (PO-EA) on Lifespan and Healthspan in Caenorhabditis elegans. J. Food Sci. [CrossRef]
- Gallo, M.; Conte, E.; Naviglio, D. Analysis and Comparison of the Antioxidant Component of Portulaca oleracea Leaves Obtained by Different Solid-Liquid Extraction Techniques. Antioxidants 2017, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, L.; Hertanto, B.; Nuhriawangsa, A. Omega-3 Profiles and Chemical Substances of Chicken Meat Fed Diets Containing Purslane (Portulaca oleraceae) Meal Rich in Omega-3 Fats. Food Res. 2023. [CrossRef]
- Wang, Z.; He, Z.; Zhang, D.; Li, H. Antioxidant Activity of Purslane Extract and Its Inhibitory Effect on the Lipid and Protein Oxidation of Rabbit Meat Patties During Chilled Storage. J. Sci. Food Agric. 2020. [CrossRef]
- Moustafa, A.; Ibrahim, H.; El-Makarem, H.; Shawky, M. Effect of Plant Polyphenols and Ascorbic Acid on Physio-Chemical Characteristics of Sausage. Alex. J. Vet. Sci. 2021, 69, 84–91. [Google Scholar] [CrossRef]
- Lorenzo, J.; Munekata, P.; Pateiro, M.; Domínguez, R.; Alaghbari, M.; Tomasevic, I. Preservation of Meat Products with Natural Antioxidants from Rosemary. IOP Conf. Ser.: Earth Environ. Sci. 2021, 854, 012053. [Google Scholar] [CrossRef]
- Mohamed, A.I.; Hussein, A.S. Chemical Composition of Purslane (Portulaca oleracea). Plant Foods Hum. Nutr. 1994, 45, 1–9. [Google Scholar]
- Abd El-Azime, A.S.H.; Hussein, E.M.; Ashry, O.M. Synergestic Effect of Aqueous Purslane (Portulaca oleracea L.) Extract and Fish Oil on Radiation-induced Damage in Rats. Int. J. Radiat. Biol. 2014, 90, 1184–1190. [Google Scholar] [CrossRef]
- Ashrafi, A.; Zahedi, M.; Soleimani, M. Effect of Co-planted Purslane (Portulaca oleracea L. ) on Cd Accumulation by Sunflower in Different Levels of Cd Contamination and Salinity: A Pot Study. Int. J. Phytoremediation 2015, 17, 853–860. [Google Scholar]
- Xiang, L.; Guo, D.-X.; Ju, R.; Ma, B.; Lei, F.; Du, L.-J. Cyclic Dipeptides from Portulaca oleracea. Chin. Tradit. Herb. Drugs 2007, 38, 1622–1625. [Google Scholar]
- Faruque, M.O.; Feng, G.; Khan, M.N.A.; Barlow, J.W.; Ankhi, U.R.; Hu, S.; Kamaruzzaman, M.; Uddin, S.B.; Hu, X. Qualitative and Quantitative Ethnobotanical Study of the Pangkhua Community in Bilaichari Upazilla, Rangamati District, Bangladesh. J. Ethnobiol. Ethnomed. 2019, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, Y.; Liu, Y.; Xia, Y.; Tang, T. Analysis of Flavonoids in Portulaca oleracea L. by UV-vis Spectrophotometry with Comparative Study on Different Extraction Technologies. Food Anal. Methods 2010, 3, 90–97. [Google Scholar]
- Melilli, M.G.; Pagliaro, A.; Scandurra, S.; Gentile, C.; Di Stefano, V. Omega-3 Rich Foods: Durum Wheat Spaghetti Fortified with Portulaca oleracea. Food Biosci. 2020, 37, 100730. [Google Scholar] [CrossRef]
- Bhuiyan, N.H.; Murakami, K.; Adachi, T. Variation in Betalain Content and Factors Affecting the Biosynthesis in Portulaca sp. “Jewel” Cell Cultures. Plant Biotechnol. 2002, 19, 369–376. [Google Scholar]
- Gu, Y.; Leng, A.; Zhang, W.; Ying, X.; Stien, D. A Novel Alkaloid from Portulaca oleracea L. and Its Anti-inflammatory Activity. Nat. Prod. Res. 2020, 34, 1–6. [Google Scholar]
- Zhou, Y.-X.; Xin, H.-L.; Rahman, K.; Wang, S.-J.; Peng, C.; Zhang, H. Portulaca oleracea L. : A Review of Phytochemistry and Pharmacological Effects. BioMed Res. Int. 2015, 2015, 925631. [Google Scholar]
- Ezeabara, C. Comparative Determination of Phytochemical, Proximate and Mineral Compositions in Various Parts of Portulaca oleracea L. J. Plant Sci. 2014, 2, 293–298. [Google Scholar]
- Zaman, S.; Bilal, M.; Du, H.; Che, S. Morphophysiological and Comparative Metabolic Profiling of Purslane Genotypes (Portulaca oleracea L. ) under Salt Stress. BioMed Res. Int. 2020, 2020, 4827045. [Google Scholar]
- Siriamornpun, S.; Suttajit, M. Microchemical Components and Antioxidant Activity of Different Morphological Parts of Thai Wild Purslane (Portulaca oleracea). Weed Sci. 2010, 58, 182–188. [Google Scholar] [CrossRef]
- Liu, L.; Howe, P.; Zhou, Y.-F.; Xu, Z.-Q.; Hocart, C.; Zhang, R. Fatty Acids and β-Carotene in Australian Purslane (Portulaca oleracea) Varieties. J. Chromatogr. A 2000, 893, 207–213. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical Composition and Nutritional Value of Different Plant Parts in Two Cultivated and Wild Purslane (Portulaca oleracea L. ) Genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Shakour, Z.T.A. Metabolomics Driven Analysis of 11 Portulaca Leaf Taxa as Analysed via UPLC-ESI-MS/MS and Chemometrics. Phytochemistry 2019, 161, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1994, 43, 27–32. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Quah, E.P.L. Antioxidant Properties of Different Cultivars of Portulaca oleracea. Food Chem. 2007, 103, 734–740. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Mínguez-Mosquera, M.I. Rapid Spectrophotometric Determination of Red and Yellow Isochromic Carotenoid Fractions in Paprika and Red Pepper Oleoresins. J. Agric. Food Chem. 2001, 49, 3584–3588. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Nadirah, T.A.; Mohsin, G.M.; Saleh, M.; Moneruzzaman, K.M.; Aslani, F.; Juraimi, A.S.; Alam, M.Z. Antioxidant Compounds, Antioxidant Activities, and Mineral Contents Among Underutilized Vegetables. Int. J. Veg. Sci. 2021, 27, 157–166. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Ali, M.E.; Ismail, M.R.; Nahar, M.A.U.; Rahman, M.M. Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages. Int. J. Mol. Sci. 2012, 13, 10257–10267. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K.; Juraimi, A.S.; Hossain, M.S.; Nahar, M.A.U.; Ali, M.E.; Rahman, M.M. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes. Sci. World J. 2014, 2014, 951019. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A Pharmacological Review on Portulaca oleracea L.: Focusing on Anti-inflammatory, Antioxidant, Immuno-modulatory and Antitumor Activities. J. Pharmacopuncture 2019, 22, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, W.; Ying, X.; Stien, D. New Flavonoids from Portulaca oleracea L. and Their Activities. Fitoterapia 2018, 127, 257–262. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Quah, E.P.L. Antioxidant Properties of Different Cultivars of Portulaca oleracea. Food Chem. 2007, 103, 734–740. [Google Scholar] [CrossRef]
- Chandrasekara, A. Phenolic Acids. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 535–545. [Google Scholar] [CrossRef]
- Sicari, V.; Loizzo, M.R.; Tundis, R.; Mincione, A.; Pellicanò, T.M. Portulaca oleracea L. (Purslane) Extracts Display Antioxidant and Hypoglycaemic Effects. J. Appl. Bot. Food Qual. 2018, 91, 39–46. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S.; Ali, M.E.; Ismail, M.R. Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages. Int. J. Mol. Sci. 2012, 13, 10257–10267. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of Salinity and Salinity-induced Augmented Bioactive Compounds in Purslane (Portulaca oleracea L.) for Possible Economical Use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar]
- Xu, X.; Yu, L.; Chen, G. Determination of Flavonoids in Portulaca oleracea L. by Capillary Electrophoresis with Electrochemical Detection. J. Pharm. Biomed. Anal. 2006, 41, 493–499. [Google Scholar] [PubMed]
- Nayaka, H.B.; Londonkar, R.L.; Umesh, M.K.; Tukappa, A. Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014, 2014, 175851. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.K.; Juraimi, A.S.; Ali, M.E.; Ismail, M.R. Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages. Int. J. Mol. Sci. 2012, 13, 10257–10267. [Google Scholar] [CrossRef] [PubMed]
- Sharififar, F.; Dehghn-Nudeh, G.; Mirtajaldini, M. Major Flavonoids with Antioxidant Activity from Teucrium polium L. Food Chem. 2009, 112, 885–888. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of Salinity and Salinity-induced Augmented Bioactive Compounds in Purslane (Portulaca oleracea L.) for Possible Economical Use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef]
- Arruda, S.F.; Siqueira, E.M.A.; Souza, E.M.T. Malanga (Xanthosoma sagittifolium) and Purslane (Portulaca oleracea) Leaves Reduce Oxidative Stress in Vitamin A-deficient Rats. Ann. Nutr. Metab. 2004, 48, 288–295. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Norman, H.A.; Gillaspy, J.E. Purslane in Human Nutrition and Its Potential for World Agriculture. World Rev. Nutr. Diet. 1995, 77, 47–74. [Google Scholar]
- Uddin, M.K.; Juraimi, A.S.; Hossain, M.S.; Nahar, M.A.U.; Ali, M.E.; Rahman, M.M. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes. Sci. World J. 2014, 2014, 951019. [Google Scholar] [CrossRef] [PubMed]
- Rifici, V.A.; Khachadurian, A.K. Dietary Supplementation with Vitamins C and E Inhibits in vitro Oxidation of Lipoproteins. J. Am. Coll. Nutr. 1993, 12, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Chugh, V.; Mishra, V.; Sharma, K. Purslane (Portulaca oleracea L. ): An Underutilized Wonder Plant with Potential Pharmacological Value. Pharm. J. 2019, 8, 236–246. [Google Scholar]
- Simopoulos, A.P.; Tan, D.-X.; Manchester, L.C.; Reiter, R.J. Purslane: A Plant Source of Omega-3 Fatty Acids and Melatonin. J. Pineal Res. 2005, 39, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Valentão, P.; Lopes, R.; Andrade, P.B.; Bento, A.; Pereira, J.A. Phytochemical Characterization and Radical Scavenging Activity of Portulaca oleracea L. Leaves and Stems. Microchem. J. 2009, 92, 129–134. [Google Scholar] [CrossRef]
- Omara-Alwala, T.; Mebrahtu, T.; Prior, D.E.; Ezekwe, M.O. Omega-three Fatty Acids in Purslane (Portulaca oleracea) Tissues. J. Am. Oil Chem. Soc. 1991, 68, 198–199. [Google Scholar] [CrossRef]
- Davis, B.C.; Kris-Etherton, P.M. Achieving Optimal Essential Fatty Acid Status in Vegetarians: Current Knowledge and Practical Implications. Am. J. Clin. Nutr. 2003, 78, 640S–646S. [Google Scholar] [CrossRef] [PubMed]
- Dkhil, M.A.; Moniem, A.E.A.; Al-Quraishy, S.; Saleh, R.A. Antioxidant Effect of Purslane (Portulaca oleracea) and Its Mechanism of Action. J. Med. Plant Res. 2011, 5, 1589–1593. [Google Scholar]
- Santiago-Saenz, Y.O.; Hernández-Fuentes, A.D.; Monroy-Torres, R.; Cariño-Cortés, R.; Jiménez-Alvarado, R. Physicochemical, Nutritional and Antioxidant Characterization of Three Vegetables (Amaranthus hybridus L., Chenopodium berlandieri L., Portulaca oleracea L.) as Potential Sources of Phytochemicals and Bioactive Compounds. J. Food Meas. Charact. 2018, 12, 2855–2864. [Google Scholar] [CrossRef]
- Mohamed, A.I.; Hussein, A.S. Chemical Composition of Purslane (Portulaca oleracea). Plant Foods Hum. Nutr. 1994, 45, 1–9. [Google Scholar]
- Guil-Guerrero, J.L.; Rodríguez-García, I. Lipids Classes, Fatty Acids and Carotenes of the Leaves of Six Edible Wild Plants. Eur. Food Res. Technol. 1999, 209, 313–316. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical Composition and Nutritional Value of Different Plant Parts in Two Cultivated and Wild Purslane (Portulaca oleracea L. ) Genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef] [PubMed]
- Almasoud, A.G.; Salem, E. Nutritional Quality of Purslane and Its Crackers. Middle East J. Appl. Sci. 2014, 4, 448–454. [Google Scholar]
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Phytochemical Composition and Bioactive Compounds of Common Purslane (Portulaca oleracea L.) as Affected by Crop Management Practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar]
| Extract concentration (mcg/ml) 200 (w/v) | Absorption activity (DPPH), % - 83.77±0.015 |
|---|---|
| Extracts | IC50 radical removal activity DPPH (mcg/ml) |
| Methanol extract of Portulaca oleracea | 756.42±92.61 |
| Ascorbic acid | 80.76±4.71 |
| Name of the sample | TPC concentration in mg GAE/g of dry extract |
| Methanol extract of Portulaca oleracea | 16.88 ± 0.39 |
| Name of the sample | TFC concentration in mg of rutin/g of dry extract |
| Methanol extract of Portulaca oleracea | 26.33±0.97 |
| Name of the sample | The concentration of TCC is expressed in mg/g of dry extract |
| Methanol extract of Portulaca oleracea | 4.33±0.57 |
| Name of the sample | Results |
| Linolenic acid C18:3 | 26.7±2.1 |
| Thymnodonic acid C20:5 | 1.2±0.4 |
| Linoleum C18:2 | 10.6±2.1 |
| Era C22:1 | 13.5±2.1 |
| Nervonic C24:1 | 7.1±2.1 |
| Oleic C18:1 | 1.9±2.1 |
| Palmitoleic C16:1 | 10.6±0.4 |
| Palmitic C16:0 | 21.7±2.1 |
| Stearic Acid C18:0 | 4.5±0.4 |
| Name of the sample | Unit of Measurement | Results |
| Mass fraction of fat | % | 3.5±0.5 |
| Nitrogen | % | 2.66±0.05 |
| Vitamins | ||
| B1 | mg/100g | 0.06±0.01 |
| B2 | mg/100g | 0.13±0.05 |
| B3 (PP) | mg/100g | 0.64±0.13 |
| B5 | mg/100g | 0.05±0.01 |
| B6 | mg/100g | 0.06±0.02 |
| B9 | mg/100g | < 10.0 |
| C | mg/100g | 20.06±4.61 |
| A | mcg/100g | < 10.0 |
| E | mg/100g | < 0.1 |
| Minerals | ||
| Ca | mg/100g | 765.62±266.37 |
| K | mg/100g | 4643.35±764.2 |
| Na | mg/100g | 298.83±74.9 |
| Mg | mg/100g | 1595.41±312.2 |
| Zn | mg/100g | 6.47±1.32 |
| Fe | mg/100g | 530.97±105.67 |
| Mn | mg/100g | 12.55±3.87 |
| Se | mg/100g | 0.09±0.03 |
| P | mg/100g | 376.0±2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
