Submitted:
03 November 2024
Posted:
04 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Nutritional Values of Wheat Grain
3. Uses of Wheat
3.1. Uses of Different Types of Wheat Flour
3.1.1. All-Purpose Flour
3.1.2. Whole Wheat Flour
3.1.3. Bleached Flour
3.1.4. Unbleached Flour
3.1.5. Bread Flour
3.1.6. Cake Flour
3.1.7. Pastry Flour
3.1.8. Self-Rising Flour
3.1.9. Durum Flour
3.1.10. Semolina Flour
3.1.11. Gluten Flour
3.1.12. Farina Flour
4. The Uses of Wheat in Farming
4.1. Ruminant Animal Production
4.2. Swine Production
4.3. Poultry Farming
4.4. Ethanol Production
5. Chemical Compositions and Nutritional Values of Wheat
5.1. Proximate Composition
5.2. Vitamins
5.3. Vitamin E (Tocopherol or Alpha-Tocopherol)
5.4. Thiamine (B1)
5.5. Riboflavin (B2)
5.6. Niacin (B3)
5.7. Pantothenic Acid (B5)
5.8. Pyridoxine (B6)
5.9. Biotin (B7)
5.10. Folates (B9)
| Elements | Quantity (mg) | Elements | Quantity (mg) | ||||
|---|---|---|---|---|---|---|---|
| Wheat | Rice | Maize | Wheat | Rice | Maize | ||
| Energy (kJ/kcal) | 1368/327 | 544/130 | 362 | Minerals | |||
| Carbohydrates (g) | 71.18 | 77-79 | 75.48 | Calcium | 29 | 3.0 | 10.68 |
| Sugars (g) | 0.41 | 0.24 | 3.66 | Magnesium | 126 | 13.0 | 126.12 |
| Protein (g) | 12.61 | 7.3 | 9.8 | Manganese | 3.985 | 0.38 | 1.36 |
| Lipids (g) | 2.4 | 0.2 | 4.18 | Phosphorus | 288 | 37 .0 | 284.68 |
| Choline | 106 | 2.0 | 61.7 | Potassium | 363 | 310 | 276.17 |
| Dietary fiber (g) | 12.2 | 3.5 | 6.69 | Sodium | 2.0 | 28 | 3.74 |
| Ash | 0.65 | 0.6 | 1.1 | Iron | 3.19 | 0.2 | 2.92 |
| Phenolic acids | 136.59 | 56.95 | 173.70 | Zinc | 2.65 | 0.4 | 0.83 |
| Flavonoids | 4.76 | 64.76 | 5.07 | Copper | 1.03 | 2.3 | 0.14 |
| Oxalates | 14.5 | 12 | 116.40 | Iodine (µg) | 5.9 | 3.0 | 10 |
| Phytates | 12.01 | 16.0 | 17.93 | Selenium (µg) | 70.7 | 20 | 10 |
| Water (g) | 13.1 | 69.0 | 11.51 | ||||
| Vitamins | |||||||
| Carotene/Vit A (IU) | 0.02 | 0 | 0.37 | Folate (B9) (µg) | 38 | 30 | 30 |
| Thiamine (B1) | 0.383 | 0.02 | 0.30 | Vitamin 12 | 0 | 0 | 0 |
| Riboflavin (B2) | 0.115 | 0.02 | 0.08 | Vitamin D | 0 | 0 | 0 |
| Niacin (B3) | 5.464 | 0.4 | 1.9 | Vitamin E | 1.4 | 0.98 | 1.98 |
| Pantothenic acid (B5) | 0.954 | 0.41 | 0.27 | Vitamin K (µg) | 1.9 | 2.0 | 40 |
| Vitamin B6 | 0.3 | 0.05 | 0.28 | Vitamin C | 0 | 0 | 0 |
| Biotin/ Vit B7 (µg) | 10 | 10 | 7.0 | Choline | 31.2 | 53.2 | |
6. Minerals
6.1. Wheat Mineral Composition and Its Functions and Deficiencies in the Human Body
| Nutrient per 100 g | Brown rice | Barley grain | Corn white | Oat grain | Oat grain | Rye grain | Sorghum grain | Triticale grain | Wheat flour |
|---|---|---|---|---|---|---|---|---|---|
| Water (g) | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 |
| Energy (kJ) | 1497 | 1412 | 1465 | 1542 | 1542 | 1360 | 1352 | 1405 | 1372 |
| Energy (kcal) | 358 | 338 | 350 | 368 | 368 | 325 | 323 | 323 | 328 |
| Crude protein (g) | 7.4 | 10.3 | 9.0 | 16.0 | 16.0 | 10.0 | 10.4 | 13.0 | 12.7 |
| Total lipids (g) | 3.1 | 1.6 | 4.6 | 6.5 | 6.5 | 1.6 | 3.4 | 2.1 | 2.4 |
| Ash (g) | 1.2 | 1.2 | 1.2 | 1.6 | 1.6 | 1.5 | 1.4 | 2.2 | 1.5 |
| Carbohydrates by difference (g) | 1.2 | 1.2 | 1.2 | 1.6 | 1.6 | 1.5 | 1.4 | 2.2 | 1.5 |
| Total dietary fiber (g) | 3.5 | 72.9 | 71.2 | 62.8 | 62.8 | 73.0 | 70.8 | 72.1 | 69.3 |
| Sugars (g) | 0.6 | 0.8 | - | 2.0 | 2.0 | 0.9 | 2.5 | 2.0 | 0.4 |
| Wheat species | Macroelements (mg g-1) | Microelements (µg g-1) | ||||||
|---|---|---|---|---|---|---|---|---|
| Ca | P | Mg | K | Cu | Fe | Mn | Zn | |
| Common wheat (Triticum aestivum) | 0.11 | 5.16 | 1.04 | 4.74 | 2.35 | 60.8 | 44.8 | 28.8 |
| Spelt wheat (Triticum spelta) | 0.10 | 3.71 | 1.25 | 5.49 | 0.71 | 94.7 | 62.2 | 21.9 |
| Emmer wheat (Triticum dicoccon) | 0.15 | 4.73 | 1.34 | 5.84 | 0.66 | 77.6 | 47.1 | 17.8 |
| Einkorn wheat (Triticum monococcum) | 0.17 | 4.74 | 1.74 | 6.45 | 1.40 | 58.8 | 32.9 | 17.8 |
7. Daily Requirements, Functions, and Deficiency of Minerals in the Human Body
7.1. Recommended Daily Allowance (RDA)
7.2. Phosphorus
7.3. Calcium
7.4. Magnesium
7.5. Potassium
7.6. Sodium
7.7. Zinc
7.8. Iron
7.9. Manganese
7.10. Copper
7.11. Selenium
7.12. Chromium
7.13. Cobalt
7.14. Molybdenum
8. The Medicinal Properties of Wheat on Overall Health
8.1. Use of Wheat to Improve the Immune System
8.2. Use of Wheat for Cancer Treatment
8.3. Use of Wheat for Heart Health
8.4. Use of Wheat for Gallstones
8.5. Use of Wheat for Tooth Disorders
8.6. Use of Wheat for Constipation
8.7. Use of Wheat for Diabetes
9. Nutrient Composition and Protein Quality of Rice Relative to Other Cereals
| Food | True N Digestibility (%) |
Biological Value (%) |
Net protein Utilization (%) |
Utilizable Protein (%) |
Digestible energy | |
|---|---|---|---|---|---|---|
| Brown rice | 99.7 | 74.0 | 73.8 | 5.4 | 3.70 | 96.3 |
| Wheat | 96.0 | 55.0 | 53.0 | 5.6 | 3.24 | 86.4 |
| Maize | 95.0 | 610 | 58.0 | 5.7 | 3.21 | 81.0 |
| Millet | 92.0 | 60.0 | 56.0 | 6.4 | 3.44 | 87.2 |
| Sorghum | 84.8 | 59.2 | 50.0 | 4.2 | 3.07 | 79.9 |
| Rye | 77.0 | 77.7 | 59.0 | 5.1 | 3.18 | 85.0 |
| Oats | 84.1 | 70.4 | 59.1 | 5.5 | 2.77 | 70.6 |
| Potato | 82.7 | 80.9 | 66.9 | 5.2 | - | - |
| Brown rice | 99.7 | 74.0 | 73.8 | 5.4 | 3.70 | 96.3 |
| Protein source | Mean | Digestibility relative to reference proteins |
|---|---|---|
| Rice, milled | 88 ± 4 | 93 |
| Wheat, whole | 86 ± 5 | 90 |
| Wheat endosperm (farina) | 96 ± 4 | 101 |
| Maize, whole | 85 ± 6 | 89 |
| Millet | 79 | 83 |
| Sorghum | 74 | 78 |
| Oatmeal | 86 ± 7 | 90 |
| Egg | 97 ± 3 | 100a |
| Milk | 95 ± 3 | - |
| Meat, fish | 94 ± 3 | - |
10. Nutritional Value of Rice
11. Nutritional Value of Maize and Other Cereals
12. Progress in Improving Nutritional Quality
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- S. Goel, M. Singh, S. Grewal, A. Razzaq, S.H. Wani, Wheat Proteins: A Valuable Resource to Improve Nutritional Value of Bread, Front. Sustain. Food. Syst. (2021) 5 769681. [CrossRef]
- G.R. Goldberg, Nutrition in pregnancy: the facts and fallacies, Nursing Standard, (2003) 17 (19) 39-42. [CrossRef]
- WHO (World Health Organization), Malnutrition, (2024a) Retrieved 23 October 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition.
- UNICEF, Child Malnutrition, (2024) Retrieved 23 October 2024. Available online: https://data.unicef.org/topic/nutrition/malnutrition/.
- IHME (Institute for Health Metrics and Evaluation), Vitamin a deficiency level 3 risk (2024a) Retrieved 23 October 2024. Available online: https://www.healthdata.org/results/gbd_summaries/2019/vitamin-a-deficiency-level-3-risk.
- IHME (Institute for Health Metrics and Evaluation), Zinc deficiency Level 3 risk, (2024) Retrieved 23 October 2024. Available online: https://www.healthdata.org/sites/default/files/disease_and_injury/gbd_2019/topic_pdf/risk/97.pdf.
- USAID, Bangladesh: Nutrition Profile, (2024) Retrieved 23 October 2024. Available online: https://www.usaid.gov/sites/default/files/2022-05/USAID-Bangladesh_NCP.pdf.
- ICDDRB, Malnutrition, (2024) Retrieved 23 October 2024. Available online: https://www.icddrb.org/news-and-events/press-corner/media-resources/malnutrition.
- WBG (World Bank Group), Prevalence of anemia among children (% of children ages 6-59 months)-Bangladesh, (2024) Retrieved 23 October 2024. Available online: https://data.worldbank.org/indicator/SH.ANM.CHLD.ZS?locations=BD.
- USDA (United States Department of Agriculture), Agricultural Research Service Nutrient Database Laboratory USDA. In: National Nutrient Database for Standard Reference Release 28 (2016) USDA ARS, Beltsville, MD.
- R. Khanam, A.C. Lee, D.K. Mitra, M. Ram, S. Das Gupta, A. Quaiyu, A. Choudhury, P. Christian, L.C. Mullany, A.H. Baqui. Maternal short stature and under-weight status are independent risk factors for preterm birth and small for gestational age in rural Bangladesh, Eur. J. Clin. Nutr. (2019) 73(5), 733-742. [CrossRef]
- G.A. Stevens, C.J. Paciorek, M.C. Flores-Urrutia. National, regional, and global estimates of anaemia by severity in women and children for 2000-19: a pooled analysis of population-representative data (2022).
- WFP (World Food Programmee). Food Security and Nutrition in Bangladesh, (2024) Retrieved 23 October 2024. Available online: https://www.wfp.org/publications/food-and-nutrition-security-bangladesh.
- WHO (World Health Organization). Diabetes, (2024b). Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (2024).
- IDF (International Diabetes Federation). Diabetes around the world, (2024). Available online: https://idf.org/about-diabetes/what-is-diabetes/.
- T. Biswas, A. Islam, L.B. Rawal, et al. Increasing prevalence of diabetes in Bangladesh: a scoping review. Public Health (2016) 138, 4-11. [CrossRef]
- N.H. Cho, J.E. Shaw, S. Karuranga, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract. (2018) 138, 271-81. 10.1016/j.diabres.2018.02.
- NGDM (National Guideline on Diabetes Mellitus). National guideline on diabetes mellitus, 2023, Non-Communicable Disease Control Programme (NCDC), Directorate General of Health Services (DGHS), Ministry of Health & Family Welfare, Mohakhali, Dhaka 1212, Bangladesh (2023).
- Q. Nahar, S. Choudhury, M.O. Faruque, S.S.S. Saliheen Sultana, M.A. Siddiquee. Dietary guidelines for Bangladesh (DGB). National food policy capacity strengthening programme. BIRDEM, Dhaka, June 2013 (2013).
- S. Mustafa, C.E. Haque, S. Baksi. Low daily intake of fruits and vegetables in rural and urban Bangladesh: influence of socioeconomic and demographic factors, Social food beliefs and behavioural practices. Nutrients, (2021) 13(8). [CrossRef]
- S. Akhtar, J.A. Nasir, A. Sarwar A, et. al. Prevalence of diabetes and pre-diabetes in Bangladesh: a systematic review and meta-analysis, BMJ Open, 2020 10(9), e036086. [CrossRef]
- S. Allender, B. Lacey, P. Webster, et al. Level of urbanization and noncommunicable disease risk factors in Tamil Nadu, India. Bull. World Health Organ. (2010) 88, 297304.
- ADA (American Diabetes Association). Diagnosis and classification of diabetes mellitus. Diabetes Care (2010), 33 Suppl 1:S62-9. [CrossRef]
- BBS. Population and Housing Census 2022 (Preliminary Report), Bangladesh Bureau of Statistics, Statistics and Informatics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh, Agargaon, Dhaka-1207, Bangladesh (2022).
- BADC (Bangladesh Agricultural Development Corporation). Miscellaneous Info: Seed production Target (2024). Link: https://badc.gov.
- A.K. Padhy, P. Kaur, S. Singh, L. Kashyap, A. Sharma. Colored wheat and derived products: key to global nutritional security, Critical Rev. Food Sci. Nutri. (2022) 64(7), 1894-1910. [CrossRef]
- K.K. Adom, R.H. Liu. Antioxidant activity of grains, J. Agric. Food Chem. (2002) 50(21), 6182-6187.
- I.Z. Islam, B.J. Park, Y.T. Lee. Effect of salinity stress on bioactive compounds and antioxidant activity of wheat microgreen extract under organic cultivation conditions, Int. J. Biol. Macromol. (2019) 140, 631-636. [CrossRef]
- M.Z. Islam, B.J. Park, Y.-T. Lee. Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract, Food Chem. (2020) 309,125763. [CrossRef]
- M.Z. Islam, B-J. Park, Y-T Lee. Bioactive phytochemicals and antioxidant capacity of wheatgrass treated with salicylic acid under organic soil cultivation, Chem. Biodiver. (2021a) 18(2), e2000861. [CrossRef]
- M.Z. Islam, B-J. Park, Y-T Lee. Influence of temperature conditions during growth on bioactive compounds and antioxidant potential of wheat and barley grasses, Foods, (2021b) 10(11), 2742. [CrossRef]
- M.Z. Islam, B-J. Park, S-Y. Jeong, et al. Assessment of biochemical compounds and antioxidant enzyme activity in barley and wheatgrass under water-deficit conditions, J. Sci. Food Agric. (2022) 102(5), 1995-2002. [CrossRef]
- FAO. Crop prospects and food situation - Quarterly global report No. 1, March 2022. Rome, 2022. [CrossRef]
- FAO. IFAD. UNICEF. WFP. WHO. The State of food security and nutrition in the world 2022. Repurposing food and agricultural policies to make healthy diets more affordable, Rome, FAO (2022). [CrossRef]
- M.C. Martínez-Ballesta, R. Dominguez-Perles, D.A. Moreno, et al. Minerals in plant food: effect of agricultural practices and role in human health. A review, Agron Sustain Dev, Springer Verlag/EDP Sciences/INRA, (2010) 30 (2). [CrossRef]
- Q. Nahar, S. Choudhury, M.O. Faruque, S.S.S. Saliheen Sultana, M.A. Siddiquee. Dietary Guidelines for Bangladesh (DGB). National Food Policy Capacity Strengthening Programme, BIRDEM, Dhaka, June 2013 (2013).
- H. Wieser, P. Koehler, K.A. Scherf. The Two faces of wheat. 7 (2020). [CrossRef]
- Jideani, D. Beswa. Review Composition and functionality of wheat bran and its application in some cereal food products, Int. J. Food Sci. Tech. (2015) 50(12), 2509–2518. [CrossRef]
- B. Kumar, N. Tirkey, S. Kumar. Chemical Science Review and Letters. Anti-Nutrient in Fodders: A Review, Chem. Sci. Rev. Lett. (2017) 6(24), 2513-2519.
- Z. Ang. Effect of wheat flour with different quality in the process of making flour products, Int. J. Metrol. Quality Engg. (2020) 1-6. [CrossRef]
- W.H.M. Alrayyes. Open PRAIRIE: Open public research access institutional repository and information exchange nutritional and health benefits enhancement of wheat-based food products using chickpea and distiller’s dried grains (Thesis), Brookings: South Dakota State University (2018).
- M.H. Mughal. Wheat compounds - A comprehensive review, (2019) 6:1-6. [CrossRef]
- P. Farming. In: Importance of wheat in animal feed and production. In: All information about veterinary medicine and animal production [Internet], (2021). Available online: https://www.veterinariadigital.com/en/articulos/importance-of-wheat-in-animal-feed-and-production/.
- H.H. Stein, A.A. Pahm, J.A. Roth. Feeding wheat to pigs [Internet] (2010). Available online: https://nutrition.ansci.illinois.edu/sites/default/files/SwineFocus002.pdf.
- D. Kokoszyński. Whole wheat in commercial poultry production. Wheat and rice in disease prevention and health, (2014) 41-55. [CrossRef]
- Arnarson. Wheat 101: Nutrition facts and health effects [Internet] (2019). Available online: https://www.healthline.com/nutrition/foods/wheat.
- Ocheme, O.E. Adedeji, C.E. Chinma, C.M. Yakubu, U.H. Ajibo. Proximate composition, functional, and pasting properties of wheat and groundnut protein concentrate flour blends. Food Sci Nutr, (2018) 6(5), 1173-1178. [CrossRef]
- C.D. Nandini, P.V. Salimath. Carbohydrate composition of wheat, wheat bran, sorghum, and bajra with good chapatti/roti (Indian flat bread) making quality. Food Chem. (2001) 73:197-203. [CrossRef]
- W. Li, J. Gao, G. Wu, et al. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocol. (2016) 60, 364-373. [CrossRef]
- K. Gebruers, E. Dornez, Z. Bedõ, et al. Environment and genotype effects on the content of dietary fiber and its components in wheat in the health grain diversity screen. J. Agric. Food Chem. (2010), 58(17), 9353-9361. [CrossRef]
- D. Godfrey, M.J. Hawkesford, S.J. Powers, S. Millar, P.R. Shewry. Effects of crop nutrition on wheat grain composition and end-use quality. J. Agric. Food Chem. (2010) 58(5), 3012-3021. [CrossRef]
- G. Gartaula, S. Dhital, G. Netzel, et al. Quantitative structural organization model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydr. Polym. (2018) 196, 199-208. [CrossRef]
- Healthline. Wheat 101: Nutrition facts and health effects, (2024). Available online: https://www.healthline.com/nutrition/foods/wheat#nutrition.
- M. Garg, A. Sharma, S. Vats, et al. Vitamins in cereals: A critical review of content, health effects, processing losses, bio-accessibility, fortification, and biofortification strategies for their improvement. Front. Nutr. (2021), 8, 586815. [CrossRef]
- M.G. Traber, R.S. Bruno: Chapter 7 - Vitamin E, Editor(s): P. Bernadette, D.F. Marriott, A.V. Birt, Stallings, A.A. Yates. Present knowledge in nutrition (Eleventh Edition), Academic Press, (2020) p.115-136. [CrossRef]
- P.R. Shewry, S.J. Hey. The contribution of wheat to human diet and health. Food and Enei G, Aleshin V, Parkhomenko Y, et al. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci. Reports, (2015) 1-26. [CrossRef]
- Z. Ang. Effect of wheat flour with different quality in the process of making flour products. Int. J. MetroL. Quality EngG. (2020) 1-6. [CrossRef]
- S. Redzic, M.F. Hashmi, V. Gupta. Niacin deficiency. [Updated 2023 Jul 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, (2024). Available online: https://www.ncbi.nlm.nih.gov/books/NBK557728/.
- R.B. Rucker. Pantothenic acid. Linus Pauling Institute [Internet], (2015). Available online: https://lpi.oregonstate.edu/mic/vitamins/pantothenic-acid.
- V.R. Da Silva, J.F. Gregory III. “Vitamin B6”. In: B.P. Marriott, D.F. Birt, V.A. Stallings, A.A, Yates, editors. Present knowledge in nutrition, 11th ed. London: Elsevier, 225-38 (2020). [CrossRef]
- W.T. Penberthy, M. Sadri, J. Zempleni. In: BP Marriott, DF Birt, VA Stallings, AA Yates, (eds). Present knowledge in nutrition. 11th ed. London, United Kingdom: Academic Press (Elsevier), 289-304 (2020).
- K. Fekete, C. Berti, M. Trovato, et al. Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutri. J. (2012) 1, 75. [CrossRef]
- P. Das, S. Adak, A. Lahiri Majumder. (2020) Genetic manipulation for improved nutritional quality in rice. Front. Genet. (2020), 11, 776.
- Rice, In Wikipedia (2024). Available online: https://en.wikipedia.org/wiki/Rice.
- Saritha, A.V. Ramanjaneyulu, N. Sainath, E. Umarani. Nutritional Importance and Value Addition in Maize. Biotica Research Today (2020), 2(9), 974/977.
- Wheat, In: Wikipedia (2024). Available online: https://en.wikipedia.org/wiki/Wheat.
- N. Yankah, F.D. Intiful, A.E.M. Tette. Comparative study of the nutritional composition of local brown rice, maize (obaatanpa), and millet-A baseline research for varietal complementary feeding. Food Sci. Nutri. (2020) 8(6), 2692-2698. [CrossRef]
- Feedinamics. Grain of soft wheat (Triticum aestivum L., also known as Triticum aestivum L. subsp. aestivum), (2024). Available online: https://www.feedtables.com/content/wheat-soft.
- R.E. Jocelyne, K. Béhiblo, A.K. Ernest. Comparative study of the nutritional value of wheat, maize, sorghum, millet, and fonio: some cereals commonly consumed in Cote d’Ivoire. Euro. Sci. J. (2020), 16(2), 118-131. [CrossRef]
- B. Juliano, T. Arvin. Gross structure and composition of the rice grain, (2019). [CrossRef]
- M.H. Mughal, Wheat compounds - A comprehensive review, 2019, 6, 1-6. [CrossRef]
- FAO (Food and Agriculture Organization). Crop prospects and food situation - Quarterly global report No. 1, 2022. Rome (2022). [CrossRef]
- N. Kumari, N. Rawat, T.V. Tiwari, et al. Development and molecular characterization of wheat- Aegilops longissima derivatives with high grain micronutrients. Aust. J. Crop Sci. 2013, 7(4), 508-514.
- Arnarson, Wheat 101: Nutrition facts and health effects [Internet], (2019). Available online: https://www.healthline.com/nutrition/foods/wheat.
- WHO (World Health Organization). Diabetes. World Health Organization (2024). Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes.
- S. Bencze, M. Makádi, T.J. Aranyos, et al. Re-introduction of ancient wheat cultivars into organic agriculture-emmer and einkorn cultivation experiences under marginal conditions. Sustainability, 2020, 12(4), 1584. [CrossRef]
- IOM (Institute of Medicine). Standing committee on the scientific evaluation of dietary reference intakes. Dietary reference intakes for calcium and vitamin D. Washington (DC): The National Academies Press (US). 2011.
- IOM (Institute of Medicine). Standing committee on the scientific evaluation of dietary reference intakes. Dietary reference intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): The National Academies Press (US). 2000.
- IOM (Institute of Medicine). Standing committee on the scientific evaluation of dietary reference intakes. Dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): The National Academies Press (US), (2001).
- W. Biel., A Jaroszewska, S. Stankowski et al. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. (2021) 247, 1525-1538. [CrossRef]
- Hussain, H. Larsson, R. Kuktaite, E. Johansson. Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake. Int. J. Envirnl Res Public Health (2010), 7(9), 3442-56. [CrossRef]
- D.R. Jacobs Jr, K.A. Meyer, L.H. Kushi, A.R. Folsom. Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: the Iowa Women’s Health Study. Am. J. Clin. Nutri. (1998) 68(2), 248-257. [CrossRef]
- K.Y. Renkema, R.T. Alexander, R.J. Bindels, G. Hoenderop. Calcium and phosphate homeostasis: Concerted interplay of new regulators, Ann, Med. (2008) 40, 82-91. [CrossRef]
- J.L. Shaker, L. Deftos. Calcium and phosphate homeostasis. In: K.R. Feingold, B. Anawalt, A. Boyce, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279023/.
- K.O. Soetan, C.O. Olaiya, O.E. Oyewole. The importance of mineral elements for humans, domestic animals, and plants: A review. African J. Food Sci. 2010, 4(5), 200-222. Available online http://www.academicjournals. Available online: http://www.academicjournals.org/ajfs.
- V. Kasche, Z. Ignatova, H. Märkl H, et al. Ca2+ is a cofactor required for membrane transport and maturation and is a yield-determining factor in high-cell-density penicillin amidase production. Biotechnology Progress, (2005) 21(2), 432-8. [CrossRef]
- I.D. Volotovski, S.G. Sokolovsky, O.V. Molchan, M.R. Knight. Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol (1998) 17(3), 1023-30. [CrossRef]
- Theobald H. Dietary calcium and health. Nutrition Bulletin (2005) 30, 237–277.
- G. Rinonapoli, V. Pace V, C. Ruggiero, et al. Obesity and Bone: A complex relationship. International Journal of Molecular Science, (2021) 22, 13662. [CrossRef]
- U. Gröber, J. Schmidt, K. Kisters. Magnesium in prevention and therapy. Nutrients. (2015), 23, 7(9), 8199-226. [CrossRef]
- M. Barbagallo, N. Veronese, L.J. Dominguez. Magnesium in aging, health, and diseases. Nutrients, (2021) 13(2), 463. [CrossRef]
- S.L. Volpe, Magnesium in disease prevention and overall health. Advances in Nutrition. (2013) 4(3), 378S-83S. [CrossRef]
- F.A. Ajib, J.M. Childress. Magnesium Toxicity. In: StatPearls [Internet] (2023). Available online: https://www.ncbi.nlm.nih.gov/books/NBK554593/.
- Shrimanker, S. Bhattarai. Electrolytes. In StatPearls [Internet] (2022). Available online: https://pubmed.ncbi.nlm.nih.gov/31082167/.
- Hyponatremia, In Wikipedia (2022). Available online: https://en.wikipedia.org/wiki/Hyponatremia.
- R.B. Saper, R. Rebecca. Zinc: an essential micronutrient. Am. Fam. Physician (2009), 79(9), 768-72.
- W. Maret. Zinc biochemistry: from a single zinc enzyme to a key element of life. Advances in Nutrition (2013), 4(1), 82-91. [CrossRef]
- F. Guerrero-Romero, M. Rodríguez-Morán. Complementary therapies for diabetes: The case for chromium, magnesium, and antioxidants. Archives Med. Res. (2005) 36, 250-257.
- Shenkin. Basics in clinical nutrition: Physiological function and deficiency states of trace elements, e-SPEN, (2008) 3, 255-258. [CrossRef]
- M.G. Angelova, T.V. Petkova-Marinova, M.V. Pogorielov, et al. Trace Element Status (Iron, Zinc, Copper, Chromium, Cobalt, and Nickel) in iron-deficiency anaemia of children under 3 Years. Anemia (2014) 718089. [CrossRef]
- G.O. Rennan, R.G.O. Araujo, S.M. Macedo. M.G.A. Korn, et al. Mineral composition of wheat flour consumed in Brazilian cities. J. Brazilian Chem. Soci. (2008) 19(5), 935-942. [CrossRef]
- L. Li, X. Tian, X. Yu, S. Dong. Effects of acute and chronic heavy metal (Cu, Cd, and Zn) exposure on sea cucumbers (Apostichopus japonicus). BioMed Res. Int. (2016), 6:4532697. [CrossRef]
- J.L. Porter, P. Rawla. Hemochromatosis. In: StatPearls [Internet], (2022). Available online: https://www.ncbi.nlm.nih.gov/books/NBK430862/.
- L. Li, X. Yang. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. (2018) 7580707. [CrossRef]
- F. Pizarro, M. Olivares, R. Uauy, et al. Acute gastrointestinal effects of graded levels of copper in drinking water. Environ. Health Perspect (1999) 107(2), 117-21. [CrossRef]
- S. Hariharan, S. Dharmaraj. Selenium and selenoproteins: It role in regulation of inflammation. Inflammo-pharmacology. Nature Public Health Emergency Collection, (2020) 28(3), 667-695. [CrossRef]
- M. Vinceti, T. Filippini, C. Del Giovane, et al. Selenium for preventing cancer. Cochrane Database of Systematic Reviews (2018) 1(1), CD005195. [CrossRef]
- L.H. Duntas. Selenium and the thyroid: A Close-Knit connection, J. Clin. Endocrin. Metabol. (2010), 95(12), 5180-5188. [CrossRef]
- G. Barchielli, A. Capperucci, D. Tanini. The role of selenium in pathologies: an updated review. Antioxidants (Basel), (2022) 27, 11(2), 251. [CrossRef]
- P.J. Havel. A scientific review: the role of chromium in insulin resistance. The diabetes educator (2004) Suppl:2-14.
- Hen, M. Kan, P. Ratnasekera, et al. Blood chromium levels and their association with Cardiovascular diseases, diabetes, and depression: National health and nutrition examination survey (NHANES) 2015-2016. Nutrients (2022) 14(13), 2687. [CrossRef]
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton. Heavy metal toxicity and the environment. Mol. Clin. Environ Toxicol (2012) 01, 133-64. [CrossRef]
- J.R. González-Montaña, F. Escalera-Valente, A.J. Alonso, et al. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals (Basel), (2020) 10(10), 1855. [CrossRef]
- M. Packer. Cobalt Cardiomyopathy: A critical reappraisal in light of a recent resurgence. circulation: Heart Failure (2016) (12), 9. [CrossRef]
- G. Schwartz. Molybdenum cofactor biosynthesis and deficiency. Cell. Mol. Life Sci. (2005) 62, 2792-2810.
- S. Xiao-Yun, D. Guo-Zhen, L. Hong. Studies of a naturally occurring molybdenum-induced copper deficiency in the yak, Veterinary J. 2006, 171(2), 352–357. [CrossRef]
- R. Singh. Wheat: Uses, Benefits, Side Effects, (2022). Available online: https://pharmeasy.in/blog/ayurveda-uses-benefits-side-effects-of-wheat/.
- P. Goufo, H. Trindade. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, and phytic acid. Food Sci Nutri (2014) 75. [CrossRef]
- H. Kang, M-G. Lee, J-K. Lee, Y-H. Choi, Y-S. Choi. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice. Nutrients (2016) 8(4),188. [CrossRef]
- S.S. Anand, C. Hawkes, R.J. de Souza, et al. Food consumption and its impact on cardiovascular disease: the importance of solutions focused on the globalized food system: A report from the workshop convened by the world heart federation. J Am College Cardiol. (2015) 66(14), 1590-1614. [CrossRef]
- M. Jessri, B. Rashidkhani. Dietary patterns and risk of gallbladder disease: a hospital-based case-control study in adult women. J. Health Population Nutri. (2015) 33(1), 39-49.
- M.C. Lephuthing, T.A. Baloyi, N.Z. Sosibo, T.J. Tsilo. Progress and challenges in improving nutritional quality in wheat. In: Wanyera R, Owuoche J, editors. Wheat improvement, management, and utilization. 2nd. ed. IntechOpen 345 (2017). [CrossRef]
- C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, J. Dubcovsky J. An NAC gene regulating senescence improves grain protein, Zn and Fe content in wheat. Sci, 2006, 314, 1298–1301.
- S.W. Souci, W. Fuchmann, H. Kraut. 1986. Food composition and nutrition tables 1986187, 3rd Rev. Ed. Stuttgart, Wissenschaftliche Verlagsgesellschaft mbH (1986).
- B.O. Eggum. Evaluation of protein quality and the development of screening techniques. In New approaches to breeding for improved plant protein, p. 125- 135. Vienna, IAEA (1969).
- B.O. Eggum, Nutritional aspects of cereal protein. In A. Muhammad, R. Aksel & R.C. von Boustel, eds. Genetic diversity in plants, p. 349369. New York, Plenum Press (1977).
- B.O. Eggum, The nutritional value of rice in comparison with other cereals. In Proceedings, Workshop on Chemical Aspects of Rice Grain Quality, p. 91-111. Los Baños, Laguna, the Philippines, IRRI (1979).
- H. Bradbury, W.D. Holloway. Chemistry of tropical root crops: significance for nutrition and agriculture in the Pacific. Canberra, Australian Centre for International Agricultural Research. 201 (1988).
- WHO. 1985. Energy and protein requirements. Report of a Joint FAO/WHO/UNU Expert Consultation WHO Tech. Rep. Ser. 724. Geneva WHO. 206 (1985).
- FNRI (Food and Nutrition Research Institute). 1980. Food composition tables, recommended for use in the Philippines. FNRI Handbook 1, 5th rev. Manila, FNRI, (1980) pp. 313.
- D. Hopkins. Effect of variation in protein digestibility. In C.E. Bodwell, J.S. Adkins & D.T. Hopkins, eds. Protein quality in humans: assessment and in vitro estimation, (1981) p.169-193. Westport, CT, USA, AVI Publishing Co.
- B.O. Juliano. Factors affecting nutritional properties of rice protein. Trans. Natl. Acad. Sci. Technol. (Philipp.), (1985a) 7, 205-216.
- B. Pedersen, B.O. Eggum. The influence of milling on the nutritive value of flour from cereal grains. IV. Rice. Qual. Plant. Plant Foods Hum. Nutr. (1983) 33, 267-278.
- B.O. Juliano. ed. Rice: chemistry and technology, 2nd ed. St Paul, MN, USA, Am. Assoc. Cereal Chem. (1985b), pp. 774 pp.
- B.O. Eggum, B.O. Juliano, C.C. Maniñgat. Protein and energy utilization of rice milling fractions by rats. Qual. Plant. Plant Foods Hum. Nutr. (1982.) 31,371-376.
- WHO. Energy and protein requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Tech. Rep. Ser. 724. Geneva, WHO. (1985) pp. 206.
- H.W. Wiesner. H.-D. Seilmeier, Belitz. Vergleichende Untersuchungen uber partielle Aminosauresequenzen von Prolaminen und Glutelinen verschriedener Getreidearten. Z. Lebensm. Unters. Forsch. (1980) 170, 17.
- M.C. Lephuthing, T.A. Baloyi, N.Z. Sosibo, T.J. Tsilo. Progress and challenges in improving nutritional quality in wheat. In: R. Wanyera, J. Owuoche, editors. Wheat improvement, management, and utilization. 2nd. ed. IntechOpen (2017) p.345. [CrossRef]
- Bharti, N. Pandey, D. Shankhdhar, P.C. Srivastava, S.C. Shankhdhar. Improving nutritional quality of wheat through soil and foliar zinc application. Plant Soil Environ. (2013) 59, 348-352.
- S. Ghasemi, A.H. Khoshgoftarmanesh, M. Afyuni, H. Hadadzadeh. The effectiveness of foliar applications of synthesized zink-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. Eur. J. Agron. (2013) 45, 68-74.
- Pasqualone, L.N. Delvecchio, G. Gambacorta G, et al. Effect of supplementation with wheat bran aqueous extracts obtained by ultrasound-assisted technologies on the sensory properties and the antioxidant activity of dry pasta. Nat. Products Commun. (2015) 10(10), 1739-42.
- Li L, Shewry PR, Ward JL. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. Journal of agricultural and food chemistry. 2008;56(21):9732–9739. [CrossRef]
- D.M. Lebesi, C. Tzia. Effect of the addition of different dietary fiber and edible cereal bran sources on the baking and sensory characteristics of cupcakes. Food Bioproc. Tech. (2011) 4, 710–722.
- S. Ragaee, I. Guzar, N. Dhull, K. Seetharaman. Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread, LWT - Food Science and Technology. (2011) 44, 2147-2153.
- D. Zhang, W.M. Moore. Wheat bran particle size effects on bread baking performance and quality, (1999) 79(6), 805-809.
- N.K.M. Alparce, A.K. Anal, Food processing by-products as sources of functional foods and nutraceuticals. In: A. Noomhorm, I. Ahmad, A.K. Anal, eds. Functional foods and dietary supplements: Processing effects and health benefits. Chichester: John Wiley & Sons Ltd., (2014) pp. 164-166.
- S. Kuznesof, I.A. Brownlee, C. Moore, D.P. Richardson, S.A. Jebb, C.J. Seal. Whole heart study participant acceptance of wholegrain foods. Appetite, (2012) 59, 187-193.
- M.G. Ferruzzi, S.S. Jonnalagadda, S. Liu, et al. Developing a standard definition of whole-grain foods for dietary recommendations: Summary report of a multidisciplinary expert roundtable discussion. Adv. Nutri. (2014) 5, 164-176. [CrossRef]
- C.S. Brennan, C.M. Tudorica. Fresh pasta quality is affected by the enrichment of non-starch polysaccharides. J. Food Sci. (2007) 72, S659–S665. [CrossRef]
- Foschia, D. Peressini, A. Sensidoni, M.A. Brennan, C.S. Brennan. How combinations of dietary fibers can affect the physicochemical characteristics of pasta. Food Science and Technology, (2015) 61, 41–46.
- N.M. Edwards, C.G. Biliaderis, Dexter JE. Textural characteristics of whole wheat pasta and pasta containing non-starch polysaccharides. J. Food Sci. (1995) 60, 1321-1324.
- D. Gazzolaa, S. Vincenzia, L. Gastaldona, S. Tolinb, G. Pasinia, A. Curionia. The proteins of the grape (Vitis vinifera L.) seed endosperm: Fractionation and identification of the major components. Food Chem. (2014) 155, 132–139.
- Wang, R.J. Hamer, T. van Vliet, et al. Effect of water unextractable solids on gluten formation and properties: Mechanistic considerations. J. Cereal Sci. (2003), 37, 55–64. [CrossRef]
- D. Peressini, A. Sensidoni. Effect of soluble dietary fiber addition on rheological and breadmaking properties of wheat doughs. J. Cereal Sci. (2009) 49,190-201.
- Borrill, J.M. Connorton, J. Balk, et al. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front. Plant Sci. (2014) 5, 53. [CrossRef]
- B.M. Waters, R.P. Sankaran. Moving micronutrients from the soil to the seeds: genes and hysiological processes from a biofortification perspective. Plant Sci. (2011) 180, 562-574. [CrossRef]
- S.A. Kim, M.L. Guerinot. Mining iron: Iron uptake and transport in plants. FEBS Letter. (2007) 581, 2273-2280. [CrossRef]
- D. Ma, Y. Li, J. Zhang, C. Wang et al. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front. Plant Sci. (2016) 7, 528. [CrossRef]
- B. Laddomada, m Durante, Mangini G, et al. Genetic variability for individual and total phenolic acids in a tetraploid wheat collection. Genet. Resour. Crop Evol. (2015). [CrossRef]
- J.E. Mayer, W.H. Pfeiffer, P. Beyer. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opi. Plant Biol. (2008) 11, 166-170. [CrossRef]
- P.J. White, M.R. Broadley. Biofortification of crops with seven mineral elements often lacking in human diets iron, zinc, copper, calcium, magnesium, selenium, and iodine. New Phytol. (2009) 182, 49-84. [CrossRef]
- I Cakmak, WH Pfeiffer, B. McClafferty. Biofortification of durum wheat with zinc and iron: a review. Cereal Chem. (2010) 87, 10-20. [CrossRef]
- E.A, Waraich, R. Ahmad, Saifullah, S. Ahmad, A. Ahmad. Impact of water and nutrient Management on the Nutritional Quality of Wheat, J. Plant Nutri. (2010) 33(5), 640-643. [CrossRef]
- N. Kumari, N. Rawat, V.K. Tiwari, et al. Development and molecular characterization of wheat-Aegilops longissima derivatives with high grain micronutrients. Aust. J. Crop Sci. (2013) 7(4), 508–514.
- Kumar, P. Kapoor, V. Chunduri, S. Sharma, M. Garg. Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum). Front. Plant Sci. (2019) 10, 308. [CrossRef]
- N. Rawat, V.K. Tiwari, K. Neelam, et al. Development and characterization of Triticum aestivum-Aegilops kotschyi amphiploids with high grain iron and zinc contents. Plant Genetic Resources: Characterization and Utilization, (2009a) 7, 271–280. [CrossRef]
- N. Rawat, V.K. Tiwari, N. Singh, et al. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet. Resour. Crop Evol. (2009b) 56, 53–64. [CrossRef]
- N. Rawat, K. Neelam, V.K. Tiwari, et al. Development and molecular characterization of wheat-Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome, (2011) 54,943–953. [CrossRef]
- C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, J. Dubcovsky. An NAC gene regulating senescence improves grain protein, Zn, and Fe content in wheat. Science. (2006) 314, 1298–1301.
- N. Rawat, K. Neelam, V,K. Tiwary, Dhaliwal HS. Biofortification of cereals to overcome hidden hunger. Plant Breed. (2013) 132, 437–445.
- H. Brinch-Pedersen, F. Hatzack, E. Stoger E, et al. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J. Agric. Food Chem. (2006) 54, 4624-4632. [CrossRef]
- P.R. Shewry, G. Charmet, G. Branlard, et al. Developing new types of wheat with enhanced health benefits. Trends Food Sci. Tech. (2012) 25(2), 70–77. [CrossRef]
- R. Fernandez-Orozco, L. Li, C. Harflett, P.R. Shewry, J.K. Ward. Effects of environment and genotype on phenolic acids in wheat in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. (2010) 58(17), 9341–9352. [CrossRef]
- P.R. Shewry, V. Piironen, A.M. Lampi, et al. The HEALTHGRAIN wheat diversity screen: Effects of genotype and environment on phytochemicals and dietary fiber components. J. Agric. Food Chem. (2010) 58(17), 9291–9298. [CrossRef]
- Z. Sramkova, E. Gregova, E. Sturdik. Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca (2009) 2, 115-138.

| Nutrients | g/day | Vitamins | mg/day | ||
|---|---|---|---|---|---|
| Male | Female | Male | Female | ||
| Energy | 2430 kcal/d | 2150kcal/d | Vitamin A | 600 | 600 |
| Carbohydrate | 130 | 130 | Thiamine (B1) | 1.2 | 1.1 |
| Protein | 33-66 | 33-66 | Riboflavin (B2) | 1.3 | 1.0 |
| Total fat | 20-35 | 20-35 | Niacin (B3) | 16 | 14 |
| Fibre | 30 | 25 | Pantothenic acid (B5) | 5 | 5 |
| Choline | 550 | 425 | Vitamin (B6) | 1.7 | 1.5 |
| Water | 3.7 L/d | 2.7 L/d | Vitamin E | 15 | 15 |
| Vitamins | µg/day | ||||
| Vitamin C | 90 | 75 | Biotin (B7) | 30 | 30 |
| Vitamin D | 20 | 20 | Folate (B9) | 400 | 400 |
| Vitamin K | 120 | 90 | Cobalamin (B12) | 2.4 | 2.4 |
| Minerals | |||||
| Macroelements | mg/day | Microelements | µg/day | ||
| Male | Female | Male | Female | ||
| Phosphorus | 700 | 700 | Cobalt | 300 | 275 |
| Calcium | 1000 | 1000 | Molybdenum | 45 | 45 |
| Magnesium | 260 | 220 | Nickel | 600 | 600 |
| Potassium | 3750 | 3225 | Iodine | 150 | 150 |
| Sodium | 2092 | 1902 | Molybdenum | 45 | 45 |
| Manganese | 2.3 | 1.8 | Chromium | 35 | 25 |
| Chloride | 2300 | 2300 | Fluoride | 4 | 3 |
| Zinc | 11 | 9 | Copper | 900 | 900 |
| Iron | 13.7 | 29.4 | Selenium | 55 | 55 |
| Manganese | 2.3 | 1.8 | |||
| Food | Moisture (%) | Protein (g N × 6.25) | Crude fat (g) | Available carbohydrates (g) | Fibre (g) | Crude ash (g) | Energy (kJ) | Energy (kcal) | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Dietary | Water insoluble | Lignin | ||||||||
| Brown rice | 14.0 | 7.30 | 2.2 | 71.1 | 4.0 | (2.7) | (0.1) | 1.4 | 1 610 | 384 |
| Wheat | 14.0 | 10.6 | 1.9 | 61.6 | 10.5 | (7.8) | (0.6) | 1.4 | 1 570 | 375 |
| Maize | 14.0 | 9.80 | 4.9 | 60.9 | 9.0 | (6.8) | (0.0) | 1.4 | 1 660 | 396 |
| Millet | 14.0 | 11.5 | 4.7 | 64.6 | 37.0 | (2.3) | (0.0) | 1.5 | 1 650 | 395 |
| Sorghum | 14.0 | 8.30 | 3.9 | 57.4 | 13.8 | (12.4) | (3.0) | 2.6 | 1 610 | 384 |
| Rye | 14.0 | 8.70 | 1.5 | 60.9 | 13.1 | (8.4) | (1 4) | 1.8 | 1 570 | 375 |
| Oats | 14.0 | 9.30 | 5.9 | 63.0 | 5.5 | (39) | (0.0) | 2.3 | 1 640 | 392 |
| Potato | 77.8 | 2.00 | 0.1 | 15.4 | 2.5 | (1.9) | (0.0) | 1.0 | 294 | 70 |
| Cassava | 63.1 | 1.00 | 0.2 | 31.9 | 2.9 | (2.2) | (0.0) | 0.7 | 559 | 133 |
| Yam | 71.2 | 2.00 | 0.1 | 22.4 | 3.3 | (2.6) | (0.0) | 1.0 | 411 | 98 |
| Food | Carotene (mg) | Thiamine (mg) | Riboflavin (mg) | Niacin (mg) | Ascorbic acid (mg) | Vitamin E (mg) | Iron (mg%) | Zinca (mg%) |
|---|---|---|---|---|---|---|---|---|
| Brown rice | 0.0 | 0.29 | 0.04 | 4.0 | 0.0 | 0.8 | 3.0 | 2.0 |
| Wheat | 0.02 | 0.45 | 0.10 | 3.7 | 0.0 | 1.4 | 4.0 | 3.0 |
| Maize | 0.37 | 0.32 | 0.10 | 1.9 | 0.0 | 1.9 | 3.0 | 3.0 |
| Millet | 0.0 | 0.63 | 0.33 | 2.0 | 0.0 | 0.07 | 7.0 | 3,0 |
| Sorghum | 10.0 | 0.33 | 0.13 | 3.4 | 0.0 | 0.17 | 9.0 | 2,0 |
| Rye | 0.0 | 0.66 | 0.25 | 1.3 | 0.0 | 1.9 | 9.0 | 3,0 |
| Oats | 0.0 | 0.60 | 0.14 | 1.3 | 0.0 | 0.84 | 4,0 | 3,0 |
| Potato | 0.01 | 0.11 | 0.05 | 1.2 | 17.0 | 0.06 | 0.8 | 0.3 |
| Cassava | 0.03 | 0.06 | 0.03 | 0.6 | 30.0 | 0.0 | 1.2 | 0.5 |
| Yam | 0.01 | 0.09 | 0.03 | 0.6 | 10.0 | 0.0 | 0.9 | 0.7 |
| Brown rice | 0.0 | 0.29 | 0.04 | 4.0 | 0.0 | 0.8 | 3.0 | 2.0 |
| Wheat | 0.02 | 0.45 | 0.10 | 3.7 | 0.0 | 1.4 | 4.0 | 3,0 |
| Maize | 0.37 | 0.32 | 0.10 | 1.9 | 0.0 | 1.9 | 3.0 | 3,0 |
| Food | Lysine (g/16 g N) |
Threonine (g/16 g N) |
Methionine + cystine (g/16 g N) | Tryptophan (g/16 g N) | Amino acid scorea (%) | Tannin (%) |
|---|---|---|---|---|---|---|
| Brown rice | 3.8 | 3.6 | 3.9 | 1.1 | 66 | 0.4 |
| Wheat | 2.3 | 2.8 | 3.6 | 1.0 | 40 | 0.4 |
| Maize | 2.5 | 3.2 | 3.9 | 0.6 | 43 | 0.4 |
| Millet | 2.7 | 3.2 | 3.6 | 1.3 | 47 | 0.6 |
| Sorghum | 2.7 | 3.3 | 2.8 | 1.0 | 47 | 1.6 |
| Rye | 3.7 | 3.3 | 3.7 | 1.0 | 64 | 0.6 |
| Oats | 4.0 | 3.6 | 4.8 | 0.9 | 69 | 1.1 |
| Potato | 6.3 | 4.1 | 3.6 | 1.7 | 100 | - |
| Cassava | 6.3 | 3.4 | 2.6 | 1.0 | 91 | - |
| Yam | 6.0 | 3.4 | 2.9 | 1.3 | 100 | - |
| Rice fraction | Thiamine (mg) | Riboflavin (mg) | Niacin (mg) | Tocopherol (mg) | Calcium (mg) | Phosphorus (g) | Phytin (g) | Iron (mg) | Zinc (mg) |
|---|---|---|---|---|---|---|---|---|---|
| Rough rice | 0.26-0.33 | 0.06-0.11 | 2.9-5.6 | 0.90-2.00 | 10-80 | 0.17-0.39 | 0.18-0.21 | 1.4-6.0 | 1.7-3.1 |
| Brown rice | 0.29-0.61 | 0.04-0.14 | 3.5-5.3 | 0.90-2.50 | 10-50 | 0.17-0.43 | 0.13-0.27 | 0.2-5.2 | 0.6-2.8 |
| Milled rice | 0.02-0.11 | 0.02-0.06 | 1.3-2.4 | 75-0.30 | 10-30 | 0.08-0.15 | 0.02-0.07 | 0.2-2.8 | 0.6-2.3 |
| Rice bran | 1.20-2.40 | 0.18-0.43 | 26.7-49.9 | 2.60-13.3 | 30-120 | 1.1-2.5 | 0.9-2.2 | 8.6-43.0 | 4.3-25.8 |
| Rice hull | 0.09-0.21 | 0.05-0.07 | 1.6-4.2 | 0 | 60-130 | 0.03-0.07 | 0 | 3.9-9.5 | 0.9-4.0 |
| Rice fraction | Histidine | Isoleucine | Leucine | Lysine + cysteine | Methionine + tyrosine | Phenylalanine | Threonine | Tryptophan | Valine | Amino acid scorea |
|---|---|---|---|---|---|---|---|---|---|---|
| Rough rice | 1.5-2.8 | 3.0-4.8 | 6.9-8.8 | 3.2-4.7 | 4.5-6.2 | 9.3-10.8 | 3.0-4.5 | 1.2-2.0 | 4.6-7.0 | 55-81 |
| Brown rice | 2.3-2.5 | 3.4-4.4 | 7.9-8.5 | 3.7-4.1 | 4.4-4.6 | 8.6-9.3 | 3.7-3.8 | 1.2-1.4 | 4.8-6.3 | 64-71 |
| Milled rice | 2.2-2.6 | 3.5-4.6 | 8.0-8.2 | 3.2-4.0 | 4.3-5.0 | 9.3-10.4 | 3.5-3.7 | 1.2-1.7 | 4.7-6.5 | 55-69 |
| Rice bran | 2.7-3.3 | 2.7-4.1 | 6.9-7.6 | 4.8-5.4 | 4.2-4.8 | 7.7-8.0 | 3.8-4.2 | 0.6-1.2 | 4.9-6.0 | 83-93 |
| Rice hull | 1.6-2.0 | 3.2-4.0 | 8.0-8.2 | 3.8-5.4 | 3.5-3.7 | 6.6-7.3 | 4.2-5.0 | 0.6 | 5.5-7.5 | 66-93 |
| Cereal | Protein quality (% casein) |
|---|---|
| Common maize | 32.1 |
| Opaque-2 maize | 96.8 |
| QPM | 82.1 |
| Rice | 79.3 |
| Wheat | 38.7 |
| Oats | 59.0 |
| Sorghum | 32.5 |
| Barley | 58.0 |
| Pearl millet | 46.4 |
| Finger millet | 35.7 |
| Teff | 56.2 |
| Rye | 64.8 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
