Submitted:
22 October 2024
Posted:
23 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Compost Fertilization
2.3. Total Nitrogen (N) and Carbon (C) Content in Leaves Analyses
2.4. Determination of the Soil Respiration Coefficient as Soil Microbiota Parameter Indicator
2.5. Fruit Ripening (Phenophases BBCH70-87) Corresponding to the Experimental Variants, Measured in IAD (Using a Da-meter)
2.6. Analysis of Annual Vegetative Growth After Compost Application (2022 – 2023)
2.7. Statistical Data Analyses
3. Results
3.1. Compost Application’s Influence on Nitrogen (N) Absorption in the Pear Tree Leaves and Carbon Content Is Correlated to Cultivar X Rootstock
3.1.1. Nitrogen Absorption in Pear Leaves
3.1.2. Carbon Content in Pear Leaves Correlated to Cultivar X Rootstock
3.2. Determination of the Soil Respiration Coefficient as Soil Microbiota Parameter Indicator
3.3. Maturity Stage of the Fruits
3.4. Influence of the Compost Fertilization on the Annual Vegetative Growth
3.4.1. Trunk Cross-Section Area Growth Rate
3.4.2. Total Annual Vegetative Growth
3.4.3. Total Annual Fruiting Shoots by Number
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eurostat Waste Statistics; Europa.eu. 2024.
- Awasthi, A.K.; Cheela, V.R.S.; D’Adamo, I.; Iacovidou, E.; Islam, M.R.; Johnson, M.; Miller, T.R.; Parajuly, K.; Parchomenko, A.; Radhakrishan, L.; et al. Zero Waste Approach towards a Sustainable Waste Management. Resources, Environment and Sustainability 2021, 3, 100014. [Google Scholar] [CrossRef]
- Klug, K.; Niemand, T. The Lifestyle of Sustainability: Testing a Behavioral Measure of Precycling. Journal of Cleaner Production 2021, 297, 126699. [Google Scholar] [CrossRef]
- Zaman, A.U. A Comprehensive Review of the Development of Zero Waste Management: Lessons Learned and Guidelines. Journal of Cleaner Production 2015, 91, 12–25. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. The Zero Waste Index: A Performance Measurement Tool for Waste Management Systems in a ‘Zero Waste City. ’ Journal of Cleaner Production 2013, 50, 123–132. [Google Scholar] [CrossRef]
- Bogusz, M.; Matysik-Pejas, R.; Krasnodębski, A.; Dziekański, P. The Concept of Zero Waste in the Context of Supporting Environmental Protection by Consumers. Energies 2021, 14, 5964. [Google Scholar] [CrossRef]
- Zaman, A. Zero-Waste: A New Sustainability Paradigm for Addressing the Global Waste Problem. In The Vision Zero Handbook; Edvardsson Björnberg, K., Hansson, S.O., Belin, M.-Å., Tingvall, C., Eds.; Springer International Publishing: Cham, 2023; pp. 1195–1218. ISBN 978-3-030-76504-0. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resources, Conservation and Recycling 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Zuo, X.; Zhang, F.; Wang, L. A Survey and Analysis on Public Awareness and Performance for Promoting Circular Economy in China: A Case Study from Tianjin. Journal of Cleaner Production 2009, 17, 265–270. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry. Journal of Cleaner Production 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Van Buren, N.; Demmers, M.; Van Der Heijden, R.; Witlox, F. Towards a Circular Economy: The Role of Dutch Logistics Industries and Governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resources, Conservation and Recycling 2023, 194, 107001. [Google Scholar] [CrossRef]
- Arruda, E.H.; Melatto, R.A.P.B.; Levy, W.; Conti, D.D.M. Circular Economy: A Brief Literature Review (2015–2020). Sustainable Operations and Computers 2021, 2, 79–86. [Google Scholar] [CrossRef]
- De Pascale, A.; Arbolino, R.; Szopik-Depczyńska, K.; Limosani, M.; Ioppolo, G. A Systematic Review for Measuring Circular Economy: The 61 Indicators. Journal of Cleaner Production 2021, 281, 124942. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Tsagarakis, K.P. An Introduction to Circular Economy and Sustainability: Some Existing Lessons and Future Directions. Sustainable Production and Consumption 2021, 28, 600–609. [Google Scholar] [CrossRef]
- Borrello, M.; Pascucci, S.; Cembalo, L. Three Propositions to Unify Circular Economy Research: A Review. Sustainability 2020, 12, 4069. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy – A New Sustainability Paradigm? Journal of Cleaner Production 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a Sustainable Circular Economy. Sustainable Production and Consumption 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a Circular Economy. Resources, Conservation and Recycling 2020, 153, 104553. [Google Scholar] [CrossRef]
- Corvellec, H.; Stowell, A.F.; Johansson, N. Critiques of the Circular Economy. J of Industrial Ecology 2022, 26, 421–432. [Google Scholar] [CrossRef]
- Calisto Friant, M.; Vermeulen, W.J.V.; Salomone, R. Analysing European Union Circular Economy Policies: Words versus Actions. Sustainable Production and Consumption 2021, 27, 337–353. [Google Scholar] [CrossRef]
- Awan, U.; Sroufe, R. Sustainability in the Circular Economy: Insights and Dynamics of Designing Circular Business Models. Applied Sciences 2022, 12, 1521. [Google Scholar] [CrossRef]
- Grafström, J.; Aasma, S. Breaking Circular Economy Barriers. Journal of Cleaner Production 2021, 292, 126002. [Google Scholar] [CrossRef]
- Sandu, M.A.; Virsta, A. The Water Footprint in Context of Circular Economy. AGROLIFE 2021, 10, 170–177. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C. Drivers and Barriers in the Transition from a Linear Economy to a Circular Economy. Journal of Cleaner Production 2022, 341, 130865. [Google Scholar] [CrossRef]
- Vîrsta, A.; Sandu, M.A.; Daraban, A.E. Dealing with the Transition from in Line Economy to Circular Economy - Public Awareness Investigation in Bucharest. AgroLife Scientific Journal 2020, 9, 355–361. [Google Scholar]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural Waste Management Strategies for Environmental Sustainability. Environmental Research 2022, 206, 112285. [Google Scholar] [CrossRef]
- Erälinna, L.; Szymoniuk, B. Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland). Sustainability 2021, 13, 6231. [Google Scholar] [CrossRef]
- Farhidi, F.; Madani, K.; Crichton, R. How the US Economy and Environment Can Both Benefit From Composting Management. Environ Health Insights 2022, 16, 11786302221128454. [Google Scholar] [CrossRef]
- Kliopova, I. Integrated Waste Management System for Resort Town. EREM 2016, 72, 31–55. [Google Scholar] [CrossRef]
- Morrow, O.; Davies, A. Creating Careful Circularities: Community Composting in New York City. Trans Inst British Geog 2022, 47, 529–546. [Google Scholar] [CrossRef]
- Bruni, C.; Akyol, Ç.; Cipolletta, G.; Eusebi, A.L.; Caniani, D.; Masi, S.; Colón, J.; Fatone, F. Decentralized Community Composting: Past, Present and Future Aspects of Italy. Sustainability 2020, 12, 3319. [Google Scholar] [CrossRef]
- Torrijos, V.; Calvo Dopico, D.; Soto, M. Integration of Food Waste Composting and Vegetable Gardens in a University Campus. Journal of Cleaner Production 2021, 315, 128175. [Google Scholar] [CrossRef]
- Olukanni, D.O.; Ogedengbe, V.O.; Ogundare, O.J. Examining the Potential Recovery of Compost from Mixed Fruit Wastes from a Campus Eatery Wastes. IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1036, 012065. [Google Scholar] [CrossRef]
- Dusa, E.M.; Sicuia, O.; Stan, V. Study on the Effects of Fertilization on the Abundance of Soil Microbial Community, Its Composition and Antifungal Efficacy. AGROLIFE 2022, 11, 39–51. [Google Scholar] [CrossRef]
- Bertici, R.; Dicu, D.; Herbei, M.; Sala, F. Model for Describing the Variation of Some Agrochemical Indices of the Soil. AGROLIFE 2022, 11, 18–26. [Google Scholar] [CrossRef]
- Sharaf, H.; Thompson, A.A.; Williams, M.A.; Peck, G.M. Compost Applications Increase Bacterial Community Diversity in the Apple Rhizosphere. Soil Science Soc of Amer J 2021, 85, 1105–1121. [Google Scholar] [CrossRef]
- Cojocaru, O. Ecosystem - Reproduction of Sustainable Structure in Agriculture as a Factor of Soil Fertility. AgroLife Scientific Journal 2019, 8, 71–76. [Google Scholar]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.-C.; Liu, T.; Zhang, Z.; Kumar Awasthi, M. Recent Trends and Advances in Composting and Vermicomposting Technologies: A Review. Bioresource Technology 2022, 360, 127591. [Google Scholar] [CrossRef]
- Von Heynicz, K. Compost in the Household. 2012. [Google Scholar]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food Waste Composting and Microbial Community Structure Profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Wang, L.; Liu, P.; Zhao, J.; Zhao, Z.; Yao, S.; Stănică, F.; Liu, Z.; Wang, L.; et al. The Historical and Current Research Progress on Jujube–a Superfruit for the Future. Hortic Res 2020, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Azis, F.A.; Rijal, M.; Suhaimi, H.; Abas, P.E. Patent Landscape of Composting Technology: A Review. Inventions 2022, 7, 38. [Google Scholar] [CrossRef]
- Peticilă, A.G.; Madjar, R.M.; Drăghici, E.M.; Stănică, F.; Asănică, A.; Ciubotărăşu, R.; Butcaru, A.C. Results Regarding the 24-Hour Composts (Oklin) Composition and Their Use as Fertiliser. Scientific Papers. Series B, Horticulture 2023, LXVII, 536–545. [Google Scholar]
- Kliopova, I.; Staniškis, J.K.; Stunžėnas, E.; Jurovickaja, E. Bio-Nutrient Recycling with a Novel Integrated Biodegradable Waste Management System for Catering Companies. Journal of Cleaner Production 2019, 209, 116–125. [Google Scholar] [CrossRef]
- Raclavská, H.; Růžičková, J.; Juchelková, D.; Šafář, M.; Brťková, H.; Slamová, K. The Quality of Composts Prepared in Automatic Composters from Fruit Waste Generated by the Production of Beverages. Bioresource Technology 2021, 341, 125878. [Google Scholar] [CrossRef]
- Kucbel, M.; Raclavská, H.; Růžičková, J.; Švédová, B.; Sassmanová, V.; Drozdová, J.; Raclavský, K.; Juchelková, D. Properties of Composts from Household Food Waste Produced in Automatic Composters. Journal of Environmental Management 2019, 236, 657–666. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of Solid Organic Waste Composting Products: A Critical Review. Journal of Cleaner Production 2020, 272, 122712. [Google Scholar] [CrossRef]
- Walling, E.; Trémier, A.; Vaneeckhaute, C. A Review of Mathematical Models for Composting. Waste Management 2020, 113, 379–394. [Google Scholar] [CrossRef]
- DuPont, T.; Granatstein, D.; Sallato, B. Soil Health in Orchards.
- Assefa, S. The Principal Role of Organic Fertilizer on Soil Properties and Agricultural Productivity -A Review. ARTOAJ 2019, 22. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic Fertilization and Tree Orchards. Agriculture 2021, 11, 692. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Melgar, J.C. Annual Compost Amendments Can Replace Synthetic Fertilizer, Improve Soil Moisture, and Ensure Tree Performance during Peach Orchard Establishment in a Humid Subtropical Climate. Front. Plant Sci. 2023, 14, 1172038. [Google Scholar] [CrossRef] [PubMed]
- Vatsanidou, A.; Fountas, S.; Liakos, V.; Nanos, G.; Katsoulas, N.; Gemtos, T. Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard. Sustainability 2020, 12, 6893. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Yuan, Z. Improving Food Waste Composting Efficiency with Mature Compost Addition. Bioresource Technology 2022, 349, 126830. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, X.; Jiang, S.; Zhang, L.; Luo, J. Revealing the Role of the Rhizosphere Microbiota in Reproductive Growth for Fruit Productivity When Inorganic Fertilizer Is Partially Replaced by Organic Fertilizer in Pear Orchard Fields. Microbial Biotechnology 2023, 16, 1373–1392. [Google Scholar] [CrossRef]
- Musacchi, S. Analysis of Pear Sustainability: What Are the Limitations and Opportunities? Acta Hortic. 2024, 1–20. [Google Scholar] [CrossRef]
- Ghena, N.; Braniste, N. Cultura Specială a Pomilor [Tree Special Cultivation]; Matrix Rom: Bucharest, 2003. [Google Scholar]
- Andreies, N. Achievements in Pear Breeding Obtained at the Voinești Fruit Growing Research and Development Station; Pitesti: Arges, 2017. [Google Scholar]
- Stănică, F.; Asănică, A.C.; Mihai, C.A.; Butcaru, A.C.; Andreieș, N. Fire-Blight Tolerant/Resistant Romanian Pear Cultivars. Acta Hortic. 2024, 95–104. [Google Scholar] [CrossRef]
- Musacchi, S.; Iglesias, I.; Neri, D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus Communis L.) in the Mediterranean Area: A Review. Agronomy 2021, 11, 1765. [Google Scholar] [CrossRef]
- Sharma, J.B.; Chauhan, N.; Rana, K.; Bakshi, M. Evaluation of Rootstocks for Temperate Fruit Crops-A Review. Int.J.Curr.Microbiol.App.Sci 2020, 9, 3533–3539. [Google Scholar] [CrossRef]
- Plavcová, L.; Mészáros, M.; Šilhán, K.; Jupa, R. Relationships between Trunk Radial Growth and Fruit Yield in Apple and Pear Trees on Size-Controlling Rootstocks. Annals of Botany 2022, 130, 477–489. [Google Scholar] [CrossRef]
- Öztürk, A. The Effects of Different Rootstocks on the Graft Success and Stion Development of Some Pear Cultivars. International Journal of Fruit Science 2021, 21, 932–944. [Google Scholar] [CrossRef]
- Spornberger, A.; Osterc, G.; Schüller, E.; Noll, D. Vermehrung von Birnenbäumen der Sorte ‘Uta’ als Grünsteckling und Anbauverhalten im Vergleich zu Wurzelechten aus in vitro Vermehrung und auf zwei Unterlagen veredelten Bäumen unter biologischen Anbaubedingungen in Ostösterreich. Erwerbs-Obstbau 2021, 63, 125–133. [Google Scholar] [CrossRef]
- Coban, N. Effect of Rootstock and Cultivars on Some Branch and Leaf Characteristics in Pear. Turk J Food Agric Sci 2020. [Google Scholar] [CrossRef]
- Kurt, T.; Öztürk, A.; FaíZí, Z.A. Survival Rate of Young Pear Trees in Different Rootstock and Cultivar Combinations under Field Conditions: Preliminary Results. ANADOLU JOURNAL OF AGRICULTURAL SCIENCES. [CrossRef]
- Pasa, M.D.S.; Schmitz, J.D.; Rosa Júnior, H.F.D.; Souza, A.L.K.D.; Malgarim, M.B.; Mello-Farias, P.C.D. Performance of ‘William’s’ Pear Grafted onto Three Rootstocks. Rev. Ceres 2020, 67, 133–136. [Google Scholar] [CrossRef]
- Mészáros, M.; Laňar, L.; Kosina, J.; Náměstek, J. Aspects Influencing the Rootstock - Scion Performance during Long Term Evaluation in Pear Orchard. Hortic. Sci. 2019, 46, 1–8. [Google Scholar] [CrossRef]
- Kul, Y.M.; Öztürk, A.; Faizi, Z.A. Evaluation of Different Rootstocks and Cultivars on Pruning Weight in Young Pear Trees. Black Sea Journal of Agriculture 2022, 5, 440–447. [Google Scholar] [CrossRef]
- Almeida, G.K.D.; Fioravanço, J.C.; Marodin, G.A.B. Vegetative Growth and Productive Performance of “Abate Fetel” and “Rocha” Pear Trees on Quince Rootstocks. Pesq. agropec. bras. 2020, 55, e01306. [Google Scholar] [CrossRef]
- Caracciolo, G.; Pietrella, M.; Pallotti, G.; Faedi, G.; Sirri, S.; Baruzzi, G. Productivity and Fruit Quality of ‘FalstaffPBR’ Pear Variety Grafted on Different Rootstocks. Horticulturae 2024, 10, 237. [Google Scholar] [CrossRef]
- Hudina, M.; Jakopic, J.; Veberic, R. Long-Term Performance of the Pear ( Pyrus Communis L.) Cultivars ‘Williams’, ‘Abate Fetel’ and ‘Conference’ Grafted on Various Rootstocks. Acta Hortic. [CrossRef]
- Iqbal, M.; Singh, K.K. Propagation of Temperate Fruit Crops.
- Sete, P.B.; Comin, J.J.; Nara Ciotta, M.; Almeida Salume, J.; Thewes, F.; Brackmann, A.; Toselli, M.; Nava, G.; Rozane, D.E.; Loss, A.; et al. Nitrogen Fertilization Affects Yield and Fruit Quality in Pear. Scientia Horticulturae 2019, 258, 108782. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, M.; Liu, J.; Wang, W.; Liu, S. Fertilizer and Soil Nitrogen Utilization of Pear Trees as Affected by the Timing of Split Fertilizer Application in Rain-Fed Orchard. Scientia Horticulturae 2019, 252, 363–369. [Google Scholar] [CrossRef]
- Bright, J. Apple and Pear Nutrition.
- Chira, L.; Chira, A.; Delian, E.; Ion, L.; Nicolae, C. Studies Regarding the Economical Approach of Pear Fruits Commercialization According to the Qualitative Aspects. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development 2020, 20, 131–136. [Google Scholar]
- Wertheim, S.J. Rootstocks for European Pear: A Review. Acta Hortic. 2002, 299–309. [Google Scholar] [CrossRef]
- Moț, A.; Ion, V.A.; Madjar, R.M.; Bădulescu, L. Dynamic PREGL-DUMAS Technique Applied in Nitrogen Determination from Inputs Used in Organic Agriculture. Scientific Papers. Series A. Agronomy 2022, LXV, 105–110. [Google Scholar]
- Butcaru, A.C. Post-Harvest Monitoring of Pear Fruit Quality Parameters Using Da-Meter. An. U Craiova, Biol. Hortic. Food. Env. 2021, 26, 21–26. [Google Scholar] [CrossRef]
- Tahir, I.; Vangdal, E. Determination of Optimum Harvest Maturity for Five Apple Cultivars Using the Chlorophyll Absorbance Index. Acta Hortic. 2019, 219–224. [Google Scholar] [CrossRef]
- Turpin, S.R.; Stefanelli, D.; Jones, L.; Norton, J.; Probst, R.; Konings, J.; Langford, G. Perfect Pears for the next Generation of Consumers. Acta Hortic. 2016, 507–514. [Google Scholar] [CrossRef]
- Bonora, E. Modeling Systems and Vis/NIR Device to Improve Peach and Nectarine Pre and Post-Harvest Fruit Maturity Management 2013.
- Vidoni, S.; Rocchi, L.; Donati, I.; Spinelli, F.; Costa, G. Combined Use of Planttoon® and IAD to Characterize Fruit Ripening Homogeneity in “Abbé Fétel” Pears. Acta Hortic. 2015, 495–499. [Google Scholar] [CrossRef]
- Torres, C.A.; Valdivia, A.; Jorquera, G.; Hernandez, O. The Use of DA Meter to Assess Apple and Pear Maturity in Chile. Acta Hortic. 2019, 63–70. [Google Scholar] [CrossRef]
- Gomes, R.; Silva, F.; Oliveira, C.M. Utilizing the I AD Index to Predict ‘Rocha’ Pear Quality and Physiological Disorders after Storage. Acta Hortic. 2021, 461–468. [Google Scholar] [CrossRef]
- Costa, G.; Rocchi, L.; Farneti, B.; Busatto, N.; Spinelli, F.; Vidoni, S. Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. Horticulturae 2016, 3, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Castagnoli, S.; Sugar, D. Yan Wang; Castagnoli, S.; Sugar, D. Integrating IAD Index into the Current Firmness-Based Maturity Assessment of European Pears. Acta Hortic. [CrossRef]
- Wang, D.; Ding, C.; Feng, Z.; Ji, S.; Cui, D. Recent Advances in Portable Devices for Fruit Firmness Assessment. Critical Reviews in Food Science and Nutrition 2023, 63, 1143–1154. [Google Scholar] [CrossRef]
- Dar, M.A.; Wani, J.A.; Sanjay Kumar, R.; Bhat, M.Y.; Malik, M.A. Relationship of Leaf Nutrient Content with Fruit Yield and Quality of Pear. Journal of Environmental Biology 36, 649–655.
- Perazzoli, B.E.; Pauletti, V.; Quartieri, M.; Toselli, M.; Gotz, L.F. Changes in Leaf Nutrient Content and Quality of Pear Fruits by Biofertilizer Application in Northeastern Italy. Rev. Bras. Frutic. 2020, 42, e-530. [Google Scholar] [CrossRef]
- Kučinskas, O.; Marozas, V.; Kučinskas, O. Diurnal and Seasonal Soil CO2 Efflux Variation in Scots Pine (Pinus Sylvestris L.) Forests in the European Hemi-Boreal Zone, Lithuania. J. Elem. [CrossRef]
- Sasnauskienė, J.; Sabienė, N.; Marozas, V.; Česonienė, L.; Lingytė, K. Soil respiration in stands of different tree species. In Proceedings of the Proccedings of International Scientific Conference “RURAL DEVELOPMENT 2017”; Aleksandras Stulginskis University: Aleksandras Stulginskis University, Lithuania, February 15 2018. [Google Scholar]

























| Cultivar | Rootstock | Fertilization | 2021 | 2022 | 2023 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| August | October | May | June | October | May | June | August | October | |||
| ‘Corina‘ | Franc | Compost | 47.01 (a) | 41.67 (a) | 47.71 (a) | 47.45 (a) | 47.52 (a) | 46.02 (a) | 45.56 (a) | 52.14 (a) | 47.45 (b) |
| Control | 47.22 (a) | 38.12 (a) | 48.57 (a) | 47.42 (a) | 44.15 (b) | 45.16 (a) | 46.03 (a) | 47.19 (b) | 51.36 (a) | ||
| Own roots | Compost | 48.90 (a) | - | 48.40 (a) | 47.43 (b) | 44.69 (a) | 46.56 (a) | 48.24 (a) | 47.75 (a) | 46.30 (b) | |
| Control | 47.65 (a) | - | 47.51 (a) | 48.44 (a) | 46.02 (a) | 46.11 (a) | 47.95 (a) | 47.55 (a) | 50.95 (a) | ||
| Quince | Compost | 48.40 (a) | 43.92 (a) | 47.00 (b) | 46.76 (a) | 43.50 (b) | 45.06 (a) | 46.10 (a) | 46.90 (a) | 46.88 (a) | |
| Control | 46.51 (b) | 46.03 (a) | 48.22 (a) | 43.49 (b) | 46.41 (a) | 45.65 (a) | 47.25 (a) | 46.92 (a) | 46.6 (a) | ||
| ‘Cristal‘ | Franc | Compost | 47.69 (b) | 29.02 (b) | 53.12 (a) | 47.48 (a) | 43.44 (a) | 44.59 (a) | 46.5 (a) | 51.14 (a) | 47.28 (a) |
| Control | 49.43 (a) | 42.04 (a) | 47.84 (a) | 46.13 (b) | 37.6 (b) | 44.61 (a) | 44.5 (a) | 45.77 (b) | 45.00 (b) | ||
| Own roots | Compost | 47.92 (a) | 25.99 (a) | 48.41 (a) | 46.61 (b) | 44.96 (b) | 45.74 (a) | 48.02 (a) | 45.94 (b) | 46.4 (a) | |
| Control | 48.64 (a) | 29.51 (a) | 48.39 (a) | 48.13 (a) | 46.92 (a) | 44.73 (a) | 48.02 (a) | 47.43 (a) | 45.66 (a) | ||
| Quince | Compost | 47.01 (a) | 45.07 (a) | 48.03 (a) | 47.6 (a) | 45.59 (a) | 45.64 (a) | 45.44 (a) | - | 48.10 (a) | |
| Control | 45.63 (b) | 42.39 (b) | 47.53 (a) | 47.18 (a) | 45.79 (a) | 44.91 (a) | 46.15 (a) | - | 46.83 (a) | ||
| ‘Euras‘ | Franc | Compost | 45.58 (a) | 42.27 (a) | 52.02 (a) | 48.76 (a) | 43.35 (b) | 45.48 (a) | 48.09 (a) | 51.03 (a) | 48.69 (b) |
| Control | 47.65 (a) | 30.29 (b) | 48.16 (a) | 49.00 (a) | 46.21 (a) | 46.46 (a) | 47.84 (a) | 47.29 (b) | 53.67 (a) | ||
| Own roots | Compost | 48.70 (b) | - | 47.73 (b) | 49.54 (a) | 46.91 (a) | 46.62 (a) | 49.38 (a) | 47.52 (a) | 47.77 (a) | |
| Control | 49.29 (a) | - | 50.32 (a) | 49.05 (a) | 44.15 (b) | 46.34 (a) | 47.65 (b) | 47.83 (a) | 48.87 (a) | ||
| Quince | Compost | 49.10 (a) | 44.80 (a) | 47.31 (a) | 48.24 (a) | 33.72 (b) | 45.29 (a) | 46.22 (a) | 45.52 (a) | 47.01 (a) | |
| Control | 47.56 (b) | 41.46 (b) | 47.49 (a) | 47.52 (b) | 44.49 (a) | 43.74 (b) | 46.24 (a) | 45.91 (a) | 45.57 (a) | ||
| ‘Orizont‘ | Franc | Compost | 49.45 (a) | 44.01 (a) | 47.34 (b) | 47.33 (b) | 32.45 (b) | 47.05 (a) | 45.74 (b) | 51.93 (a) | 48.69 (b) |
| Control | 48.37 (b) | 45.74 (a) | 49.49 (a) | 49.37 (a) | 46.38 (a) | 46.21 (b) | 47.03 (a) | 47.22 (b) | 53.49 (a) | ||
| Own roots | Compost | 48.47 (a) | 24.20 (b) | 50.21 (a) | 48.07 (b) | 46.86 (b) | 46.95 (a) | 47.67 (a) | 48.12 (a) | 60.70 (a) | |
| Control | 48.26 (a) | 32.86 (a) | 49.83 (a) | 49.78 (a) | 48.82 (a) | 45.87 (a) | 48.33 (a) | 47.94 (a) | 47.51 (b) | ||
| Quince | Compost | 47.84 (a) | 22.83 (b) | 48.03 (a) | 49.14 (a) | 31.64 (b) | 46.18 (a) | 47.06 (a) | 52.25 (a) | 47.20 (a) | |
| Control | 47.86 (a) | 43.63 (a) | 48.68 (a) | 48.49 (a) | 45.79 (a) | 45.24 (b) | 46.23 (a) | 46.27 (b) | 46.97 (a) | ||
| ‘Romcor‘ | Franc | Compost | 48.71 (a) | 45.72 (a) | 47.35 (b) | 48.66 (b) | 47.46 (a) | 46.31 (a) | 45.49 (b) | 52.67 (a) | 46.21 (b) |
| Control | 49.74 (a) | 45.30 (a) | 48.20 (a) | 50.57 (a) | 33.26 (b) | 46.23 (a) | 48.21 (a) | 48.77 (b) | 54.80 (a) | ||
| Own roots | Compost | 49.28 (a) | 41.8 (b) | - | 48.83 (a) | 45.17 (a) | 45.78 (a) | 49.2 (a) | 47.58 (a) | 46.67 (b) | |
| Control | 49.8 (a) | 44.7 (a) | - | 48.01 (b) | 48.22 (a) | 45.86 (a) | 46.11 (b) | 47.39 (a) | 51.33 (a) | ||
| Quince | Compost | 47.19 (a) | 43.47 (a) | 46.67 (b) | 46.45 (b) | - | 44.01 (a) | 47.03 (a) | - | 47.97 (a) | |
| Control | 47.69 (a) | 31.48 (b) | 49.3 (a) | 47.92 (a) | - | 44.53 (a) | 45.32 (b) | - | 45.32 (b) | ||
| ‘Tudor‘ | Franc | Compost | 48.75 (a) | 28.95 (a) | - | 47.81 (a) | 43.94 (b) | 45.56 (a) | 47.85 (a) | 53.71 (a) | 49.33 (a) |
| Control | 47.58 (b) | 29.51 (a) | - | 47.65 (a) | 45.18 (a) | 45.09 (a) | 46.97 (a) | 46.82 (b) | 46.10 (b) | ||
| Own roots | Compost | 49.90 (a) | 45.89 (a) | 49.12 (a) | 47.19 (b) | 34.65 (b) | 47.19 (a) | 45.93 (a) | 47.45 (a) | 48.42 (a) | |
| Control | 49.64 (a) | 46.77 (a) | 48.79 (a) | 48.76 (a) | 46.25 (a) | 45.77 (b) | 45.86 (a) | 46.81 (b) | 53.39 (a) | ||
| Quince | Compost | 46.91 (b) | 41.24 (a) | 47.96 (a) | - | 42.93 (b) | 45.24 (a) | 45.90 (a) | 51.24 (a) | 47.26 (a) | |
| Control | 47.75 (a) | 44.29 (a) | 47.14 (a) | - | 45.92 (a) | 44.99 (a) | 46.08 (a) | 45.55 (b) | 46.38 (a) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
