Submitted:
16 October 2024
Posted:
17 October 2024
You are already at the latest version
Abstract
Keywords:
I. Introduction
II. The Velocity of Light
A. Notations
B. Principle of Constant Light Velocity
C. The Light Velocity/Speed Formula
- Light velocity is independent of the emitter’s motion, i.e. .
- When , light velocity is constant .
- The light velocity as to an observer depends on its velocity, specifically, .
D. The One-Way Light Speed Measurement
E. Optical/Atomic Clock
F. Round-Trip Light Speed & M-M Experiment
G. Round-Trip Light Speed with Moving Reflector
H. The Composition of Velocity
I. The Sagnac Effect
J. Key Angles and Stellar Aberration
III. Time Scaling Factor
A. Time Scaling Factor
B. The “Twin Paradox”
IV. The Doppler Effect
A. The General Formula for the Doppler Effect
B. The Doppler Effect of Atomic Clocks
C. Experimental Support
D. The Cosmological Red-Shift
E. The Cherenkov Radiation
V. Maxwell’s Equations
A. Maxwell Wave Equations to Observers
B. Derivation of Light speed and Doppler Effect
C. Generalized Maxwell Wave Equations
D. Galilean Invariance of Lorentz Force
E. The Covariance of Maxwell’s Equations
VI. Electrodynamics
A. Momentum to Acceleration Ratio
B. The Mass-Energy Relationship
C. Mass Change and Matter Wave
VII. STR as a Special Case
A. Distance and Light Speed
B. Stellar Aberration
C. Time Dilation/Optical Clock
D. Relativistic Doppler Effect
| Scenario | Case | |
| Relativistic longitudinal | ||
| Transverse visual closest | ||
| Transverse geometric closest | 1/ | |
| Receiver circular motion | ||
| Source circular motion | 1/ | |
| Source & receiver circular motion | ||
| Receiver motion arbitrary direction | ||
| Source motion arbitrary direction |
E. Particle Acceleration
F. Mass Energy Relationship
G. Experimental Support
VIII. Experiments Design
A. Light Velocity to Moving Observers
B. Asymmetry of Momentum to Acceleration
IX. Conclusions
Data Statements
Acknowledgements
References
- Einstein, On the Electrodynamics of Moving Bodies, Annalen der Physik, 17, 891-921 (1905).
- Einstein, Does the Inertia of a Body Depend Upon its Energy-Content?, Annalen der Physik, 323 (13): 639–641 (1905).
- Einstein, On the Possibility of a New Test of the Relativity Principle, Annalen der Physik, 328 (6): 197–198 (1907).
- Einstein, Generalized theory of relativity, the anthology ‘The Principle of Relativity’, 94, University of Calcutta (1920).
- J. Maxwell, A Dynamical Theory of the Electromagnetic Field, Philos. Trans. R. Soc. Lond. 155, 459-512 (1865).
- H. Lorentz, Electromagnetic phenomena in a system moving with any velocity smaller than that of light, Proc. R. Neth. Acad. Arts Sci. 6: 809–831 (1904).
- Michelson and, E. Morley, On the Relative Motion of the Earth and the Luminiferous Ether, Am. J. Sci. 34 (203): 333–345 (1887).
- K. Brecher, Phys. Rev. Lett., 39, 1051 (1977).
- W. Ritz, Recherches Critiques sur les Theories Electrodynamiques de Cl. Maxwell et de H.-A. Lorentz, Archives des Sciences physiques et naturelles 36: 209 (1908).
- J. G. Fox, Evidence Against Emission Theories, Am. J. Phys. 33, 1–17 (1965).
- F. Alvaeger et al., Phys. Lett. 12, 260 (1964).
- G. C. Babcock et al., J. O. S. A. 54, 147 (1964).
- D.C. Champeney et al., Absence of Doppler shift for gamma ray source and detector on same circular orbit., Proc. Phys. Soc. 77, 350 (1961).
- H. W. THIM, Absence of the relativistic transverse Doppler shift at microwave frequencies, IEEE Trans. Instr. Measur. 52, 1660-1664 (2003).
- G. Sagnac, C. R. Acad. Sci. Paris 157, 708 (1913).
- R. Wang et al., Physics Letters A. 312 (1–2): 7–10 (2006).
- Langevin, Paul, Sur la théorie de la relativité et l'expérience de M. Sagnac, Comptes Rendus. 173: 831–834 (1921).
- S.J. Barnett, On Electromagnetic Induction and Relative Motion, Phys. Rev. 35, 323 (1912).
- D. Sher, The Relativistic Doppler Effect, J. R. Astron. Soc. Can. 62: 105–111 (1968).
- N. Giordano, College Physics: Reasoning and Relationships, Cengage Learning, 421–424 (2009).
- T. Koupelis et al., In Quest of the Universe, Jones & Bartlett Publishers, 557 (2007).
- H. Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, Leiden: E.J. Brill (1895).
- Q. Chen, Design of Experiments for Light Speed Invariance to Moving Observers, submitted to Int. J. Theor. Phys. [CrossRef]
- Q. Chen, Time-varying Doppler Effect formula and its application in Cosmology. [CrossRef]
- Q. Chen, Asymmetry Theory mathematically derived from the principle of constant light speed. [CrossRef]
- Nelson, R.A. et al., Experimental Comparison of Time Synchronization Techniques by Means of Light Signals and Clock Transport on the Rotating Earth, Proc. 24th Annual PTTI Systems and Applications Meeting: 87-104, (1993).
- Gezari, D.Y., Lunar laser ranging test of the invariance of c, arXiv 0912.3934 (2009).
- Chou, C. et al., Optical clocks and Relativity, Science. 329, 1630-1633 (2010).
- Hafele, J. C.; et al. Around-the-World Atomic Clocks: Observed Relativistic Time Gains, Science. 177, 168-170 (1972).
- Ives, H. E.; et al. An experimental study of the rate of a moving atomic clock, J. O. S. A. 28, 215 (1938).
- Rossi, B.; et al. Variation of the Rate of Decay of Mesotrons with Momentum, Physical Review. 59, 223–228 (1941).
- Kaufmann, W. Die magnetische und elektrische Ablenkbarkeit der Bequerelstrahlen und die scheinbare Masse der Elektronen, Göttinger Nachrichten (2): 143–168 (1901).
- Oliphant, M. L. E.; et al. "The Transformation of Lithium by Protons and by Ions of the Heavy Isotope of Hydrogen". Proc. R. Soc. 141, 722–733 (1933).
- Cherenkov, P. A. Visible emission of clean liquids by action of γ radiation, Doklady Akademii Nauk SSSR. 2: 451 (1934).
- Q. Chen, A mathematically-derived unified formula for Time-Varying Doppler effect, Cosmological red-shift and Cherenkov radiation, Optica Open doi.org/10.1364/opticaopen.25612566.v1 (2024).
- S. Reinhardt et al., Test of relativistic time dilation with fast optical atomic clocks at different velocities, Nature Physics. 3, 861–864 (2007).
- Doppler, Beiträge zur fixsternenkunde, Prague: G. Haase Söhne, 69 (1846).
- Bélopolsky, On an Apparatus for the Laboratory Demonstration of the Doppler-Fizeau Principle, ApJ. 13, 15 (1901).
- P. Marmet, The GPS and the Constant Velocity of Light, Acta Scientiarum, 22, 1269 (2000).
- Q. Chen, Revisiting Maxwell's Equations for Observers, Preprints. doi.org/10.20944/preprints202408.0897.v1 (2024).
- L. de Broglie, “Recherches sur la théorie des quanta”, Thèse de doctorat soutenue à Paris (1924).



| Asymmetry Theory | Special Relativity | Supporting Experiments*# | |
|---|---|---|---|
| Distance and light speed equation | |||
| Optical clock | muon life [31]; Optical clock [28]; Hafele-Keating [29] | ||
| One-way light speed | Not measurable | GPS test of light speed* [39] | |
| Two-way light speed | Michelson-Morley [7] | ||
| Two-way light speed with motion | Lunar range test of light speed* [27] | ||
| Stellar Aberration | Stellar aberration | ||
| Sagnac effect | Not applicable | Sagnac effect# [15,16] | |
| Doppler effect | Lack of relativistic Doppler effect* [14]; Cosmological redshift# [21] | ||
| Doppler effect for Atomic clock | Ives-Stilwell [30,36] | ||
| Particle Momentum | Kaufmann [32] | ||
| Mass-energy relationship | Nuclear reaction [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
