Submitted:
06 August 2025
Posted:
11 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Quantum Fields in Minkowski Spacetime and Examples of (Inverted) Harmonic Oscillator Physics
- Assume an arrow of time
- Define a positive energy state with respect to the arrow of time:
- Field operators for space-like distances must commute. For example, let us take a Klein-Gordon (KG) field; we have
- The canonical commutation relations between the field and its conjugate momenta are
2.1. Time Translations and Killing Vector of Minkowski Spacetime:
3. Review of Inverted Harmonic Oscillator (IHO), Quantization and Riemann Hypothesis
- With the quantum mechanical limitation and such that , the energy spectrum of IHO becomes discrete. Counting the number of states between 0 and one getswhich matches with the average number of non-trivial zeros of the Riemann zeta function for with the identification .
-
The relation between IHO energy eigenstates and Riemann zeros was shown to be more than a coincidence with the analysis of scale transformations and the discrete symmetries of the IHO’s phase space, which form the dihedral group[46] of order 8. These symmetries render a boundary condition (for either or )
- The wavefunction is also an Eigen function of Weyl reflected Laplace-Beltrami operatorwith positive definite Eigenvalues .
- BK proposes identifying the discrete set of points in phase space, which are , and . This is very much similar to the antipodal identification in dS spacetime proposed by Schrödinger and the one of ’t Hooft in the context of Schwarzschild spacetime [3,21]. As we will discuss in the later sections, the antipodal identification is similar to the ER’s mathematical bridge. Thus, what BK proposes is another "mathematical bridge" to join the IHO’s phase space regions with opposite arrows of time.
-
The phase space of IHO has several symmetries, the most important symmetry is the dilatation defined by the following scaling transformationwhich preserve the Hamiltonian (24). This is called the hyperbolic scaling symmetry. The generator of these scaling transformations is known as the Hamiltonian vector field defined byThis dilatation operator’s (also called Liouville operator) (34) eigenfunction () has a universal structurewhere is an arbitrary function of the scale invariant quantity . The Wigner function of the BK Hamiltonian (24) has the following generic structure as wellwhere is an arbitrary function modulated along constant curves in the phase space and is a normalization constant. Thus, if we have a physical system that deals with eigenfunctions of dilatation (36), we can anticipate the role of IHO physics. We witness this in the context of QFT in black hole, de Sitter, and Rindler spacetimes that we shall discuss in the next section.
4. QFT in Curved Spacetime: Discrete Symmetries, Unitarity Loss, and New Insights
4.1. QFTCS in BH Spacetime
- (for (37)) while for the Einstein-Rosen metric . Since is a measure of the volume integral, if it vanishes for a finite radius, we cannot define consistently any action for matter fields in Schwarzschild spacetime.
- If we choose we first break by hand the symmetry of the metric (46). Then we are bound to interpret the parallel identical regions (47) by the transformation (48), either a nonphysical or a parallel Universe. This is the interpretation that the majority of developments have adopted ever since the seminal works of Hawking [4,5,14,47,48].
-
ER paper emphasized the importance of defining only one physical region, but without breaking any of the discrete symmetries of the manifold. ER, conjectured:4A quantum field in physical space has to be described by mathematical bridges between two sheets of spacetime
4.1.1. Occurrence of IHO in BH Physics:
4.2. QFTCS in de Sitter Spacetime
4.2.1. Occurrence of IHO Physics in de Sitter Spacetime:
4.3. QFTCS Versus Rindler Spacetime
4.3.1. IHO Analogy with Rindler Spacetime
4.4. Inflationary (Quasi-de Sitter) Quantum Fluctuations
4.5. Unitarity of Standard QFTCS: Echoing Ideas from Einstein-Rosen, Schrödinger and ’t Hooft
5. Direct-Sum Quantum Theory and Geometric Superselection Sectors
5.1. Direct-Sum Quantum Mechanics

5.2. Direct-Sum QFT in Minkowski Spacetime
- Complex scalar field operator in DQFT is expanded aswhere , and are canonical creation and annihilation operators of the parity conjugate regions (denoted by subscripts ) attached with geometric SSS. All the cross commutation relations of and vanish.
- Fermionic field operator in DQFT becomeswhere correspond to the two independent solutions of and corresponding to spin-. The creation and annihilation operators of geometric SSS of Fock space here satisfy the anti-commutation relations leading to the new causality condition .
- The vector field operator in DQFT expressed aswhere is the polarization vector satisfying the transverse and traceless conditions. The creation and annihilation operators satisfy the similar relations as (102).
5.2.1. The Concept of Geometric Superselection Sectors (SSS):
5.3. Direct-Sum Quantization of Berry and Keating IHO
6. Quantum ER Bridges and Unitarity in Schwarschild, de Sitter, and Rindler Spacetimes
6.1. The Mathematical Bridges in Rindler Spacetime
6.2. The Mathematical Bridges in Quantum Black Hole
6.2.1. A New Understanding of ER=EPR
6.3. The Mathematical Bridges in de Sitter Spacetime
6.3.1. Direct-Sum QFT in Flat FLRW de Sitter
6.3.2. Direct-Sum QFT in Static de Sitter
7. ERBs, Direct-Sum Inflation (DSI) and CMB
7.1. Direct-Sum QFT of Inflationary Quantum Fluctuations
7.2. Parity Asymmetry Versus Even-ODD asymmetry
7.3. Observational Evidence for DSI in the Parity Conjugate Worlds of CMB
8. Conclusions
- Discrete spacetime (a)symmetries play a key role in quantum theory. We proposed a new formulation in which a single quantum state is defined across a direct-sum Hilbert space built from geometric superselection sectors based on the discrete spacetime transformations. This framework enhances our understanding of the Berry-Keating quantization of the IHO [22], which is linked to the Riemann zeta function and to quantum chaos.
- Combining gravity and quantum mechanics requires a new understanding of time. The direct-sum quantum framework provides this and naturally realizes the mathematical bridges envisioned by Einstein and Rosen (see Figure ).
- Achieving unitarity and observer complementarity in curved spacetimes is a prerequisite for any consistent quantum theory of gravity. DQFT satisfies this by constructing geometric SSS that encode a new understanding of physics across the gravitational horizons.
- When applied to inflation, this framework predicts parity asymmetry in the primordial spectrum. We showed that this explains the observed CMB parity anomalies and provides observational evidence for underlying quantum gravitational phenomena.
Acknowledgments
| 1 | Throughout this paper, our reference to Planck scale quantum gravity aligns with the conventional expectation of a renormalizable, ultraviolet (UV) complete quantum theory of gravity, applicable up to and beyond Planck length scales, where the graviton is typically treated as a fluctuation around Minkowski spacetime. However, if one aims to develop a Planck-scale quantum gravity framework within a curved spacetime context (i.e., treating graviton fluctuations around a curved background such as de Sitter space), it becomes crucial to address the foundational issues of quantum fields in curved spacetime, which is the central focus of this paper. |
| 2 | In the case of a harmonic oscillator, where position and momentum are harmonic functions of time, the system energy is positive definite
|
| 3 | Wigner function is a function of position and the momentum, it is a quasi-probability that describes quantum states in a phase space from which we can derive position space and momentum space wave functions of the Hamiltonian. In the context of IHO (24) the Wigner function is defined as |
| 4 | Einstein-Rosen paper is literally about the quantum mechanical understanding of Schwarzschild horizon, but the paper is differently understood and often classically interpreted (with GR modifications or introducing exotic matter on the right hand side of Einstein equations) in the literature [49,50,51]. In this paper, we stick to uncovering the original motivations and deriving new (quantum) interpretations. |
| 5 | Note that direct-sum operation is different from superposition. |
| 6 | Positive energy state in vacuum is whereas in it is . Here in this notation and . |
| 7 | In spatial 3D, parity is a discrete transformation totally different from rotation. In spherical coordinates, parity operation takes a point at a radial distance r to its antipode i.e., which can never be achieved by rotations. |
| 8 | Remember that any derivative operators must be split into components joined by a direct-sum operation. |
| 9 | This remains true even when considering quantum gravity in specific curved backgrounds such as de Sitter space [11]. |
| 10 | See also recent remarks by Peebles [127], emphasizing the foundational role of quantum fields in curved spacetime for cosmology and astrophysics. |
References
- Einstein A and Rosen N 1935 Phys. Rev. 48 73–77.
- Wigner E P 1993 Über die Operation der Zeitumkehr in der Quantenmechanik (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 213–226 ISBN 978-3-662-02781-3 URL https://doi.org/10.1007/978-3-662-02781-3_15. [CrossRef]
- Schrödinger E 1956 Expanding Universe (Cambridge University Press) ISBN 9780521062213 URL https://books.google.co.uk/books?id=UQTsuQEACAAJ.
- Hawking S W 1975 Commun. Math. Phys. 43 199–220 [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- Hawking S W 1976 Phys. Rev. D 14 2460–2473.
- Zeldovich Y B and Starobinsky A A 1971 Zh. Eksp. Teor. Fiz. 61 2161–2175.
- Starobinsky A A 1973 Sov. Phys. JETP 37 28–32.
- Unruh WG and Wald R M 2017 Rept. Prog. Phys. 80 092002 (Preprint 1703.02140).
- Parikh M K, Savonije I and Verlinde E P 2003 Phys. Rev. D 67 064005 (Preprint hep-th/0209120).
- Giddings S B 2022 (Preprint 2202.08292).
- Witten E 2001 Quantum gravity in de Sitter space Strings 2001: International Conference (Preprint hep-th/0106109), 2001.
- Raju S 2022 Phys. Rept. 943 1–80 (Preprint 2012.05770).
- Raju S 2022 Class. Quant. Grav. 39 064002 (Preprint 2110.05470).
- Almheiri A, Mahajan R, Maldacena J and Zhao Y 2020 JHEP 03 149 (Preprint 1908.10996).
- Kim I H and Preskill J 2023 JHEP 02 233 (Preprint 2212.00194).
- Ashtekar A 2025 Gen. Rel. Grav. 57 48 (Preprint 2502.04252).
- ’t Hooft G 2022 How studying black hole theory may help us to quantise gravity International conference on Eternity between Space and Time: From Consciousness to the Cosmos (Preprint 2211.10723).
- Witten E 2022 Why does quantum field theory in curved spacetime make sense? And what happens to the algebra of observables in the thermodynamic limit? (Preprint 2112.11614).
- Donoghue J F and Menezes G 2019 Phys. Rev. Lett. 123 171601 (Preprint 1908.04170).
- ’t Hooft G 2018 Front. in Phys. 6 81 (Preprint 1804.01383).
- ’t Hooft G 2016 Found. Phys. 46 1185–1198 (Preprint 1601.03447).
- Berry M V and Keating J P 1999 H=xp and the Riemann Zeros (Boston, MA: Springer US) pp 355–367 ISBN 978-1-4615-4875-1 URL. [CrossRef]
- Kumar K S and Marto J 2025 Symmetry 17 29 (Preprint 2305.06046).
- Kumar K S and Marto J 2024 PTEP 2024 123E01 (Preprint 2307.10345).
- Kumar K S and Marto J 2024 Universe 10 320 (Preprint 2405.20995).
- Gaztañaga E and Kumar K S 2024 JCAP 06 001 (Preprint 2401.08288).
- Kumar K S and Marto J 2022 (Preprint 2209.03928).
- Gaztañaga E and Kumar K S 2025 Symmetry 17 1056 (Preprint 2403.05587).
- Kumar K S and Marto J 2024 Gen. Rel. Grav. 56 143 (Preprint 2407.18652).
- de Boer J et al. 2022 (Preprint 2207.10618).
- Loll R, Fabiano G, Frattulillo D and Wagner F 2022 PoS CORFU2021 316 (Preprint 2206.06762).
- Coleman S 2018 Lectures of Sidney Coleman on Quantum Field Theory (Hackensack: WSP) ISBN 978-981-4632-53-9, 978-981-4635-50-9.
- Donoghue J F and Menezes G 2020 Prog. Part. Nucl. Phys. 115 103812 (Preprint 2003.09047).
- Coleman S R 1977 Phys. Rev. D 15 2929–2936 [Erratum: Phys.Rev.D 16, 1248 (1977)].
- Subramanyan V, Hegde S S, Vishveshwara S and Bradlyn B 2021 Annals Phys. 435 168470 (Preprint 2012.09875).
- Albrecht A, Ferreira P, Joyce M and Prokopec T 1994 Phys. Rev. D 50 4807–4820 (Preprint astro-ph/9303001).
- Betzios P, Gaddam N and Papadoulaki O 2021 SciPost Phys. Core 4 032 (Preprint 2004.09523).
- Ullinger F, Zimmermann M and Schleich W P 2022 AVS Quantum Sci. 4 024402.
- Sundaram S, Burgess C P and O’Dell D H J 2024 New J. Phys. 26 053023 (Preprint 2402.13909).
- Schumayer D and Hutchinson D A W 2011 Rev. Mod. Phys. 83 307–330 (Preprint 1101.3116).
- Sierra G 2019 Symmetry 11 494 (Preprint 1601.01797).
- Balazs N and Voros A 1990 Annals of Physics 199 123–140 ISSN 0003-4916 URL https://www.sciencedirect.com/science/article/pii/0003491690903704.
- Sierra G 2007 Nucl. Phys. B 776 327–364 (Preprint math-ph/0702034).
- Berry M V 1986 Riemann’s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ed Seligman T H and Nishioka H (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 1–17 ISBN 978-3-540-47230-8.
- Barton G 1986 Annals of Physics 166 322–363 ISSN 0003-4916 URL https://www.sciencedirect.com/science/article/pii/0003491686901429.
- Aneva B 1999 Phys. Lett. B 450 388–396 (Preprint 0804.1618).
- Almheiri A, Hartman T, Maldacena J, Shaghoulian E and Tajdini A 2021 Rev. Mod. Phys. 93 035002 (Preprint 2006.06872).
- Maldacena J and Susskind L 2013 Fortsch. Phys. 61 781–811 (Preprint 1306.0533).
- Visser M 1995 Lorentzian wormholes: From Einstein to Hawking ISBN 978-1-56396-653-8.
- Misner CW and Wheeler J A 1957 Annals Phys. 2 525–603.
- Morris M S, Thorne K S and Yurtsever U 1988 Phys. Rev. Lett. 61 1446–1449.
- ’t Hooft G 2015 (Preprint 1509.01695).
- ’t Hooft G 2017 Found. Phys. 47 1503–1542 (Preprint 1612.08640).
- Griffiths J B and Podolsky J 2009 Exact Space-Times in Einstein’s General Relativity Cambridge Monographs on Mathematical Physics (Cambridge: Cambridge University Press) ISBN 978-1-139-48116-8.
- Hartman T 2017 Lecture Notes on Classical de Sitter Space URL http://www.hartmanhep.net/GR2017/desitterlectures-v2.pdf.
- Bousso R 2002 Adventures in de Sitter space Workshop on Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking’s 60th Birthday pp 539–569 (Preprint hep-th/0205177).
- Hartman T, Jiang Y and Shaghoulian E 2020 JHEP 11 111 (Preprint 2008.01022).
- Shaghoulian E 2022 JHEP 01 132 (Preprint 2110.13210).
- Shaghoulian E and Susskind L 2022 JHEP 08 198 (Preprint 2201.03603).
- Balasubramanian V, Horava P and Minic D 2001 JHEP 05 043 (Preprint hep-th/0103171).
- Balasubramanian V, Kar A and Ugajin T 2022 Class. Quant. Grav. 39 174001 (Preprint 2104.13383).
- Colas T, de Rham C and Kaplanek G 2024 JCAP 05 025 (Preprint 2401.02832).
- Brandenberger R 2021 LHEP 2021 198 (Preprint 2102.09641).
- Brandenberger R and Kamali V 2022 Eur. Phys. J. C 82 818 (Preprint 2203.11548).
- Mukhanov V and Winitzki S 2007 Introduction to quantum effects in gravity (Cambridge University Press) ISBN 978-0-521-86834-1, 978-1-139-78594-5.
- Starobinsky A A 1980 Phys. Lett. B 91 99–102.
- Baumann D 2018 PoS TASI2017 009 (Preprint 1807.03098).
- Mukhanov V 2005 Physical Foundations of Cosmology (Oxford: Cambridge University Press) ISBN 978-0-521-56398-7.
- Birrell N D and Davies P CW1982 Quantum Fields in Curved Space Cambridge Monographs on Mathematical Physics (Cambridge, UK: Cambridge University Press) ISBN 978-0-511-62263-2, 978-0-521-27858-4.
- Sanchez N G and Whiting B F 1987 Nucl. Phys. B 283 605–623.
- ’t Hooft G 2024 (Preprint 2410.16891).
- Israel W 1976 Phys. Lett. A 57 107–110.
- Zel’dovich Y B and Starobinsky A A 1977 JETP Lett. 26 252.
- Sasaki M 1986 Prog. Theor. Phys. 76 1036. 1036.
- Mukhanov V F 1988 Sov. Phys. JETP 67 1297–1302.
- Morris M S and Thorne K S 1988 Am. J. Phys. 56 395–412.
- Cramer J G, Forward R L, Morris M S, Visser M, Benford G and Landis G A 1995 Phys. Rev. D 51 3117–3120 (Preprint astro-ph/9409051). [CrossRef]
- Witten E 2018 Rev. Mod. Phys. 90 045003 (Preprint 1803.04993).
- Buchbinder I L and Shapiro I 2023 Introduction to Quantum Field Theory with Applications to Quantum Gravity Oxford Graduate Texts (Oxford University Press) ISBN 978-0-19-887234-4, 978-0-19-883831-9.
- Giordano F, Negro S and Tateo R 2023 JHEP 10 099 (Preprint 2307.15025).
- Bekenstein J D 1973 Phys. Rev. D 7 2333–2346.
- Susskind L, Thorlacius L and Uglum J 1993 Phys. Rev. D 48 3743–3761 (Preprint hep-th/9306069).
- Penington G, Shenker S H, Stanford D and Yang Z 2022 JHEP 03 205 (Preprint 1911.11977).
- Penington G 2020 JHEP 09 002 (Preprint 1905.08255).
- Marolf D and Maxfield H 2020 JHEP 08 044 (Preprint 2002.08950).
- Jensen K and Karch A 2013 Phys. Rev. Lett. 111 211602 (Preprint 1307.1132).
- Geng H, Karch A, Perez-Pardavila C, Raju S, Randall L, Riojas M and Shashi S 2021 SciPost Phys. 10 103 (Preprint 2012.04671).
- Goto K, Hartman T and Tajdini A 2021 JHEP 04 289 (Preprint 2011.09043).
- Page D N 1993 Phys. Rev. Lett. 71 3743–3746 (Preprint hep-th/9306083).
- Doran R, Lobo F S N and Crawford P 2008 Found. Phys. 38 160–187 (Preprint gr-qc/0609042).
- Schwarz D J, Copi C J, Huterer D and Starkman G D 2016 Class. Quant. Grav. 33 184001 (Preprint 1510.07929).
- Martin J 2005 Lect. Notes Phys. 669 199–244 (Preprint hep-th/0406011).
- ’t Hooft G 1993 Conf. Proc. C 930308 284–296 (Preprint gr-qc/9310026).
- Akrami Y et al. (Planck) 2020 Astron. Astrophys. 641 A7 (Preprint 1906.02552).
- Martin J 2019 Universe 5 92 (Preprint 1904.00083).
- Baumann D, Lee H and Pimentel G L 2016 JHEP 01 101 (Preprint 1507.07250).
- Bartolo N and Orlando G 2017 JCAP 07 034 (Preprint 1706.04627).
- Creque-Sarbinowski C, Alexander S, Kamionkowski M and Philcox O 2023 JCAP 11 029 (Preprint 2303.04815).
- Komatsu E 2022 Nature Rev. Phys. 4 452–469 (Preprint 2202.13919).
- Ade P A R et al. (BICEP, Keck) 2021 Phys. Rev. Lett. 127 151301 (Preprint 2110.00483).
- Tristram M et al. 2022 Phys. Rev. D 105 083524 (Preprint 2112.07961).
- Lue A,Wang L M and Kamionkowski M 1999 Phys. Rev. Lett. 83 1506–1509 (Preprint astro-ph/9812088).
- Gluscevic V and Kamionkowski M 2010 Phys. Rev. D 81 123529 (Preprint 1002.1308).
- Contaldi C R, Peloso M, Kofman L and Linde A D 2003 JCAP 07 002 (Preprint astro-ph/0303636).
- Zaldarriaga M and Seljak U 1997 Phys. Rev. D 55 1830–1840 (Preprint astro-ph/9609170).
- Ashtekar A, Gupt B and Sreenath V 2021 Front. Astron. Space Sci. 8 76 (Preprint 2103.14568).
- Kitazawa N and Sagnotti A 2015 EPJ Web Conf. 95 03031 (Preprint 1411.6396).
- Cicoli M, Downes S and Dutta B 2013 JCAP 12 007 (Preprint 1309.3412).
- Sinha R and Souradeep T 2006 Phys. Rev. D 74 043518 (Preprint astro-ph/0511808).
- Jain R K, Chingangbam P, Gong J O, Sriramkumar L and Souradeep T 2009 JCAP 01 009 (Preprint 0809.3915).
- Gonzalez M and Hertzberg M P 2019 JCAP 10 017 (Preprint 1904.07249).
- Lello L, Boyanovsky D and Holman R 2014 Phys. Rev. D 89 063533 (Preprint 1307.4066).
- Cicoli M, Downes S, Dutta B, Pedro F G and Westphal A 2014 JCAP 12 030 (Preprint 1407.1048).
- Muir J, Adhikari S and Huterer D 2018 Phys. Rev. D 98 023521 (Preprint 1806.02354).
- Samandar A et al. (COMPACT) 2024 JCAP 11 020 (Preprint 2407.09400).
- Jones J, Copi C J, Starkman G D and Akrami Y 2023 (Preprint 2310.12859).
- Smith A, Copi C J and Starkman G D 2024 (Preprint 2409.03008).
- Gaztañaga E, Kumar K S, Pradhan S and Gabler M 2025 Phys. Rev. D 111 103537 (Preprint 2505.23877).
- Abazajian K N et al. (CMB-S4) 2016 (Preprint 1610.02743).
- Campeti P, Poletti D and Baccigalupi C 2019 JCAP 09 055 (Preprint 1905.08200).
- Allys E et al. (LiteBIRD) 2023 PTEP 2023 042F01 (Preprint 2202.02773).
- Koh S 2023 New Phys. Sae Mulli 73 74–78.
- Gibbons GW and Hawking S W 1977 Phys. Rev. D 15 2738–2751.
- Ashtekar A, De Lorenzo T and Schneider M 2021 Adv. Theor. Math. Phys. 25 1651–1702 (Preprint 2107.08506).
- Gaztanaga E 2022 Symmetry 14 1849.
- ’t Hooft G 2023 Quantum Foundations as a Guide for Refining Particle Theories Windows on the Universe: 30th Anniversary of the Rencontres du Vietnam (Preprint 2312.09396).
- Peebles P J E 2024 Status of the LambdaCDM theory: supporting evidence and anomalies (Preprint 2405.18307).
- Cardoso V, Foit V F and Kleban M 2019 JCAP 08 006 (Preprint 1902.10164).
- Gogoi D J, Övgün A and Demir D 2023 Phys. Dark Univ. 42 101314 (Preprint 2306.09231).
- Rosato R F, Biswas S, Chakraborty S and Pani P 2025 Phys. Rev. D 111 084051 (Preprint 2501.16433).
- Price R H and Pullin J 1994 Phys. Rev. Lett. 72 3297–3300 (Preprint gr-qc/9402039).
- Ashtekar A and Krishnan B 2025 (Preprint 2502.11825).
- Wu C S, Ambler E, Hayward RW, Hoppes D D and Hudson R P 1957 Phys. Rev. 105 1413–1414.
- Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231–252 (Preprint hep-th/9711200).
- Rozenman G G, Ullinger F, Zimmermann M, EfremovMA, Shemer L, SchleichWP and Arie A 2024 Commun. Phys. 7 165.








| Aspect | ER=EPR (Maldacena–Susskind) | DQFT’s realization of ER=EPR |
|---|---|---|
| Spacetime Setup | Two-sided asymptotically AdS black holes and Holography | A single Schwarzschild black hole that is asymptotically Minkowski |
| Entanglement Representation | Tensor product of two entangled systems ( representing left the right Rindler Hilbert spaces): . Maximal entanglement between two distant black holes | A single quantum field is direct-sum of components in geometric SSS: . So any maximally entangled state is direct-sum of components in geometric SSS of a single BH spacetime. |
| Unitarity | Unitarity is lost for any local observer in the left or right region | Unitarity is reinstated for any local observer in the left or right |
| Geometric Realization | Einstein–Rosen bridge (non-traversable wormhole) connects two asymptotic boundaries | No geometric wormhole but a quantum field is abridged by geometric superselection sectors across horizons |
| Time Flow | Forward in both left and right regions (in global AdS time) | Opposite time directions in left and right wedges (e.g., Kruskal or Rindler time) |
| Key Mathematical Tool | Thermofield double Hamiltonian (which is changed from the usual ) | Inverted harmonic oscillator structure near horizons, discrete symmetry identifications |
| Observer Complementarity | Emerges from dual CFT entanglement and bulk geometry | Built into horizon local QFT: different observers access complementary Hilbert spaces (geometric SSS) |
| Spacetime Connectivity | Entanglement implies wormhole connectivity (ER=EPR conjecture) | Entanglement encoded in field theory structure across horizon, without wormhole |
| Parity | SI | SI | DSI | ratio |
|---|---|---|---|---|
| indicator | DSI/SI | |||
| 2.62 % | 0.09 % | 3.3 % | 37 | |
| 1.0 % | 0.7 % | 39.5 % | 56 | |
| 3.89 % | 1.12 % | 45.3 % | 40 | |
| 0.12 % | 0.003 % | 1.96 % | 653 | |
| 0.45 % | 34.6 % | 77 | ||
| 0.016 % | 2.65 % | 166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
