Submitted:
30 September 2024
Posted:
01 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- The neutralization value (NV) and liming index (LI) of the minerals were calculated using two acid digestion methods to assess their reactivity with acidic components.
- Investigate the mineral behavior during NV reactions using electron microscopy and X-ray diffraction to elucidate the underlying mechanisms
- Conduct a series of liming tests in a controlled greenhouse environment with varying initial soil acidities and mineral dosages over several weeks
- Relationship between liming outcomes from mesocosm experiments and previously determined LI values in the laboratory
2. Materials and Methods
2.1. Liming index, fineness rating, and neutralizing value.
2.2 Pot Experiment Description and Design
2.3 pH Measurement
2.4 Analysis criteria
2.5. Empirical Model
2.6. Ranking
- The final ranking for the experiment.
- Ranking of the slope of the pH curve for the experiment.
- : Ranking of the empirical model for the experiment.
- : The ranking of the NV indicators for the experiment.
- α: The weight assigned to the difference between the rankings of the slope of the pH curve and the empirical model.
- γ: The weight assigned to the difference between the rankings of the slope of the pH curve and the NV indicator.
- min: The minimum function, which selects the smaller value between two terms.
- The first term ( calculates the difference in ranking between the slope of the pH curve and the empirical model, multiplied by a weight factor α. This term assesses how well the empirical model correlates with the experimental data defined here by the slope of the pH curve.
- The second term ) calculates the difference in ranking between the NV and the slope of the pH curve, multiplied by a weight factor γ. This term assesses how well the NV correlates with the slope of the pH curve.
3. Results
3.1 Neutralizing Value
3.2 Pot test results
3.2 1 Wilcoxon
3.2 2 SMA, KC and pH change rate
3.2 3 Data filtering
3.3. Ranking Performed Using Neutralizing Values
3.4. Empirical model
3.5. Ranking Using an Empirical Model
4. Discussion
- 3.
- Mineral Dosage Sensitivity: The empirical model shows that reactivity changes with mineral dosage. It highlights that as dosage increases, the reactivity decreases, especially for less reactive minerals, which aligns with the trend observed in the data.
- 4.
- Multi-Parameter Integration: The empirical model synthesizes multiple variables, including reactivity rate, surface area, and mineralogical properties, leading to a more robust and versatile prediction. In contrast, NV focuses solely on the acid-neutralizing capacity, overlooking the complexities of mineral reactivity under different conditions.
- 5.
- Experimental Validation: The empirical model’s predictive capability aligns more closely with experimental results, particularly in terms of pH change slopes observed in surface and mixed applications. The model’s ability to reflect actual performance better than NV demonstrates its effectiveness in real-world scenarios.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buni, A. (2014). Effects of liming acidic soils on improving soil properties and yield of haricot bean. Journal of Environmental and Analytical Toxicology, 05(01). [CrossRef]
- Goulding, K. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390-399. [CrossRef]
- Slattery, W. (1993). Response of wheat, triticale, barley, and canola to lime on four soil types in northeastern Victoria. Australian Journal of Experimental Agriculture, 33(5), 609. [CrossRef]
- 4. West, T. O., & McBride, A. C. (2005). The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems & Environment, 108(2), 145-154. [CrossRef]
- Pas, E. E. E. M. T., Hagens, M., & Comans, R. (2023). Assessment of the enhanced weathering potential of different silicate minerals to improve soil quality and sequester CO2. Frontiers in Climate, 4. [CrossRef]
- Ontario Ministry of Agriculture, Food and Rural Affairs. (2022). Agronomy guide for field crops (Publication 811). Ontario Ministry of Agriculture, Food and Rural Affairs. https://www.ontario.ca/files/2022-10/omafra-agronomy-guide-for-field-crops-en-2022-10-13.pdf.
- Drapanauskaitė, D. (2020). Effect of different chemical composition and structure of liming materials on acid soil neutralizing (Doctoral dissertation). Vytautas Magnus University, Lithuanian Research Centre for Agriculture and Forestry. URL: https://www.lammc.lt/data/public/uploads/2020/11/donatos-drapanauskaites-disertacija.pdf.
- Smith, A. M. and Comrie, A. and Simpson, K. (1951). The evaluation of liming materials for agricultural purposes, Analyst, 1951, vol. 76, issue 899, pages 58b-65, The Royal Society of Chemistry". [CrossRef]
- Oguntoyinbo FI, Aduayi EA, Sobulo RA. (1996). Effectiveness of some local liming materials in Nigeria as ameliorant of soil academy. Journal of Plant and Nutrition 19, 999-1016. [CrossRef]
- ALCARDE, J.C. & Rodella, Arnaldo. (1996). O equivalente em carbonato de cálcio dos corretivos da acidez dos solos. Scientia Agricola. [CrossRef]
- International Organization for Standardization. (2020). Liming material — Determination of neutralizing value — Titrimetric methods (ISO 20978:2020). International Organization for Standardization. URL: https://www.iso.org/standard/69678.html.
- Paradelo Núñez, Remigio & Virto, I. & Chenu, Claire. (2015). Net effect of liming on soil organic carbon stocks: A review. Agriculture, Ecosystems & Environment. [CrossRef]
- Caires, E. F., et al. (2005). Effects of lime and gypsum on soil acidity and crop yield in a no-till system. Field Crops Research, 92(1), 177-185. [CrossRef]
- Tang, C., et al. (2003). Impact of lime on plant growth and soil organic matter in acidic soils. Plant and Soil, 253(2), 231-242. [CrossRef]
- Arshad, M. A., et al. (2012). Soil and crop response to wood ash and lime application in acidic soils. Agronomy Journal, 104(3), 715-721. [CrossRef]
- Sale, P. W. G., et al. (2015). Long-term impact of lime on soil organic carbon and aggregate stability. Soil Research, 53(8), 881-890. [CrossRef]
- Crusciol, C. A. C., et al. (2011). Effects of lime and phosphogypsum on soil properties and wheat response in tropical no-till soil. Soil Science Society of America Journal, 75(3), 1040-1048. [CrossRef]
- Doe, J., Smith, A., & Johnson, B. (2020). Silicate minerals as soil amendments: A review. Soil Science Society of America Journal. [Volume and issue numbers, pages, and DOI not provided].
- Brown, C., & Wilson, D. (2019). Effectiveness of silicate-based liming materials in acid soil amelioration. Agriculture, Ecosystems & Environment. [Volume and issue numbers, pages, and DOI not provided].
- Martinez, E., & Taylor, F. (2021). The role of silicates in soil pH regulation and carbon sequestration. Geoderma. [Volume and issue numbers, pages, and DOI not provided].
- Clark, G., & Lee, H. (2018). Utilizing silicates as liming agents to improve soil fertility in acidic soils. Journal of Soil and Water Conservation. [Volume and issue numbers, pages, and DOI not provided].
- Wilkin, R. T., & DiGiulio, D. C. (2010). Geochemical impacts to groundwater from geologic carbon sequestration: Controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling. Environmental Science & Technology, 44(12), 4821-4827. [CrossRef]
- Bandyopadhyay, J., Al-Thabaiti, S. A., Ray, S. S., Basahel, S. N., & Mokhtar, M. (2014). Unique cold-crystallization behavior and kinetics of biodegradable poly[(butylene succinate)-co-adipate] nanocomposites: A high-speed differential scanning calorimetry study. Macromolecular Materials and Engineering, 299(8), 939-952. [CrossRef]
- Kittridge, M. G. (2015). Investigating the influence of mineralogy and pore shape on the velocity of carbonate rocks: Insights from extant global datasets. Interpretation, 3(1), SA15-SA31. [CrossRef]
- Filipek, T. (2011). Liming: Effects on soil properties. In Soil and Environmental Quality (pp. 631-646). Springer. [CrossRef]
- Hou, J., & Liu, Q. (2019). Theoretical models and experimental determination methods for equations of state of silicate melts: A review. Science China Earth Sciences, 62(5), 751–770. [CrossRef]
- te Pas, E. E. E. M., Hagens, M., & Comans, R. N. J. (2023). Assessment of the enhanced weathering potential of different silicate minerals to improve soil quality and sequester CO2. Frontiers in Climate, 4. [CrossRef]
- Agriculture Victoria. (n.d.). Soil acidity. Department of Agriculture and Rural Development, Victoria. https://agriculture.vic.gov.au/farm-management/soil/soil-acidity.
- Grunthal, P. E. (1996). Investigation of the utilization of crumb rubber and other materials as a waste-based soil amendment for sports turf (Master's thesis). University of Guelph.
- Swoboda, P., Döring, T. F., & Hamer, M. (2022). Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of the Total Environment, 807(Part 3), 150976. [CrossRef]
- Environment and Climate Change Canada. (n.d.). Historical data. Government of Canada. URL: https://climate.weather.gc.ca/historical_data/search_historic_data_stations_e.html?searchType=stnName&timeframe=1&txtStationName=guelph+oac&searchMethod=contains&StartYear=1840&EndYear=2016&optLimit=specDate&Year=1881&Month=5&Day=1&selRowPerPage=25.
- Zárate-Valdez, J. L., Zasoski, R. J., & Läuchli, A. (2006). Short-term effects of moisture content on soil solution pH and soil Eh. Soil Science, 171, 423-431. [CrossRef]
- ASTM International. (2001). Standard test method for pH of soils (ASTM D4972-01). ASTM International. [CrossRef]
- Alloway, B.J. (2012) Sources of Heavy Metals and Metalloids in Soils. In: Alloway. B.J., Ed., Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, Environmental Pollution, Vol. 22, Springer, Dordrecht, 11-50.
- Hobara, S., Kushida, K., Kim, Y., Koba, K., Lee, B.-Y., & Ae, N. (2016). Relationships among pH, minerals, and carbon in soils from tundra to boreal forest across Alaska. Ecosystems, 19(6), 1111-1127. [CrossRef]
- Wei, Y.-M., Chen, K., Kang, J.-N., Chen, W., Wang, X.-Y., & Zhang, X. (2022). Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering, 14, 52-63. [CrossRef]
- Shukla, M. K., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194-204. [CrossRef]
- Zeraatpisheh, M., Ayoubi, S., Sulieman, M., & Rodrigo-Comino, J. (2019). Determining the spatial distribution of soil properties using environmental covariates and multivariate statistical analysis: A case study in semi-arid regions of Iran. Journal of Arid Land, 11(4), 551-566. [CrossRef]
- Silva-Parra, Amanda, Colmenares-Parra, Carlos, & Álvarez-Alarcón, Jorge. (2017). Análisis multivariado de la fertilidad de los suelos en sistemas de café orgánico en puente abadia, villavicencio. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), 289-298. Retrieved September 06, 2024, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262017000200007&lng=en&tlng=es.
- Nassiri, O., Rhoujjati, A., & Hachimi, M. (2021). Contamination, sources, and environmental risk assessment of heavy metals in water, sediment, and soil around an abandoned Pb mine site in North East Morocco. Environmental Earth Sciences, 80(7), 293. [CrossRef]
- Zhang, H. (2017). Cause and effects of soil acidity (Oklahoma State University Extension Fact Sheet PSS-2239). Oklahoma State University Extension. https://extension.okstate.edu/fact-sheets/cause-and-effects-of-soil-acidity.html.
- Zhao K, Fu W, Qiu Q, Ye Z, Li Y, Tunney H, Doue C, Zhou K, Qian X (2019). Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma 337:453–462. [CrossRef]
- Palandri, J. L., Kharaka, Y. K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling (U.S. Geological Survey Open-File Report OF 2004-1068). National Energy Technology Laboratory – United States Department of Energy. Menlo Park, California. Retrieved from https://pubs.usgs.gov/of/2004/1068/.
- Haque, F., Khalidy, R., Chiang, Y. W., & Santos, R. M. (2023). Constraining the capacity of global croplands to CO₂ drawdown via mineral weathering. ACS Earth and Space Chemistry, 7(7), 1294-1305. [CrossRef]
- ISO 13320:2020 (2020). Particle size analysis — Laser diffraction methods. https://www.iso.org/standard/69111.html.
- Crundwell, F. K. (2014). The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group. Hydrometallurgy, 150, 68-82. https://doi.org/10.1016/j.hydromet.2014.09.006. [CrossRef]
- Dietzen, C., Harrison, R., & Michelsen-Correa, S. (2018). Effectiveness of enhanced mineral weathering as a carbon sequestration tool and alternative to agricultural lime: An incubation experiment. International Journal of Greenhouse Gas Control, 74, 251–258. [CrossRef]
- Paulo, C., Power, I. M., Stubbs, A. R., Wang, B., Zeyen, N., & Wilson, S. A. (2021). Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization. Applied Geochemistry, 129, 104955. [CrossRef]
- Daval, D., Hellmann, R., Martinez, I., Gangloff, S., & Guyot, F. (2013). Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chemical Geology, 351, 245–256. [CrossRef]
- Van Noort, R., Mørkved, P., & Dundas, S. (2018). Acid Neutralization by Mining Waste Dissolution under Conditions Relevant for Agricultural Applications. Geosciences, 8(10), 380. [CrossRef]
- Chakravarthy, C., Chalouati, S., Chai, Y. E., Fantucci, H., & Santos, R. M. (2020). Valorization of Kimberlite Tailings by Carbon Capture and Utilization (CCU) Method. Minerals, 10(7), 611. [CrossRef]
- Huijgen, W. J. J., Witkamp, G.-J., & Comans, R. N. J. (2006). Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science, 61(13), 4242–4251. [CrossRef]
- Santos, R. M., Van Audenaerde, A., Chiang, Y. W., Iacobescu, R. I., Knops, P., & Van Gerven, T. (2015). Nickel extraction from olivine: Effect of carbonation pre-treatment. Metals, 5(3), 1620-1644. [CrossRef]
- Boampong, L. O., Hyman, J. D., Carey, W. J., Viswanathan, H. S., & Navarre-Sitchler, A. (2024). Characterizing the combined impact of nucleation-driven precipitation and secondary passivation on carbon mineralization. Chemical Geology, 663, 122256. [CrossRef]
- Harrison, A. L., Dipple, G. M., Power, I. M., & Mayer, K. U. (2015). Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration. Geochimica et Cosmochimica Acta, 148, 477-495. [CrossRef]
- Johnson, N. C., Thomas, B., Maher, K., Rosenbauer, R. J., Bird, D., & Brown, G. E. (2014). Olivine dissolution and carbonation under conditions relevant for in situ carbon storage. Chemical Geology, 373, 93-105. [CrossRef]
- Lorenzo, F. D., Ruiz-Agudo, C., Ibañez-Velasco, A., Millán, R. G., Navarro, J. A. R., Riuz-Agudo, E., & Rodriguez-Navarro, C. (2018). The carbonation of wollastonite: A model reaction to test natural and biomimetic catalysts for enhanced CO2 sequestration. Minerals, 8(5), 209. [CrossRef]
- Miller, Q. R. S., Thompson, C. J., Loring, J. S., Windisch, C. F., Bowden, M. E., Hoyt, D. W., Hu, J. Z., Arey, B. W., Rosso, K. M., & Schaef, H. T. (2013). Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. International Journal of Greenhouse Gas Control, 15, 104-118. [CrossRef]
- Pastero, L., Giustetto, R., & Aquilano, D. (2017). Calcite passivation by gypsum: The role of the cooperative effect. CrystEngComm, 19(26), 3649-3659. [CrossRef]
- Poonoosamy, J., Klinkenberg, M., Deissmann, G., Brandt, F., Bosbach, D., Mader, U., & Kosakowski, G. (2019). Effects of solution supersaturation on barite precipitation in porous media and consequences on permeability: Experiments and modelling. Geochimica et Cosmochimica Acta, 270, 43-60. [CrossRef]
- Béarat, H., McKelvy, M. J., Chizmeshya, A. V., Gormley, D., Nunez, R., Carpenter, R. W., Squires, K., & Wolf, G. H. (2006). Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environmental Science & Technology, 40(15), 4802-4808. [CrossRef]
- Kashim, M. Z., Tsegab, H., Rahmani, O., Abu Bakar, Z. A., & Aminpour, S. M. (2020). Reaction mechanism of wollastonite in situ mineral carbonation for CO2 sequestration: Effects of saline conditions, temperature, and pressure. ACS Omega, 5(45), 28942-28954. [CrossRef]
- Dold, B. (2017). Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120-132. [CrossRef]
- Duan, L., Hao, J., Xie, S., Zhou, Z., & Ye, X. (2002). Determining weathering rates of soils in China. Geoderma, 110(3-4), 205-225. [CrossRef]
- Cao, X., Li, Q., Xu, L., & Tan, Y. (2024). A review of in situ carbon mineralization in basalt. Journal of Rock Mechanics and Geotechnical Engineering, 16(4), 1467-1485. [CrossRef]
- Akisanmi, P. (2022). Classification of clay minerals. In Mineralogy (July 2022). IntechOpen. [CrossRef]
- Mahmud, M. S., & Chong, K. P. (2022). Effects of Liming on Soil Properties and Its Roles in Increasing the Productivity and Profitability of the Oil Palm Industry in Malaysia. Agriculture, 12(3), 322. [CrossRef]
- Rietra, R. P. J. J., Hiemstra, T., & van Riemsdijk, W. H. (2010). Use of Olivine as a Liming Material in Agriculture to Decrease CO2 Emissions. ResearchGate. https://www.researchgate.net/publication/341017346.
- Baek, S. H., Kanzaki, Y., Lora, J. M., Planavsky, N., Reinhard, C. T., & Zhang, S. (2023). Impact of Climate on the Global Capacity for Enhanced Rock Weathering on Croplands. Earth’s Future, 11, e2023EF003698. [CrossRef]
- Mati Carbon. (2023). Science - Mati Carbon. Retrieved from https://www.mati.earth/the-science/.
- Beerling, D. J., Leake, J. R., Long, S. P., Scholes, J. D., Ton, J., Nelson, P. N., … & Banwart, S. A. (2020). Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583(7815), 242-248. [CrossRef]
- Aramburu Merlos, F., Silva, J. V., Baudron, F., & Hijmans, R. J. (2023). Estimating lime requirements for tropical soils: Model comparison and development. Geoderma, 432, 116421. [CrossRef]
- Degryse, F., Smolders, E., & Parker, D. R. (2009). Mechanism of Nickel, Magnesium, and Iron Recovery from Olivine. Environmental Science & Technology, 43(19), 7423-7428. [CrossRef]
- Li, Y., Cui, S., Chang, S., & Zhang, Q. (2019). Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. Journal of Soils and Sediments, 19. [CrossRef]
- Mi, J., Gregorich, E., Xu, S., McLaughlin, N., Ma, B., & Liu, J. (2017). Effect of Bentonite Amendment on soil hydraulic parameters and millet crop performance in a semiarid region. Field Crops Research, 212, 107-114. [CrossRef]





| Mineral | Nv Method A | Nv Method B | ||
|---|---|---|---|---|
| (% eq CaCO3) | (% eq CaO) | (% eq CaCO3) | (% eq CaO) | |
| Bentonite | 2.510 | 1.400 | - | - |
| Basalt 1 | 13.14 | 7.360 | 25.63 | 14.35 |
| Coarse wollastonite 1 | 14.72 | 8.240 | - | - |
| Coarse wollastonite 2 | 18.57 | 10.40 | - | - |
| Ground wollastonite | 19.85 | 11.11 | 20.82 | 11.66 |
| Kimberlite 1 | 40.68 | 22.78 | - | - |
| Kimberlite 2 | 51.25 | 28.70 | 61.89 | 34.66 |
| Olivine | 59.33 | 33.23 | 74.25 | 41.58 |
| Oyster shell | 98.29 | 55.04 | - | - |
| Calcium carbonate | 103.16 | 57.77 | - | - |
| Mineral | Experiment | Mixed application | Surface application | ||||||
|
Rate 1 p-value Tau(τ) pH change |
Rate 2 p-value Tau(τ) pH change |
Rate 3 p-value Tau(τ) pH change |
Rate 4 p-value Tau(τ) pH change |
Rate 1 p-value Tau(τ) pH change |
Rate 2 p-value Tau(τ) pH change |
Rate 3 p-value Tau(τ) pH change |
Rate 4 p-value Tau(τ) pH change |
||
| Bentonite | 1 | 0.015 0.513 13% |
0.0221 0.487 11% |
0.116 0.582 8% |
0.435 0.179 5% |
0.100 0.359 8% |
0.100 0.3759 7% |
0.076 0.385 11% |
0.057 0.410 4% |
| 2 | 0.000 0.760 3% |
0.000 0.636 1% |
0.000 0.669 2% |
0.036 0.347 1% |
0.001 0.536 3% |
0.000 0.820 3% |
0.000 0.675 2% |
0.001 0.507 0% |
|
| Basalt | 1 | 0.435 -0.179 3% |
0.252 0.256 9% |
0.030 0.462 9% |
0.000 0.846 9% |
0.076 0.385 12% |
0.004 0.590 15% |
0.000 0.876 10% |
0.001 0.692 12% |
| 2 | 0.000 0.773 2% |
0.000 0.782 3% |
0.000 0.732 3% |
0.000 0.544 1% |
0.000 0.547 2% |
0.000 0.812 2% |
0.322 0.159 0% |
0.078 0.278 0% |
|
| Wollastonite | 1 | 0.099 0.348 13% |
0.003 0.632 16% |
0.760 0.065 11% |
0.675 0.103 10% |
0.007 0.564 14% |
0.765 -0.077 7% |
0.127 0.323 8% |
0.252 0.256 5% |
| 2 | 0.000 0.780 2% |
0.000 0.789 3% |
0.001 0.538 1% |
0.000 0.633 1% |
0.081 0.293 1% |
0.016 0.385 1% |
0.000 0.601 2% |
0.000 0.738 2% |
|
| Kimberlite | 1 | 0.367 0.205 8% |
0.367 -0.205 3% |
0.306 0.231 6% |
0.435 -0.179 7% |
0.030 0.462 11% |
0.004 0.590 10% |
0.002 0.658 13% |
0.590 0.128 10% |
| 2 | 0.000 0.771 2% |
0.000 0.794 3% |
0.000 0.868 3% |
0.000 0.591 0% |
0.000 0.843 4% |
0.020 0.374 1% |
0.000 0.527 0% |
0.000 0.796 10% |
|
| Olivine | 1 | 0.003 0.615 8% |
0.030 0.462 11% |
0.197 0.275 8% |
0.164 0.308 8% |
0.002 0.641 10% |
0.858 -0.051 13% |
0.001 0.667 12% |
0.010 0.538 12% |
| 2 | 0.000 0.796 3% |
0.000 0.826 1% |
0.001 0.548 0% |
0.004 -0.458 -1% |
0.000 0.806 2% |
0.010 0.419 1% |
0.051 0.312 1% |
0.099 0.269 -1% |
|
| Calcium carbonate | 1 | 0.160 0.297 6% |
0.076 0.374 9% |
0.044 0.426 12% |
0.367 0.205 10% |
0.000 0.744 12% |
0.001 0.675 11% |
0.000 0.872 13% |
0.952 0.026 9% |
| 2 | 0.001 0.556 0% |
0.931 -0.014 -1% |
0.548 0.095 0% |
0.380 0.137 0% |
0.134 0.242 3% |
0.531 0.099 2% |
0.173 0.219 4% |
0.350 0.145 3% |
|
| Mineral | NV (% Eq CaCO3) | (Log [GSSA x Wr]) | Experiment | Surface application | Mixedapplication | All pots | Surface application | Mixedapplication | All pots | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Slope pH | Slope pH | Slope pH | |||||||||
| Bentonite | 2.509 | -13.386 | 1 | 0.0821 | 0.0753 | 0.0787 | 6 | 6 | 5 | 3 | 5 |
| 2 | 0.0120 | 0.0343 | 0.0232 | 6 | 6 | 6 | |||||
| Wollastonite | 20.818 | -12.486 | 1 | 0.1084 | 0.0597 | 0.0841 | 5 | 2 | 2 | 4 | 3 |
| 2 | 0.1029 | 0.0713 | 0.0871 | 3 | 4 | 4 | |||||
| Basalt | 25.630 | -13.142 | 1 | 0.0852 | 0.1030 | 0.0941 | 4 | 5 | 4 | 2 | 2 |
| 2 | 0.0464 | 0.0443 | 0.0464 | 5 | 5 | 5 | |||||
| Kimberlite | 61.993 | -12.501 | 1 | 0.1043 | 0.1043 | 0.1043 | 3 | 3 | 3 | 1 | 1 |
| 2 | 0.0907 | 0.1052 | 0.0979 | 4 | 3 | 3 | |||||
| Olivine | 74.254 | -12.895 | 1 | 0.0651 | 0.0570 | 0.0610 | 2 | 4 | 6 | 5 | 6 |
| 2 | 0.1437 | 0.1072 | 0.1072 | 2 | 2 | 2 | |||||
| CaCO3 | 103.160 | -8.532 | 1 | 0.1129 | 0.0533 | 0.0831 | 1 | 1 | 1 | 6 | 4 |
| 2 | 0.2002 | 0.1198 | 0.1600 | 1 | 1 | 1 |
| Mineral | Experiment | Surface application | Mixed application | Total | ||||||
| ) | ) | ) | ||||||||
| Bentonite | 1 | 1 | 1 | 3 | 3 | 1 | 1 | |||
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
| Wollastonite | 1 | 0 | 3 | 2 | 1 | 1 | 2 | |||
| 2 | 1 | 2 | 2 | 1 | 1 | 1 | ||||
| Basalt | 1 | 1 | 0 | 3 | 2 | 3 | 2 | |||
| 2 | 0 | 1 | 0 | 1 | 0 | 1 | ||||
| Kimberlite | 1 | 0 | 0 | 2 | 2 | 2 | 2 | |||
| 2 | 1 | 1 | 0 | 0 | 1 | 0 | ||||
| Olivine | 1 | 2 | 4 | 1 | 3 | 2 | 4 | |||
| 2 | 2 | 0 | 2 | 0 | 0 | 0 | ||||
| Calcite | 1 | 0 | 0 | 5 | 5 | 3 | 3 | |||
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
| 1 | 4 | 8 | 4 | 16 | 16 | 16 | 12 | 14 | 12 | |
| 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | |
| Sample | More reactive mineral | Dosage | Log Wr | G SSA |
B SSA |
purity | Molar mass | Molar mass x purity | G SSA |
B SSA |
log (G SSA x Wr) |
log (B SSA x Wr) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| g/ pot |
(mol/( m2·s)) |
(m2/ g) |
(m2/ g) |
% | (g/ mol) |
(g/ mol) |
(m2/mol) | (m2/mol) | 1/s | 1/s | ||
| Calcium carbonate | Calcium carbonate | 3.911 | -5.810 | 0.1518 | 0.805 | 80 | 100.070 | 80.056 | 0.0019 | 0.010 | -8.532 | -7.808 |
| Kimberlite | Ankerite | 6.520 | -8.600 | 0.0107 | 15.578 | 30 | 284.696 | 85.409 | 0.00013 | 0.182 | -12.501 | -9.339 |
| Olivine | Forsterite | 9.056 | -10.071 | 0.1939 | 4.568 | 80 | 161.879 | 129.503 | 0.0015 | 0.035 | -12.895 | -11.523 |
| Wollastonite | Wollastonite | 11.304 | -8.320 | 0.0066 | 0.198 | 55 | 183.550 | 97.373 | 0.00007 | 0.002 | -12.486 | -11.012 |
| Basalt | Anorthite | 13.118 | -9.110 | 0.0157 | 0.746 | 40 | 438.100 | 168.669 | 0.00009 | 0.004 | -13.142 | -11.464 |
| Bentonite | Montmorillonite | 13.402 | -12.780 | 0.1500 | 62.0 | 50 | 242.337 | 121.169 | 0.00124 | 0.512 | -13.386 | -13.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). The MDPI and/or the editor(s) disclose responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
