Submitted:
27 September 2024
Posted:
30 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material and Crop Management
2.2. Experimental Design
2.3. Ornamental Quality Traits
2.4. Sensory Analysis
2.5. Statistical Analyses
3. Results
3.1. Ornamental Quality Traits
3.2. Sensory Analysis
3.3. Principal Components Analysis (PCA)
4. Discussion
4.1. Ornamental Growth Traits
4.2. Ornamental Color Traits
4.3. Sensory Analysis
4.4. Interplay between Ornamental Traits and Sensory Analysis
5. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Data Bridge Market Research, 2022. Global flowers and ornamental plants market – Industry trends and forecast to 2029. https://www.databridgemarketresearch.com/reports/global-flowers-and-ornamental-plants-market (accessed 21 July 2024).
- Carvalho, S.I.C., Bianchetti, L.B., Ribeiro, C.S.C., Lopes, C.A., 2006. Pimentas do gênero Capsicum no Brasil, one ed., 15. EMBRAPA, Brasília, DF.
- Costa, L.C., Ribeiro, W.S., Pinto, C.M.F., Silva, F.C., Finger, F.L., 2015. Quality of ornamental pepper grown in different substrates. Acta Hortic. 1060, 243-248. [CrossRef]
- EMBRAPA, 2014. Cultivares da Embrapa hortaliças (1981 – 2013), one ed., 179. Brasília, DF.
- França, C.F.M, Ribeiro, W.S., Santos, M.N.S., Petruci, K.P.O.S., Rêgo, E.R., Finger, F.L., 2018. Growth and quality of potted ornamental peppers treated with paclobutrazol. Pesqui. Agropecu. Bras. 53, 316- 322. [CrossRef]
- Rademacher, W., 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. of Plant Physiol. and Mol. Biol. 51, 501-531. [CrossRef]
- Wanderley, C.S., Faria, R.T., Ventura, M.U., Vendrame, W., 2014. The effect of plant growth regulators on height control in potted Arundina graminifolia orchids. Acta Sci. 36, 89-494. [CrossRef]
- Brito, C.L.L., Matsumoto, S.N., Santos, J.L., Gonçalves, D.N., Ribeiro, A.F.F., 2016. Effect of paclobutrazol in the development of ornamental sunflower. Rev. de Ciênc. Agrár. 39, 153-160. [CrossRef]
- Zanão, M.P.C., Zanão Junior, L.A., Grossi, J.A.S., Pereira, N., 2018. Potted rose cultivars with paclobutrazol drench applications. Ciência Rural 48, e20161002. [CrossRef]
- Ribeiro, W. S., Carneiro, C.S., França, C.F.M., Pinto, C.M.F., Lima, P.C.C., Finger, F.L., Costa. F.B., 2019. Paclobutrazol application in potted ornamental pepper. Hortic. Bras. 37, 464-468. [CrossRef]
- Sabino, J.H.F., Grossi, J.A.S, Silva, T.I., Verly, O.M., Martins Filho, S., Barbosa, J.G., 2021. Potted platycodon production in response to paclobutrazol. Pesqui. Agropecu. Trop. 51, e68949. [CrossRef]
- Cruz, R.R.P., Pires, R.R., Guimarães, M.E.S., Dias, M.G., Pereira, A.M., Silva, T.I., Ribeiro, W.S., Grossi, J.A.S., 2022. Initial growth of Calendula officinalis L. plants treated with paclobutrazol. Comun, Sci. 13, e3924. [CrossRef]
- Park, J.; Faust, J. E., 2023. Fertilization and Paclobutrazol Application for Sustainable Production and Post-production Performance of Petunia. Horttechnology 33, 225-232. [CrossRef]
- Currey, C.J., Lopez, R.G., 2009. Applying plant growth retardants for height control. https://www.extension.purdue.edu/extmedia/ho/ho-248-w.pdf (accessed 05 June 2024).
- Mabvongwe, O., Manenji, B.T., Gwazane, M., Chandiposha, M., 2016. The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). Adv. in Agric 2016, article ID 1585463. [CrossRef]
- França, C.F.M., Costa, L.C., Ribeiro, W.S., Mendes, T.D.C., Santos, M.N.S., Finger, F.L., 2017. Evaluation of paclobutrazol application method on quality characteristics of ornamental pepper. Ornam. Hortic. 23, 307 - 310. [CrossRef]
- Grossi, J.A.S., Moraes, P.J., Tinoco, S.A., Barbosa, J.G., Finger, F.L., Cecon, P.R., 2005. Effects of paclobutrazol on growth and fruiting characteristics of ‘Pitanga’ ornamental pepper. Acta Hortic. 683, 333-336. [CrossRef]
- Ferreira, T.S., Pêgo, R. G., Silva, K. A. L., Xavier, M. C. G., Carmo, M. G. F., 2023. Efeitos do Paclobutrazol na produção e qualidade de pimenteiras de vaso com potencial ornamental. DELOS: Desarrollo Local Sosten. 16 (44), 1382 - 1401. [CrossRef]
- Furlani, P.R., 1999. Hydroponic vegetable production in Brazil. Acta Hortic. 481, 777-778. [CrossRef]
- Minolta Corp. 2007. Precise Color Communication: color control from perception to instrumentation. Konica Minolta Sensing, INC. https://www.konicaminolta.com/instruments/knowledge/color/pdf/color_communication.pdf.
- R Core Team , 2023. _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Murdoch D.J., Chow E.D., 1996. A graphical display of large correlation matrices. The Am. Stat. 50, 178-180. [CrossRef]
- EasyRGB, 2016. Convert color data into different standards and color spaces. https://www.easyrgb.com/en/convert.php (acessed 07 June 2024).
- Bosch, E., Cuquel, F.L., Tognon, G.B., 2016. Physalis size reduction for potted ornamental plant use. Ciênc. Agrotec. 40, 555 - 564. [CrossRef]
- Santos Filho, F.B., Silva, T.I., Dias, M.G., Alves, A.C.L., Grossi, A.S., 2022. Paclobutrazol reduces growth and increases chlorophyll indices and gas exchanges of basil (Ocimum basilicum). Braz. J. Biol. 82, e262364. [CrossRef]
- Bañón, D., Ortuño, M.F., Sánchez-Blano, M.J., Pagán, B.L., Bañón, S., 2023. Effects of Paclobutrazol and Mepiquat Chloride on the Physiological, Nutritional, and Morphological Behavior of Potted Icterina Sage under Greenhouse Conditions. Agronom. 13 (8), 1 - 13. [CrossRef]
- Kurniawati, A., Krisantini, K., Firdausa, N.P., Suketi. K., 2023. Effect of growth regulator paclobutrazol on size fitting of basil as a potted plant. Ornam. Hortic. 29, 7 - 13. [CrossRef]
- Tellez, H.O., Bonfim, G.V., Carvalho, A.C.P.P., Azevedo, B.M., 2023. Use of paclobutrazol and ethylene in the potted production of ornamental pineapple. Ornam. Hortic. 29, 48 - 56. [CrossRef]
- Ribeiro, C.S.C., Lopes, C.A., Carvalho, S.I.C., Henz, G.P., Reifschneider, F.J.B., 2008. Pimentas Capsicum, one ed., 202. Embrapa Hortaliças. Brasília, DF.
- Ahmad, I., Dole, J.M., Whipker, B.E., 2015 Paclobutrazol or uniconazole effects on ethylene sensitivity of potted ornamental plants and plugs. Sci. Hortic. 192, 350 - 356. [CrossRef]
- Desta, B., Amare, G., 2021. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric. 8, n. 1 - 15. [CrossRef]
- Chursi, O., Kozai, N., Ogata, T., Higuchi, H., Yonemoto, Y., 2008. Application of Paclobutrazol for Flowering and Fruit Production of ‘Irwin’ Mango (Mangifera indica L.) in Okinawa. Trop. Agr. Develop. 52, 69 – 73. [CrossRef]
- Burondkar, M.M., Rajan, S., Upreti, K.K., Reddy, Y.T.N., Singh, V.K., Sabale, S.N., Naik, M.M., Nigade, P.M., Saxena, P., 2013. Advancing Alphonso mango harvest season in lateritic rocky soils of Konkan region through manipulation in time of paclobutrazol application. J. of Appl. Hortic. 15, 178 - 182.
- Upreti, K.K., Reddy, Y.T.N., Prasad, S.S., Bindu, G.V., Jayaram, H.L., Rajan, S., 2013. Hormonal changes in response to paclobutrazol induced early flowering in mango cv. Totapuri. Sci. Hortic. 150, 441 - 418. [CrossRef]
- Silva, L.S., Cavalcante, I.H.L., Cunha, J.G., Lobo, J.T., Carreiro, D.A., Paiva Neto, V.B., 2022. Organic acids allied with paclobutrazol modify mango tree ‘Keitt’ flowering. Rev. Bras. Frutic. 44, e003. [CrossRef]
- Rahman, M.H., Rahman, M.H., Halder, B.C., Ahmed, M., Nishi, N.J., 2023. Applying Paclobutrazol and Flower Bud Pruning Modify the Fruiting Time and Fruit Quality of ‘Amrapali’ Mango (Mangifera indica L.). The Hortic. J. 92, 255 - 260. [CrossRef]
- Huang, S., Luo, H., Ashraf, U., Abrar, M., He, L., Zheng, A., Wang, Z., Zhang, T., Tang, X., 2019. Seed treatment with paclobutrazol affects early growth, photosynthesis, chlorophyll fluorescence and physiology of rice. Appl. Ecol. and Environ. Res. 17(1), 999-1012. [CrossRef]
- Neitzke, R.S., Fischer, S.Z., Vasconcelos, C.S., Barbieri, RL., Treptow, R.O., 2016. Pimentas ornamentais: recepção e comportamento do público consumidor. Hortic. Bras. 34, 102-109. [CrossRef]
- Pathare, P.B., Opara, U.L. and Al-Said, F.A., 2013. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technolog., 6, 36-60. [CrossRef]
- Amarante, C.V.T., Steffens, C.A., Mafra, A.L., Albuquerque, J.A., 2008. Yield and fruit quality of apple orchards under conventional and organic production systems. Pesq. Agropec. Bras. 43, 333 - 340. [CrossRef]


| Ornamental quality traits | PBZ | AP | PBZ X AP |
|---|---|---|---|
| Plant height | *1 | * | * |
| First bifurcation height | * | * | * |
| Canopy longitudinal diameter | * | * | * |
| Canopy transverse diameter | NS | * | * |
| Canopy compactness | * | * | NS |
| Fruit number | * | * | NS |
| Leave number | NS | * | NS |
| Fruit diameter | NS | * | NS |
| Fruit length | * | * | NS |
| Shoot fresh weight | * | * | NS |
| SPAD Index | * | * | * |
| Plant fullness | * | * | * |
| Leaf length | * | * | * |
| Leaf width | * | * | * |
| Days to anthesis | * | * | NS |
| Lightness (L*) | * | NS | NS |
| Red/green coordinate (a*) | * | * | * |
| Yellow/blue coordinate (b*) | * | * | * |
| Chroma (C*) | * | * | * |
| Hue angle (h°) | * | NS | NS |
| Ornamental quality traits | APA | PBZ concentrations (mg L-1)B | CV (%) | ||||
|---|---|---|---|---|---|---|---|
| 0 | 2,5 | 5,0 | 7,5 | 10,0 | |||
| Plant height (cm) | IM | 34,8 BaC | 32,8 Aab | 29,9 Aab | 30,7 Aab | 26,3 Ab | |
| DT | 44,4 Aa | 20,6 Bbc | 25,5 ABb | 26,5 ABb | 14,3 Bc | 16,2 | |
| D30DAT | 31,4 Ba | 25,1 Bab | 19,0 Bb | 20,3 Bb | 17,7 Bb | ||
| First bifurcation height (cm) | IM | 8,1 Aa | 7,8 ABa | 6,8 ABa | 7,6 ABa | 6,1 Ba | |
| DT | 9,2 Aa | 6,4 Bb | 5,2 Bb | 5,7 Bb | 4,1 Bb | 19,2 | |
| D30DAT | 8,5 Aa | 8,9 Aa | 8,0 Aa | 8,0 Aa | 8,4 Aa | ||
| SPAD chlorophyll Index | IM | 52,6 Aa | 56,6 Ba | 57,2 Aa | 55,6 Ba | 58,8 Ba | |
| DT | 51,3 Ac | 67,0 Aab | 62,8 Ab | 65,8 Aab | 72,1 Aa | 6,9 | |
| D30DAT | 53,6 Ab | 53,9 Bab | 60,0 Aab | 56,9 Bab | 60,9 Ba | ||
| Plant fullness (g.cm-1) | IM | 3,3 Aa | 3,5 Ba | 3,6 ABa | 3,7 ABa | 3,7 Ba | |
| DT | 2,2 Ab | 5,0 Aa | 3,0 Bb | 3,1 Bb | 6,0 Aa | 20,4 | |
| D30DAT | 2,9 Ab | 4,0 ABab | 4,7 Aa | 4,8 Aa | 4,5 Ba | ||
| Canopy longitudinal diameter | IM | 43,6 Aa | 38,6 Aa | 39,0 Aa | 43,1 Aa | 36,2 Aa | |
| DT | 45,3 Aa | 30,2 Bb | 30,5 Bb | 30,4 Bb | 22,6 Bb | 14,7 | |
| D30DAT | 34,10 Ba | 29,3 Bab | 25,4 Bb | 25,2 Bb | 24,4 Bb | ||
| Canopy transverse diameter | IM | 24,9 Ba | 30,3 Aa | 29,4 Aa | 35,0 Aa | 29,1 Aa | 19,3 |
| DT | 34,4 Aa | 22,0 Bab | 26,4 Ab | 25,3 Bb | 20,8 Bb | ||
| D30DAT | 28,4 ABa | 23,7 ABa | 22,7 Aa | 22,4 Ba | 21,7 ABa | ||
| Leaf lenght (mm) | IM | 59,0 Aa | 57,2 Aab | 53,1 ABab | 55,4 ABab | 50,7 Bb | 6,9 |
| DT | 56,0 Aa | 48,6 Bb | 48,2 Bb | 50,4 Bab | 47,2 Bb | ||
| D30DAT | 55,6 Aa | 61,6 Aa | 57,9 Aa | 56,5 Aa | 57,4 Aa | ||
| Leaf width (mm) | IM | 39,0 Aa | 35,5 Bab | 33,3 Bb | 36,3 Aab | 32,1 Bb | 7,9 |
| DT | 36,1 Aa | 31,0 Cb | 30,4 Bb | 31,6 Bab | 29,1 Bb | ||
| D30DAT | 38,3 Aa | 41,1 Aa | 39,1 Aa | 39,1 Aa | 39,7 Aa | ||
| Chroma (C*) | IM | 19,4 ABa | 19,3 Aa | 17,2 Aa | 17,8 Aa | 16,4 Aa | 11,0 |
| DT | 21,5 Aa | 13,0 Bbc | 15,4 ABb | 15,4 Ab | 11,6 Bc | ||
| D30DAT | 18,4 Ba | 16,6 Bab | 14,0 Bb | 15,8 Aab | 13,6 Bb | ||
| PBZ (mg L-1)A | L* | h° | CC | FrW | A | NFr | LFr |
|---|---|---|---|---|---|---|---|
| 0 | 38,8 aB | 114,8 b | 0,7 b | 101,2 ab | 38,1 c | 67,9 a | 22,5 ab |
| 2,5 | 37,1 b | 115,9 a | 0,8 ab | 103,3 a | 39,9 bc | 64,0 a | 23,5 a |
| 5,0 | 37,0 b | 116,1 a | 0,8 ab | 89,6 ab | 41,1 ab | 56,3 a | 21,8 ab |
| 7,5 | 37,7 ab | 115,5 ab | 0,9 a | 95,1 ab | 42,4 a | 64,7 a | 21,7 ab |
| 10,0 | 36,7 b | 116,3 a | 0,9 a | 86,1 b | 41,5 ab | 56,5 a | 21,0 b |
| CV (%) | 3,2 | 0,9 | 14,0 | 15,8 | 5,6 | 19,7 | 9,7 |
| APA | CC | A | NFr | LFr (mm) | DFr (mm) | NLe | FrW |
|---|---|---|---|---|---|---|---|
| IM | 0,7 bB | 39,6 b | 69,7 a | 22,7 a | 12,5 a | 118,5 ab | 108,1 a |
| DT | 0,8 a | 41,7 a | 53,7 b | 20,9 b | 13,0 a | 128,2 a | 85,4 b |
| D30DAT | 0,9 a | 41,0 ab | 62,2 a | 22,7 a | 11,2 b | 101,3 b | 91,6 b |
| CV (%) | 14,0 | 5,6 | 19,7 | 9,7 | 10,1 | 23,0 | 15,8 |
| Application protocol | PBZ (mg L-1)A |
Overall preferenceB |
|---|---|---|
| Immersion | 0 | 4,82 bC |
| 2,5 | 5,18 a | |
| 5,0 | 5,54 a | |
| 7,5 | 4,89 b | |
| 10,0 | 4,70 c | |
| Drenching at transplanting | 0 | 4,02 d |
| 2,5 | 4,85 b | |
| 5,0 | 4,14 d | |
| 7,5 | 4,63 c | |
| 10,0 | 4,42 c | |
| Drenching at 30DAT | 0 | 5,42 a |
| 2,5 | 5,33 a | |
| 5,0 | 5,03 b | |
| 7,5 | 4,78 b | |
| 10,0 | 4,36 c | |
| CV (%) | 27,4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
