Submitted:
28 September 2024
Posted:
30 September 2024
Read the latest preprint version here
Abstract
Keywords:
1. Type Cosmological Models
“Observations with the COBE satellite have demonstrated that the CMB corresponds to a nearly perfect black body characterized by a temperature at , which is measured with very high accuracy, ."
2. Distance, Hubble Constant and Redshift
3. Predictions Relative to the Observations Using the Full Distance Ladder of the Union 2 Database
4. The new Thermodynamic Friedmann Equation Consistent with the General Red-Shift Scaling
5. Conclusion
Data Availability Statement
Conflicts of Interest
References
- E. G. Haug and E. T. Tatum. Solving the Hubble tension using the union2 supernova database. Preprints.org, 2024a. [CrossRef]
- E. G. Haug and E. T. Tatum. Planck length from cosmological redshifts solves the Hubble tension. ResearchGate.org, 2024b. [CrossRef]
- F. Melia. A comparison of the Rh=ct and λ-cdm cosmologies using the cosmic distance duality relation. Monthly Notices of the Royal Astronomical Society, 143:4855, 2018. [CrossRef]
- M. V. John. Rh=ct and the eternal coasting cosmological model. Monthly Notices of the Royal Astronomical Society, 484, 2019. [CrossRef]
- F. Melia. Thermodynamics of the Rh=ct universe: a simplification of cosmic entropye. European Journal of Physics C, 81:234, 2021. [CrossRef]
- F. Melia. Model selection with baryonic acoustic oscillations in the lyman-α forest. European Physics Letters, 143:59004, 2023. [CrossRef]
- F. Melia. Strong observational support for the rh=ct timeline in the early universe. Physics of the Dark Universe, 46:101587, 2024. [CrossRef]
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:116, 2015. [CrossRef]
- Stefan J. Über die beziehung zwischen der wärmestrahlung und der temperatur. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften in Wien, 79:391, 1879.
- L. Boltzmann. Ableitung des stefanschen gesetzes, betreffend die abhängigkeit der wärmestrahlung von der temperatur aus der electromagnetischen lichttheori. Annalen der Physik und Chemie, 22:291, 1879.
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, Nature-Springer, 63(57), 2024. [CrossRef]
- E. G. Haug and S. Wojnow. How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law. Research Square, Pre-print, accepted and forthcoming JAMP, 2023. [CrossRef]
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
- M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation" (1959) Dover, 1906.
- A. Friedmann. Über die krüng des raumes. Zeitschrift für Physik, 10:377, 1922. [CrossRef]
- S. et. al Muller. A precise and accurate determination of the cosmic microwave background temperature at z=0.89. Astronomy & Astrophysics, 551, 2013. [CrossRef]
- E. G. Haug and E. T. Tatum. The Hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. Journal of Applied Physics and Mathematics (accepted and forthcoming), 2024c.
- I. de Martino and et. al. Measuring the redshift dependence of the cosmic microwave background monopole temperature with planck data. The Astrophysical Journal, 757:144, 2012. [CrossRef]
- L. Yunyang. Constraining cosmic microwave background temperature evolution with sunyaev–zel’dovich galaxy clusters from the atacama cosmology telescope. The Astrophysical Journal, 922:136, 2021. [CrossRef]
- D.A. Riechers, A. Weiss, and F. et al. Walter. Microwave background temperature at a redshift of 6.34 from h2o absorption. Nature, 602:58, 2022. [CrossRef]
- E. T. Tatum, E. G. Haug, and S. Wojnow. High precision Hubble constant determinations based upon a new theoretical relationship between CMB temperature and H0. Journal of Modern Physics, Accepted and forthcoming. Pre-print version at Hal-archive, 2024. https://hal.science/hal-04268732.
- P. Noterdaeme, P. Petitjean, R. Srianand, C . Ledoux, and S. López. The evolution of the cosmic microwave background temperature. Astronomy and Astrophysics, 526, 2011. [CrossRef]
- E. T. Tatum. Upsilon constants and their usefulness in Planck scale quantum cosmology. Journal of Modern Physics, 15:167, 2024. [CrossRef]
- A. G. Riess and et. al. A comprehensive measurement of the local value of the Hubble constant with 1 km s-1 Mpc-1 uncertainty from the Hubble space telescope and the sh0es team. The Astrophysical Journal, 934, 2021. [CrossRef]
- Dhal, S.; Singh, S.; Konar, K.; Paul, R.K. Calculation of Cosmic Microwave Background radiation parameters using COBE/FIRAS dataset. Experimental Astronomy (2023), 2023, 612, 86. [CrossRef]
- Fixsen, D.J. The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 2009, 707, 916. [CrossRef]
- E. G. Haug and E. T. Tatum. Friedmann type equations in thermodynamic form lead to much tighter constraints on the critical density of the universe. https://www.preprints.org/manuscript/202403.1241/v2, 2024d.



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
