Submitted:
31 July 2024
Posted:
02 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Overview of the Dataset
3.2. Exosomes for Bone Regeneration
3.3. Evolution of the Field
3.4. Knowledge Structure of Exosome Research: The Ideoscape
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akre, P., Malu, R., Jha, A., Tekade, Y., & Bisen, W. (2023). Sentiment Analysis using Opinion Mining on Customer Review. International Journal of Engineering and Management Research, 13(4), 41–44.
- Appadurai, A. (1996). Modernity at large: Cultural dimensions of globalization (Vol. 1). U of Minnesota Press.
- Arya, S. B. Arya, S. B., Collie, S. P., & Parent, C. A. (2024). The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends in Cell Biology, 34(2), 90–108.
- Bassi, S. (2007). A primer on python for life science researchers. PLoS Computational Biology, 3(11), e199.
- Bennani-Smires, K., Musat, C., Hossmann, A., Baeriswyl, M., & Jaggi, M. (2018). Simple unsupervised keyphrase extraction using sentence embeddings. ArXiv Preprint ArXiv:1801.04470.
- Börner, K., & Record, E. (2017). Macroscopes for making sense of science. In Proceedings of the practice and experience in advanced research computing 2017 on sustainability, success and impact (pp. 1–2).
- Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., & Wilczynski, B. (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11), 1422–1423.
- Cook, D. A., Beckman, T. J., & Bordage, G. (2007). A systematic review of titles and abstracts of experimental studies in medical education: many informative elements missing. Medical Education, 41(11), 1074–1081.
- De Rosnay, J. (2014). Le macroscope. Vers une vision globale. Média Diffusion.
- Egido-Moreno, S., Valls-Roca-Umbert, J., Céspedes-Sánchez, J. M., López-López, J., & Velasco-Ortega, E. (2021). Clinical efficacy of mesenchymal stem cells in bone regeneration in oral implantology. Systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 18(3), 894.
- Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., & Taylor, A. (2018). Cypher: An evolving query language for property graphs. Proceedings of the 2018 International Conference on Management of Data, 1433–1445.
- Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. ArXiv Preprint ArXiv:2203.05794.
- Guizzardi, S., Colangelo, M. T., Mirandola, P., & Galli, C. (2023). Modeling new trends in bone regeneration, using the BERTopic approach. Regenerative Medicine, 18(9), 719–734.
- Gutiérrez, L., & Keith, B. (2019). A systematic literature review on word embeddings. Trends and Applications in Software Engineering: Proceedings of the 7th International Conference on Software Process Improvement (CIMPS 2018) 7, 132–141.
- Han, P., Johnson, N., Abdal-Hay, A., Moran, C. S., Salomon, C., & Ivanovski, S. (2023). Effects of periodontal cells-derived extracellular vesicles on mesenchymal stromal cell function. Journal of Periodontal Research, 58(6), 1188–1200. [CrossRef]
- Han, P., Raveendran, N., Liu, C., Basu, S., Jiao, K., Johnson, N., Moran, C. S., & Ivanovski, S. (2024). 3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function. Biomaterials Advances, 158, 213770. [CrossRef]
- Harrell, C. R., Jovicic, N., Djonov, V., & Volarevic, V. (2020). Therapeutic use of mesenchymal stem cell-derived exosomes: from basic science to clinics. Pharmaceutics, 12(5), 474.
- Hartley, J. (2007). Planning that title: Practices and preferences for titles with colons in academic articles. Library & Information Science Research, 29(4), 553–568.
- Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. De, Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., & Zimmermann, A. (2022). Knowledge Graphs. ACM Computing Surveys, 54(4), 1–37. [CrossRef]
- Hong, H., Lin, C., Fang, M., Liu, J., Hsu, H.-C., Chang, C.-J., & Wang, H. (2024). Proteomic analysis of exosomal proteins associated with bone healing speed in a rat tibial fracture model. Biomedical Chromatography : BMC, 38(5), e5846. [CrossRef]
- Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. To Appear, 7(1), 411–420.
- Hu, Y.-C., Zhang, X.-B., Lin, M.-Q., Zhou, H.-Y., Cong, M.-X., Chen, X.-Y., Zhang, R.-H., Yu, D.-C., Gao, X.-D., & Guo, T.-W. (2023). Nanoscale Treatment of Intervertebral Disc Degeneration: Mesenchymal Stem Cell Exosome Transplantation. Current Stem Cell Research & Therapy, 18(2), 163–173. [CrossRef]
- Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3). [CrossRef]
- Irfan, D., Ahmad, I., Patra, I., Margiana, R., Rasulova, M. T., Sivaraman, R., Kandeel, M., Mohammad, H. J., Al-Qaim, Z. H., Jawad, M. A., Mustafa, Y. F., & Ansari, M. J. (2023). Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis. Cytotherapy, 25(4), 353–361. [CrossRef]
- samorad, F., ouhestani F, Aghandeh P, & Motamedian SR. (2023). Application of Periodontal Ligament Stem Cells in Periodontal Regeneration: A Systematic Review. J Appl Biotechnol Rep, 10(3), 1055–1068.
- ssa, B., Jasser, M. B., Chua, H. N., & Hamzah, M. (2023). A Comparative Study on Embedding Models for Keyword Extraction Using KeyBERT Method. 2023 IEEE 13th International Conference on System Engineering and Technology (ICSET), 40–45.
- Ji, S., Pan, S., Cambria, E., Marttinen, P., & Yu, P. S. (2022). A Survey on Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Transactions on Neural Networks and Learning Systems, 33(2), 494–514. [CrossRef]
- Jia, Z., Maggioni, M., Smith, J., & Scarpazza, D. P. (2019). Dissecting the NVidia Turing T4 GPU via microbenchmarking. ArXiv Preprint ArXiv:1903.07486.
- Ju, R., Gao, X., Zhang, C., Tang, W., Tian, W., & He, M. (2024). Exogenous MSCs based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. Journal of Materials Chemistry B.
- Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478). [CrossRef]
- Kong, Q., Wang, Y., Jiang, N., Wang, Y., Wang, R., Hu, X., Mao, J., & Shi, X. (2024). Exosomes as Promising Therapeutic Tools for Regenerative Endodontic Therapy. Biomolecules, 14(3). [CrossRef]
- Kučuk, N. Kučuk, N., Primožič, M., Knez, Ž., & Leitgeb, M. (2021). Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. International Journal of Molecular Sciences.
- Lange, M., Babczyk, P., & Tobiasch, E. (2024). Exosomes: A New Hope for Angiogenesis-Mediated Bone Regeneration. International Journal of Molecular Sciences, 25(10), 5204. [CrossRef]
- Li, X., Si, Y., Liang, J., Li, M., Wang, Z., Qin, Y., & Sun, L. (2024). Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. Journal of Colloid and Interface Science, 672, 179–199. [CrossRef]
- Liu, Q., Kusner, M. J., & Blunsom, P. (2020). A survey on contextual embeddings. ArXiv Preprint ArXiv:2003.07278.
- Liu, Y., Zhang, Z., Ma, C., Song, J., Hu, J., & Liu, Y. (2024). Transplanted MSCs promote alveolar bone repair via hypoxia-induced extracellular vesicle secretion. Oral Diseases. [CrossRef]
- Luo, D., Zhu, H., Li, S., Wang, Z., & Xiao, J. (2024). Mesenchymal stem cell-derived exosomes as a promising cell-free therapy for knee osteoarthritis. Frontiers in Bioengineering and Biotechnology, 12, 1309946. [CrossRef]
- Lv, S., Wang, G., Dai, L., Wang, T., & Wang, F. (2023). Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes. Physiological Research, 72(5), 565–574. [CrossRef]
- Ma, S., Ma, B., Yang, Y., Mu, Y., Wei, P., Yu, X., Zhao, B., Zou, Z., Liu, Z., Wang, M., & Deng, J. (2024). Functionalized 3D Hydroxyapatite Scaffold by Fusion Peptides-Mediated Small Extracellular Vesicles of Stem Cells for Bone Tissue Regeneration. ACS Applied Materials & Interfaces, 16(3), 3064–3081. [CrossRef]
- Man, K., Eisenstein, N. M., Hoey, D. A., & Cox, S. C. (2023). Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. Journal of Nanobiotechnology, 21(1), 137. [CrossRef]
- Mathieu, M., Martin-Jaular, L., Lavieu, G., & Théry, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21(1), 9–17. [CrossRef]
- McInnes, L. (2024, May 24). DataMapPlot. Https://Github.Com/TutteInstitute/Datamapplot/Blob/Main/Doc/Demo.Ipynb.
- McInnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering. J. Open Source Softw., 2(11), 205.
- McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. ArXiv Preprint ArXiv:1802.03426.
- Mckinney, W. (2010). Data Structures for Statistical Computing in Python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 51–56).
- Meng, F., Xue, X., Yin, Z., Gao, F., Wang, X., & Geng, Z. (2022). Research Progress of Exosomes in Bone Diseases: Mechanism, Diagnosis and Therapy. Frontiers in Bioengineering and Biotechnology, 10. [CrossRef]
- Miller, J. J. (2013). Graph database applications and concepts with Neo4j. Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, 2324(36), 141–147.
- Mukherjee, A., Bisht, B., Dutta, S., & Paul, M. K. (2022). Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacologica Sinica, 43(11), 2759–2776.
- Pan, Y., Li, Y., Dong, W., Jiang, B., Yu, Y., & Chen, Y. (2023). Role of nano-hydrogels coated exosomes in bone tissue repair. Frontiers in Bioengineering and Biotechnology, 11, 1167012. [CrossRef]
- Peng, C., Xia, F., Naseriparsa, M., & Osborne, F. (2023). Knowledge Graphs: Opportunities and Challenges. Artificial Intelligence Review, 56(11), 13071–13102. [CrossRef]
- Puletic, M., Velikic, G., Maric, D. M., Supic, G., Maric, D. L., Radovic, N., Avramov, S., & Vojvodic, D. (2024). Clinical Efficacy of Extracellular Vesicle Therapy in Periodontitis: Reduced Inflammation and Enhanced Regeneration. International Journal of Molecular Sciences, 25(11). [CrossRef]
- Qaiser, S., & Ali, R. (2018). Text mining: use of TF-IDF to examine the relevance of words to documents. International Journal of Computer Applications, 181(1), 25–29.
- Saif, H., Fernandez, M., He, Y., & Alani, H. (2014). On stopwords, filtering and data sparsity for sentiment analysis of twitter.
- Sankaranarayanan, J., Lee, S. C., Kim, H. K., Kang, J. Y., Kuppa, S. S., & Seon, J. K. (2024). Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review. International Journal of Stem Cells. [CrossRef]
- Sarker, I. H. (2024). LLM potentiality and awareness: a position paper from the perspective of trustworthy and responsible AI modeling. Discover Artificial Intelligence, 4(1), 40.
- Song, X., Xu, L., & Zhang, W. (2023). Biomimetic synthesis and optimization of extracellular vesicles for bone regeneration. Journal of Controlled Release : Official Journal of the Controlled Release Society, 355, 18–41. [CrossRef]
- Tan, S. H. S., Wong, J. R. Y., Sim, S. J. Y., Tjio, C. K. E., Wong, K. L., Chew, J. R. J., Hui, J. H. P., & Toh, W. S. (2020). Mesenchymal stem cell exosomes in bone regenerative strategies—a systematic review of preclinical studies. Materials Today Bio, 7, 100067.
- Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 30(1), 3–22.
- Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K., Gutierrez, L., Tan, T. F., & Ting, D. S. W. (2023). Large language models in medicine. Nature Medicine, 1940; 29(8), 1930–1940.
- Torrecillas-Baena, B., Pulido-Escribano, V., Dorado, G., Gálvez-Moreno, M. Á., Camacho-Cardenosa, M., & Casado-Díaz, A. (2023). Clinical potential of mesenchymal stem cell-derived exosomes in bone regeneration. Journal of Clinical Medicine, 12(13), 4385.
- Trubiani, O., Pizzicannella, J., Caputi, S., Marchisio, M., Mazzon, E., Paganelli, R., Paganelli, A., & Diomede, F. (2019). Periodontal Ligament Stem Cells: Current Knowledge and Future Perspectives. Stem Cells and Development, 28(15), 995–1003. [CrossRef]
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., & Bright, J. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.
- Wang, C., Guo, S., Gu, Q., Wang, X., Long, L., Xiao, C., Xie, M., Shen, H., & Li, S. (2022). Exosomes: A promising therapeutic strategy for intervertebral disc degeneration. Experimental Gerontology, 163, 111806. [CrossRef]
- Wang, L., Li, F., Wang, L., Wu, B., Du, M., Xing, H., & Pan, S. (2024). Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Rheumatoid Arthritis Symptoms via Shuttling Proteins. Journal of Proteome Research, 23(4), 1298–1312. [CrossRef]
- Wang, S., Zhou, W., & Jiang, C. (2020). A survey of word embeddings based on deep learning. Computing, 102, 717–740.
- Wang, T., Zhou, Y., Zhang, W., Xue, Y., Xiao, Z., Zhou, Y., & Peng, X. (2024). Exosomes and exosome composite scaffolds in periodontal tissue engineering. Frontiers in Bioengineering and Biotechnology, 11. [CrossRef]
- Wang, X., & Thomsen, P. (2021). Mesenchymal stem cell–derived small extracellular vesicles and bone regeneration. Basic & Clinical Pharmacology & Toxicology, 128(1), 18–36.
- Wang, Z., Chen, J., Chen, J., & Chen, H. (2023). Identifying interdisciplinary topics and their evolution based on BERTopic. Scientometrics, 1–26.
- Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60). [CrossRef]
- Wen, S., Huang, X., Ma, J., Zhao, G., Ma, T., Chen, K., Huang, G., Chen, J., Shi, J., & Wang, S. (2024). Exosomes derived from MSC as drug system in osteoarthritis therapy. Frontiers in Bioengineering and Biotechnology, 12, 1331218. [CrossRef]
- Xu, D. D., & Wu, S. B. (2014). An improved TFIDF algorithm in text classification. Applied Mechanics and Materials, 651, 2258–2261.
- Xu, G., Lu, X., Liu, S., Zhang, Y., Xu, S., Ma, X., Xia, X., Lu, F., Zou, F., Wang, H., Song, J., & Jiang, J. (2023). MSC-Derived Exosomes Ameliorate Intervertebral Disc Degeneration By Regulating the Keap1/Nrf2 Axis. Stem Cell Reviews and Reports, 19(7), 2465–2480. [CrossRef]
- Xue, N., Ding, X., Huang, R., Jiang, R., Huang, H., Pan, X., Min, W., Chen, J., Duan, J.-A., & Liu, P. (2022). Bone tissue engineering in the treatment of bone defects. Pharmaceuticals, 15(7), 879.
- Zeng, W.-Y., Ning, Y., & Huang, X. (2021). Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. Journal of Dental Sciences, 16(1), 501–507.
- Zhang, S., Wang, S., Chen, J., Cui, Y., Lu, X., Xiong, S., Yue, C., & Yang, B. (2024). Human dental pulp stem cell-derived exosomes decorated titanium scaffolds for promoting bone regeneration. Colloids and Surfaces. B, Biointerfaces, 235, 113775. [CrossRef]
- Zhang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: a statistical framework. International Journal of Machine Learning and Cybernetics, 1, 43–52.
- Zou, J., Xia, H., Jiang, Q., Su, Z., Wen, S., Liang, Z., Ouyang, Y., Liu, J., Zhang, Z., Chen, D., Yang, L., & Guo, L. (2023). Exosomes derived from odontogenic stem cells: Its role in the dentin-pulp complex. Regenerative Therapy, 24, 135–146. [CrossRef]










| Topic | Count | Name | KeyBERT | MMR | LLM |
|---|---|---|---|---|---|
| -1 | 391 | -1_stem_cells_derived_cell | ['extracellular vesicles', 'derived exosomes', 'extracellular vesicle', 'exosomes', 'derived extracellular', 'stem cells', 'stem cell', 'exosome', 'vesicles', 'regenerative medicine'] | ['stem', 'cells', 'derived', 'cell', 'extracellular', 'vesicles', 'extracellular vesicles', 'mesenchymal', 'stem cells', 'stem cell'] | ['Stem Cell-Derived Vesicles in Regenerative Medicine'] |
| 0 | 443 | 0_bone_regeneration_stem_exosomes | ['bone regeneration', 'vesicles bone', 'extracellular vesicles', 'marrow mesenchymal', 'extracellular vesicle', 'exosomes derived', 'stem cells', 'stem cell', 'tissue regeneration', 'cartilage regeneration'] | ['bone', 'regeneration', 'stem', 'exosomes', 'derived', 'osteoarthritis', 'cells', 'stem cells', 'mesenchymal', 'extracellular'] | ['Stem Cells for Bone Regeneration'] |
| 1 | 354 | 1_diabetic_adipose_wound_wound healing | ['exosomes adipose', 'healing exosomes', 'exosomes promote', 'exosomes derived', 'vesicles adipose', 'derived exosomes', 'stem cells', 'exosomes', 'adipose mesenchymal', 'adipose derived'] | ['diabetic', 'adipose', 'wound', 'wound healing', 'healing', 'derived', 'diabetic wound', 'adipose derived', 'stem', 'exosomes'] | ['Exosomes for Diabetic Wound Healing'] |
| 2 | 239 | 2_extracellular_vesicles_extracellular vesicles_extracellular vesicle | ['vesicle therapeutics', 'extracellular vesicles', 'extracellular vesicle', 'vesicles regenerative', 'vesicles extracellular', 'vesicles novel', 'vesicle mediated', 'vesicles tissue', 'vesicles new', 'vesicles cell'] | ['extracellular', 'vesicles', 'extracellular vesicles', 'extracellular vesicle', 'vesicle', 'tissue', 'regenerative', 'regenerative medicine', 'medicine', 'applications'] | ['Extracellular Vesicles in Regenerative Medicine'] |
| 3 | 207 | 3_exosomes_derived exosomes_cell_derived | ['exosomes regenerative', 'exosomes derived', 'exosomes research', 'engineered exosomes', 'derived exosomes', 'exosomes new', 'cell exosomes', 'exosomes tissue', 'exosomes', 'role exosomes'] | ['exosomes', 'derived exosomes', 'cell', 'derived', 'stem', 'mesenchymal stem', 'mesenchymal', 'exosome', 'stem cell', 'cell derived'] | ['Mesenchymal Stem Cell Exosomes'] |
| 4 | 161 | 4_amniotic_lung_cell_cells | ['stem cell', 'stem cells', 'extracellular vesicles', 'derived extracellular', 'derived exosomes', 'exosomes', 'regenerative medicine', 'covid 19', 'cell derived', 'cell extracellular'] | ['amniotic', 'lung', 'cell', 'cells', 'mesenchymal', 'stem', 'covid', '19', 'covid 19', 'extracellular vesicles'] | ['Mesenchymal stem cell therapies for COVID-19'] |
| 5 | 146 | 5_wound_wound healing_healing_skin | ['vesicles skin', 'extracellular vesicles', 'extracellular vesicle', 'vesicles wound', 'vesicles derived', 'healing mesenchymal', 'healing cell', 'healing skin', 'skin regeneration', 'wound healing'] | ['wound', 'wound healing', 'healing', 'skin', 'extracellular', 'vesicles', 'extracellular vesicles', 'skin wound', 'cells', 'stem'] | ['Extracellular Vesicles in Skin Healing'] |
| 6 | 133 | 6_mesenchymal_stem_cells_medicine | ['stem cells', 'stem cell', 'regenerative medicine', 'mesenchymal stem', 'cells regenerative', 'cell therapy', 'tissue regeneration', 'secretome mesenchymal', 'mesenchymal stromal', 'human mesenchymal'] | ['mesenchymal', 'stem', 'cells', 'medicine', 'stem cells', 'regenerative', 'regenerative medicine', 'mesenchymal stem', 'cell', 'stromal'] | ['Regenerative Medicine with Stem Cells'] |
| 7 | 128 | 7_wound_wound healing_exosomes_healing | ['healing exosomes', 'exosomes wound', 'exosomes derived', 'exosomes promote', 'derived exosomes', 'exosomes', 'exosomes released', 'exosome', 'skin regeneration', 'stem cells'] | ['wound', 'wound healing', 'exosomes', 'healing', 'skin', 'cutaneous', 'derived', 'derived exosomes', 'cutaneous wound', 'exosomes derived'] | ['Exosome-enhanced cutaneous wound healing'] |
| 8 | 119 | 8_injury_spinal_spinal cord_cord injury | ['treatment spinal', 'cells spinal', 'recovery spinal', 'derived exosomes', 'stem cell', 'stem cells', 'exosomes improve', 'exosomes', 'nerve regeneration', 'spinal cord'] | ['injury', 'spinal', 'spinal cord', 'cord injury', 'cord', 'brain', 'neural', 'stroke', 'stem', 'traumatic'] | ['Stem Cell Therapy Spinal Injury'] |
| 9 | 109 | 9_mesenchymal_extracellular vesicles_extracellular_vesicles | ['extracellular vesicles', 'vesicles regenerative', 'extracellular vesicle', 'vesicles derived', 'vesicles extracellular', 'vesicles provide', 'vesicles mesenchymal', 'vesicles isolated', 'derived extracellular', 'vesicles tissue'] | ['mesenchymal', 'extracellular vesicles', 'extracellular', 'vesicles', 'derived extracellular', 'cell derived', 'mesenchymal stem', 'stromal', 'mesenchymal stromal', 'derived'] | ['Mesenchymal Stem Cell Extracellular Vesicles'] |
| 10 | 91 | 10_cardiac_heart_myocardial_cardiovascular | ['cardiac regeneration', 'vesicles cardiac', 'cardiac repair', 'cardiac cell', 'vesicles cardiovascular', 'cardiomyocytes', 'cells cardiac', 'cardiac tissue', 'vesicles therapeutic', 'cardiac progenitor'] | ['cardiac', 'heart', 'myocardial', 'cardiovascular', 'repair', 'extracellular', 'vesicles', 'extracellular vesicles', 'cardiac repair', 'cardiac regeneration'] | ['Cardiac Repair with Extracellular Vesicles'] |
| 11 | 69 | 11_exosomes_myocardial_cardiac_exosome | ['exosomes cardiac', 'exosomes cardiovascular', 'injury exosomes', 'exosomes derived', 'cell exosomes', 'derived exosomes', 'exosomes', 'roles exosomes', 'exosomes secreted', 'injury exosome'] | ['exosomes', 'myocardial', 'cardiac', 'exosome', 'cardiovascular', 'myocardial infarction', 'infarction', 'derived', 'heart', 'ischemic'] | ['Exosome Therapy in Cardiac Repair'] |
| 12 | 56 | 12_kidney_renal_kidney injury_acute kidney | ['vesicles kidney', 'vesicles renal', 'extracellular vesicles', 'extracellular vesicle', 'injury extracellular', 'renal injury', 'cells kidney', 'cells renal', 'kidney regeneration', 'kidney injury'] | ['kidney', 'renal', 'kidney injury', 'acute kidney', 'injury', 'acute', 'extracellular', 'extracellular vesicles', 'vesicles', 'cells'] | ['Extracellular Vesicles in Kidney Injury'] |
| 13 | 53 | 13_corneal_corneal epithelial_retinal_epithelial | ['exosomes corneal', 'vesicles corneal', 'corneal epithelial', 'cell exosomes', 'corneal cell', 'exosomes', 'derived exosomes', 'human corneal', 'treatment corneal', 'corneal wound'] | ['corneal', 'corneal epithelial', 'retinal', 'epithelial', 'corneal stromal', 'mesenchymal', 'cells', 'cell', 'mesenchymal stem', 'human corneal'] | ['Exosome-based Corneal Wound Healing'] |
| 14 | 47 | 14_tendon_cuff_rotator_rotator cuff | ['exosomes tendon', 'tendon regeneration', 'tendon healing', 'promote tendon', 'tendon repair', 'improve tendon', 'enhance tendon', 'cuff tendon', 'cuff healing', 'tendon injury'] | ['tendon', 'cuff', 'rotator', 'rotator cuff', 'healing', 'bone', 'bone healing', 'tendon bone', 'tendon healing', 'achilles'] | ['Exosome Therapy for Rotator Cuff'] |
| 15 | 44 | 15_liver_fibrosis_hepatic_mesenchymal | ['liver regeneration', 'hepatic fibrosis', 'liver fibrosis', 'secretome liver', 'ameliorate hepatic', 'cells liver', 'stem cells', 'stem cell', 'liver stem', 'mesenchymal stem'] | ['liver', 'fibrosis', 'hepatic', 'mesenchymal', 'liver fibrosis', 'mesenchymal stem', 'stem', 'cells', 'liver diseases', 'derived'] | ['Mesenchymal Stem Cells in Liver'] |
| 16 | 39 | 16_microvesicles_derived microvesicles_microvesicles derived_role microvesicles | ['microvesicles regeneration', 'microvesicles derived', 'derived microvesicles', 'microvesicles mesenchymal', 'microvesicles cell', 'healing microvesicles', 'microvesicles tissue', 'extracellular microvesicles', 'microvesicle mediated', 'microvesicles intercellular'] | ['microvesicles', 'derived microvesicles', 'microvesicles derived', 'role microvesicles', 'derived', 'tissue', 'mesenchymal', 'stem', 'mesenchymal stem', 'role'] | ['Therapeutic Role of Stem Microvesicles'] |
| 17 | 39 | 17_micrornas_mir_exosomal_microrna | ['exosomal micrornas', 'micrornas mesmirizing', 'micrornas', 'microrna stem', 'micrornas derived', 'microrna', 'micrornas novel', 'exosomal mir', 'micrornas perspective', 'micrornas vascular'] | ['micrornas', 'mir', 'exosomal', 'microrna', 'mirna', 'cells', 'mesenchymal', 'mesenchymal stem', 'cancer', 'exosomal micrornas'] | ['Exosomal MicroRNAs in Mesenchymal Cells'] |
| Topic | Count | Name | KeyBERT | MMR | LLM |
|---|---|---|---|---|---|
| -1 | 14 | -1_bone_related_mesenchymal_containing mesenchymal | ['exosomes osteoarthritis', 'bioprinted scaffolds', 'osteonecrosis jaw', 'uptake osteoblast', 'bone cartilage', 'regenerative treatments', 'osteonecrosis', 'lyosecretome bone', 'mesenchymal stem', 'related osteonecrosis'] | ['bone', 'related', 'mesenchymal', 'containing mesenchymal', 'medication', 'medication related', 'stromal lyosecretome', 'controlled release', 'mesenchymal stem', 'stem'] | Bone Regeneration Controlled Release |
| 0 | 126 | 0_osteoarthritis_mesenchymal_cartilage_extracellular | ['cells osteoarthritis', 'cartilage regeneration', 'exosomes derived', 'stem cells', 'stem cell', 'treatment osteoarthritis', 'extracellular vesicles', 'derived exosomes', 'osteoarthritis treatment', 'mesenchymal stem'] | ['osteoarthritis', 'mesenchymal', 'cartilage', 'extracellular', 'treatment', 'stem', 'derived', 'mesenchymal stem', 'exosomes', 'extracellular vesicles'] | Mesenchymal Stem Cell Therapy |
| 1 | 103 | 1_bone_exosomes_mesenchymal stem_derived | ['exosomes bone', 'regeneration exosomes', 'exosomes promote', 'cell exosomes', 'exosomes', 'bone regeneration', 'derived exosomes', 'osteogenesis angiogenesis', 'exosomal mirna', 'marrow mesenchymal'] | ['bone', 'exosomes', 'mesenchymal stem', 'derived', 'fracture', 'mesenchymal', 'stem', 'cells', 'healing', 'stem cells'] | Bone fracture healing exosomes |
| 2 | 80 | 2_dental_stem_extracellular_vesicles | ['periodontal regeneration', 'vesicles periodontal', 'vesicles dental', 'periodontal tissue', 'pulp regeneration', 'regeneration dental', 'pulp periodontal', 'extracellular vesicles', 'extracellular vesicle', 'dental pulp'] | ['dental', 'stem', 'extracellular', 'vesicles', 'extracellular vesicles', 'cells', 'regeneration', 'stem cells', 'periodontal', 'cell'] | Dental Stem Cell Regeneration |
| 3 | 56 | 3_extracellular_vesicles_extracellular vesicles_bone | ['bone regeneration', 'vesicles bone', 'hydroxyapatite scaffold', 'osteoblast derived', 'extracellular vesicles', 'bone healing', 'extracellular vesicle', 'regeneration extracellular', '3d hydroxyapatite', 'tissue regeneration'] | ['extracellular', 'vesicles', 'extracellular vesicles', 'bone', 'bone regeneration', 'regeneration', 'derived', 'derived extracellular', 'small extracellular', 'small'] | Stem Cell-Derived Vesicles for Bone Regeneration |
| 4 | 48 | 4_exosomes_derived_stem_pulp | ['exosomes dental', 'exosomes regenerative', 'exosomes oral', 'exosomes derived', 'cell exosomes', 'exosomes', 'cells exosomes', 'exosomes enhance', 'derived exosomes', 'regenerative endodontic'] | ['exosomes', 'derived', 'stem', 'pulp', 'derived exosomes', 'cell', 'dental', 'exosomes derived', 'cells', 'dental pulp'] | Dental Pulp Stem Cell Exosomes |
| 5 | 16 | 5_disc_intervertebral disc_intervertebral_disc degeneration | ['disc degeneration', 'exosomes ameliorate', 'exosomes derived', 'intervertebral disc', 'exosome transplantation', 'exosomes', 'cell exosome', 'exosomes exosomal', 'stem cells', 'exosomal mirnas'] | ['disc', 'intervertebral disc', 'intervertebral', 'disc degeneration', 'degeneration', 'stem', 'cells', 'stem cells', 'derived stem', 'cells intervertebral'] | Exosome Therapy for Disc Degeneration |
| Topic | Trend (slope) |
|---|---|
| Dental Stem Cell Regeneration | 4.5 |
| Bone fracture healing exosome | 4.1 |
| Mesenchymal Stem Cell Therapy | 2.4 |
| Dental Pulp Stem Cell Exosomes | 1.8 |
| Exosome Therapy for Disc Degeneration | 1.4 |
| Stem Cell-Derived Vesicles for Bone Regeneration | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
