Submitted:
29 July 2024
Posted:
29 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Lipophilic Bioactive Compounds
2.1. Carotenoids
| Plant Source | Extraction Method | Solvent | Operating Conditions | Extraction Yield | Source |
| Solanum lycopersicum (By-product) | Soxhlet | Ethanol | Time of 5h | 0.034 mg/g β-carotene 0.703 mg/g lycopene | (Molina A. K. et al., 2023) |
| Cucumis melo L. | Ultrasound-assisted extraction | Hexane:acetone 80:20 | 10 minutes, 100% amplitude | 124.61 ± 3.82 μg/g | (Molina A. K. et al., 2023) |
| Passiflora edulis f. flavicarpa | Immersion | Thermostatic bath Ethanol 90% acidified with 0.03% citric acid Ethanol 90% acidified with 0.03% citric acid | T=29℃, time of 2h, without light, 500 rpm T= 60℃, time of 24h | 113.08 ± 8.84 μg β-carotene/100 g 10.34 ± 5.18 μg of β-carotene/100 g | (Molina A. K. et al., 2023) |
| Cyphomandra betacea | Conventional solvent extraction | n-hexane/petroleum ether 50:50% | Absence of light, time of 48h | 0.051g caroten/g | (Molina A. K. et al., 2023) |
| Pouteria campechiana Kunth | Agitation extraction | n-hexane /dichloromethane 1:1 with a ratio between solvent and sample 15:1 n-hexane /dichloromethane 1:1 with a ratio between solvent and sample 30:1 | T=40℃, 30 minutes, 200 rpm, followed by 10 minutes at 6000 rpm T=40℃, 30 minutes, 200 rpm, followed by 10 minutes at 6000 rpm | 5.17 ± 0.08 g β-carotene/100g dry matter 3.12 ± 0.01 g β-carotene/100g dry matter | (Molina A. K. et al., 2023) |
| Daucus carota | Supercritical CO2 | Ethanol 15.5% | T=59℃, at a pressure of 349 bar | Extraction yield equal to 86.1% | (Molina A. K. et al., 2023) |
2.2. Xanthophylls
| Pigment | Algae Species | Freshwater/Marine Environment | Extraction Method | Source |
| β-carotene | Dunaleilla salina | Marine | Supercritical CO2 + supercritical extraction with ethane and ethylene | (Achour H. Y. et al., 2023) |
| Lutein | Monostroma nitidium | Marine | Extraction with liquefied dimethyl ether | (Fatima I. et al., 2023) |
| Chlorella vulgaris | Freshwater | Freeze and thaw extraction | (Kulkarni and Nikolov 2018) | |
| Scenedesmus almeriensis | Freshwater | Supercritical fluid extraction | (Fatima I. et al., 2023) | |
| Chlorococum humicula | Freshwater | Extraction with liquefied dimethyl ether | (Babadi et al. 2020) | |
| Desmodesmus sp | Freshwater | High-pressure extraction | (Fatima I. et al., 2023) | |
| Scenedesmus sp | Freshwater | DES extraction | (Fan et al. 2022) | |
| Fucoxanthin | Undaria pinnatifida | Marine | Supercritical fluid extraction, Supercritical CO2 extraction | (Fatima I. et al., 2023) |
| Chlorococum humicula | Freshwater | Extraction with liquefied dimethyl ether | (Babadi et al. 2020) | |
| Fucus vesiculosus | Marine | DES extraction | (Obluchinskaya et al. 2021) | |
| Phaeodactylum tricornutum | Marine | Ultrasound-assisted extraction | (Fatima I. et al., 2023) | |
| Cylindrotheca closterium | Marine | Microwave-assisted extraction | (Fatima I. et al., 2023) | |
| Chlorophyll a | Chlorococum humicula | Freshwater | Extraction with liquefied dimethyl ether | (Babadi et al. 2020) |
| Chlorella vulgaris | Marine | High-pressure extraction | (Fatima I. et al., 2023) | |
| Chlorella vulgaris | Freshwater | Supercritical CO2 extraction | (Fatima I. et al., 2023) | |
| Cladophora glomerata, Chlorella rivularis, Ulva flexuosa | Freshwater | Supercritical CO2 extraction | (Fabrowska et al. 2018) | |
| Chlorophyll b | Cladophora glomerata, Ulva flexuosa | Freshwater | Ultrasound-assisted extraction | (Fabrowska et al. 2018) |
| Chlorella vulgaris | Freshwater | Supercritical CO2 extraction | (Fatima I. et al., 2023) | |
| Cladophora glomerata freshwater | Freshwater | Microwave-assisted extraction | (Fabrowska et al. 2018) |
2.3. Chlorophylls
| Plant Source | Extraction Method | Solvent | Operating Conditions | Extraction Yield | Source |
| Cynodon spp. | Maceration | Dimethyl sulfoxide (DMSO) | V= 20 mL, 8 evaluations every 12h/12h, T=23-26℃, humidity 40-75% | Chlorophyll a: 316 ± 2.93 μmol·m−2 Chlorophyll b: 66 ± 1.41 μmol·m−2 |
(Molina A. K. et al., 2023) |
| N,N-dimethylformamide | V= 20 mL, 8 evaluations every 12h/12h, T=23-26℃, humidity 40-75% | Chlorophyll a: 297 ± 3.58 μmol·m−2 Chlorophyll b: 85 ± 2.03 μmol·m−2 |
|||
| Acetone 80% | V= 20 mL, 8 evaluations every 12h/12h, T=23-26℃, humidity 40-75% | Chlorophyll a: 250 ± 2.65 μmol·m−2 Chlorophyll b: 111 ± 1.50 μmol·m−2 |
|||
| Absolute ethanol | V= 20 mL, 8 evaluations every 12h/12h, T=23-26℃, humidity 40-75% | Chlorophyll a: 259 ± 2.84 μmol·m−2 Chlorophyll b: 84 ± 2.25 μmol·m−2 |
|||
| Brassica napus L. | Maceration | Acetone 80% | Conventional extraction | Chlorophyll a: 0.87 mg·g−1 Chlorophyll b: 0.39 mg·g−1 |
(Molina A. K. et al., 2023) |
| Without maceration | Acetone 80% | Cool room, without light, time of 24h | Chlorophyll a: 0.98 mg·−1 Chlorophyll b: 0.38 mg·g−1 |
3. Extraction Methods
3.1. Conventional Methods
3.2. Modern Extraction Methods
3.2.1. Supercritical/Subcritical Fluid Extraction
3.2.2. Ultrasound-Assisted Extraction (UAE)
3.2.3. Microwave-Assisted Extraction (MAE)
3.2.4. Enzyme-Assisted Extraction (EAE)
- Higher selectivity,
- Induced efficiency,
- Ease in extraction,
- Safer and friendlier working conditions,
- Minimum energy and usage requirements,
- Absence or reduced use of harsh substances,
- Superior yield,
- Absence of wasteful protection or deprotection stages,
- Ease in isolation and recovery of the product,
- Possibility of process recycling (Bilal M. and Iqbal H. M.; 2020).
3.2.5. Ultrasound-Assisted Enzymatic Extraction (UAEE)
3.2.6. Microwave-Assisted Enzymatic Extraction (MAEE)
| Extraction Method | Advantages | Disadvantages | Source | |
|---|---|---|---|---|
| Conventional | Soxhlet | Favors the kinetic process by applicability at high temperatures, simplicity | Low yield and long extraction time | Soquetta et al. 2018, Jha A. K. and Sit N.; 2022 |
| Maceration | Allows modulation of selectivity by solvent selection, has low costs | Thermal destruction of some samples or compounds | Soquetta et al. 2018 |
|
| Hydrodistillation | Automatic separation of bioactive compounds based on physicochemical properties | Volatile compounds can evaporate if temperature rises too much | Jha A. K. and Sit N.; 2022 | |
| Infusion | Short time and will consume a latent heat of vaporization smaller than that of water | Use of large amounts of solvent | Jha A. K. and Sit N.; 2022 | |
| Digestive | The yield of the extraction process can be increased by heating | Long extraction time | Nadar S. S. et al., 2018, Umair Muhammad et al., 2021 | |
| Exhaustive extraction in series | Higher yield of extract from the matrix of interest, especially in the case of substances that are found in small concentrations or are difficult to extract | Degradation of compounds after prolonged exposure to high temperatures | Nadar et al. 2018 | |
| Advanced | Supercritical fluid extraction | Increases the recovery process of bioactive compounds from natural sources | High cost | Saini și Keum 2018 |
| Microwave-assisted extraction | The amount of solvents used and extraction time are reduced, high yields in a short time | High temperatures | Tsiaka et al. 2018, Umair Muhammad et al., 2021 | |
| Pressurized liquid extraction | Allows obtaining higher yields and can be more efficient than traditional methods | High temperatures, low flow rate and high costs | Bilal M. and Iqbal H. M.; 2020 | |
| Pulsed electric fields | Has the potential to improve the yield and quality of extracts from natural materials, and its combination with other extraction techniques can offer additional advantages | Conductivity and enzyme use are necessary | Jha A. K. and Sit N.; 2022 | |
| High hydrostatic pressure-assisted extraction | It is an ecological method and does not cause denaturations or major damage | Can induce structural changes at the level of sensitive molecules | Jha A. K. and Sit N.; 2022 | |
| Enzyme-assisted extraction | Improving the yield of extraction and the pharmacological properties of the extract | Additional steps in wet conditions | Nadar S. S. et al., 2018 | |
| High voltage electric discharge extraction | Increase in extraction yield and increase in extract purity | Can cause oxidation of samples by producing free radicals | Jha A. K. and Sit N.; 2022 | |
| Ultrasound-microwave-assisted extraction | Efficient and rapid extraction of bioactive compounds from plant materials | Decreases extraction yield if the alkyl chain of the compound increases | López-Cruz, R. et al., 2023 | |
| Integrative | Enzyme-assisted, ultrasound and microwave extraction | Reduces extraction time and increases process yield | High costs | Nadar S. S. et al., 2018, Umair Muhammad et al., 2021, López-Cruz, R. et al., 2023 |
| Supercritical carbon dioxide combined with pressure swing technique | Beneficial for efficient extraction of bioactive compounds from various natural sources | High costs | Nakhle, L.; Amat, A.M.; Karim, M.; and Atieh, E. 2021 | |
| Supercritical fluid extraction – Pressurized liquid extraction (SFE-PLE) | The extraction time can be 2 to 2.5 times faster resulting in a better yield | High costs | Lefebvre T. et al., 2021 | |
| Pulsed electric field and high voltage techniques | Antioxidants can be extracted from mango peel | High cost | Jha A. K. and Sit N.; 2022 | |
| Supercritical fluid extraction Assisted by Ultrasound (SFE-UAE) | Significant improvements in yield and extraction kinetics | High cost | Roca M. and Pérez-Gálvez A.; 2021 | |
| Extraction with the help of ultrasound, pulsed electric field and high hydrostatic pressure | Increases extraction efficiency and protects heat-sensitive compounds and does not use toxic solvents | High costs | Jha A. K. and Sit N.; 2022 | |
| High Hydrostatic Pressure-Extraction by Shaking (HHPE-AE) | Improves the permeability of plant cells and the diffusion of bioactive compounds, thus facilitating extraction efficiency | Expensive equipment | Jha A. K. and Sit N.; 2022 | |
| Ultrasound-assisted extraction – Pressurized liquid extraction | Efficiency in extracting bioactive compounds, especially pigments, from plant and marine raw materials | High costs | López-Cruz, R. et al., 2023 | |
| High Hydrostatic Pressure - Ultrasound Extraction (HHPE-UE) | Obtains high-quality extracts, having a positive impact on yield and antioxidant activity | Semi-continuous or discontinuous operation | Jha A. K. and Sit N.; 2022 | |
| Supercritical carbon dioxide extraction (SCCO2) - Subcritical water extraction (SWE) | Does not require filtration and does not produce hazardous waste because it uses Co2 which is recyclable and non-toxic and increases the yield and purity of the extraction process | High technical complexity | Saini R. K. and Keum Y. S.; 2018 |
4. Conclusions
References
- Achour, H.Y.; Llamero, C.B.; Saadi, S.A.; Bouras, N.; Zitouni, A.; Señoráns, J. Pressurized liquid extraction for the recovery of carotenoids and functional compounds from green and orange Dunaliella salina biomasses. Periodica Polytechnica Chemical Engineering 2023, 67, 278–286. [Google Scholar] [CrossRef]
- Afroz Toma, M.; Rahman, M.H.; Rahman, M.S.; Arif, M.; Nazir, K.N.H.; Dufossé, L. Fungal pigments: Carotenoids, riboflavin, and polyketides with diverse applications. Journal of Fungi 2023, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Mounsef, J.R.; Lteif, R. A simple and fast experimental protocol for the extraction of xanthophylls from microalga Chlorella luteoviridis. Preparative Biochemistry & Biotechnology 2021, 51, 1071–1075. [Google Scholar]
- Arnold, C.; Schwarzenbolz, U.; Böhm, V. Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT-Food Science and Technology 2014, 57, 442–445. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S. M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F. ; .. & Omar, A.K. M. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering 2013, 117, 426–436. [Google Scholar]
- Bilal, M.; Iqbal, H.M. Biologically active macromolecules: Extraction strategies, therapeutic potential and biomedical perspective. International journal of biological macromolecules 2020, 151, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Butnariu, M. Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. J. Ecosyst. Ecography 2016, 6, 1–19. [Google Scholar] [CrossRef]
- Butnariu, M. Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products. J. Ecosyst. Ecography 2016, 6, 1–19. [Google Scholar] [CrossRef]
- Caesar, J.; Tamm, A.; Ruckteschler, N.; Leifke, A.L.; Weber, B. Revisiting chlorophyll extraction methods in biological soil crusts–methodology for determination of chlorophyll a and chlorophyll a+ b as compared to previous methods. Biogeosciences 2018, 15, 1415–1424. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural deep eutectic solvents (NADESs) combined with sustainable extraction techniques: a review of the green chemistry approach in food analysis. Foods 2022, 12, 56. [Google Scholar] [CrossRef]
- Cerón-García, M.C.; González-López, C.V.; Camacho-Rodríguez, J.; López-Rosales, L.; García-Camacho, F.; Molina-Grima, E. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food chemistry 2018, 257, 316–324. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.H.; Khoo, H.E.; Kong, K.W.; Prasad, K.N.; Galanakis, C.M. (2020). Extraction of carotenoids and applications. In Carotenoids: Properties, Processing and Applications (pp. 259-288). Academic Press.
- Choi, W.Y.; Lee, H.Y. Enhancement of chlorophyll a production from marine Spirulina maxima by an optimized ultrasonic extraction process. Applied Sciences 2017, 8, 26. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Shokramraji, Z.; Tavakkoli, S.; Mihaylova, D.; Lante, A. Chlorophylls as natural bioactive compounds existing in food by-products: A critical review. Plants 2023, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Fabrowska, J.; Messyasz, B.; Szyling, J.; Walkowiak, J.; Łęska, B. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycological Research 2018, 66, 52–57. [Google Scholar] [CrossRef]
- Georgiopoulou, I.; Tzima, S.; Louli, V.; Magoulas, K. Process optimization of microwave-assisted extraction of chlorophyll, carotenoid and phenolic compounds from Chlorella vulgaris and comparison with conventional and supercritical fluid extraction. Applied Sciences 2023, 13, 2740. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Ortega-Regules, A.E.; Anaya de Parrodi, C.; Lozada-Ramírez, J.D. Chemistry, occurrence, properties, applications, and encapsulation of carotenoids—A review. Plants 2023, 12, 313. [Google Scholar] [CrossRef]
- Heffernan, N.; Smyth, T.J.; FitzGerald, R.J.; Vila-Soler, A.; Mendiola, J.; Ibáñez, E.; Brunton, N.P. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innovative Food Science & Emerging Technologies 2016, 37, 221–228. [Google Scholar]
- Hulkko, L.S.; Chaturvedi, T.; Thomsen, M.H. Extraction and quantification of chlorophylls, carotenoids, phenolic compounds, and vitamins from halophyte biomasses. Applied Sciences 2022, 12, 840. [Google Scholar] [CrossRef]
- Hulkko, L.S.; Chaturvedi, T.; Thomsen, M.H. Extraction and quantification of chlorophylls, carotenoids, phenolic compounds, and vitamins from halophyte biomasses. Applied Sciences 2022, 12, 840. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, S.; Abid, M.; Wu, T.; Hashim, M.M.; Saeeduddin, M.; Hu, B. . & Zeng, X. Ultrasound-assisted extraction of bioactive compounds and antioxidants from carrot pomace: A response surface approach. Journal of Food Processing and Preservation 2015, 39, 1878–1888. [Google Scholar]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology 2022, 119, 579–591. [Google Scholar]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology 2022, 119, 579–591. [Google Scholar]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology 2022, 119, 579–591. [Google Scholar]
- Jorge, A.M.; Pedroso, P.R.; Pereira, J.F. Sustainable extraction and utilization of chlorophyll from microalgae for eco-friendly wool dyeing. Journal of Cleaner Production 2024, 142009. [Google Scholar] [CrossRef]
- Kwartiningsih, E.; Ramadhani, A.N.; Putri, N.G. A.; Damara, V.C. J. (2021, April). Chlorophyll extraction methods review and chlorophyll stability of katuk leaves (Sauropus androgynous). In Journal of Physics: Conference Series (Vol. 1858, No. 1, p. 012015). IOP Publishing.
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- López, G.D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial carotenoids: extraction, characterization, and applications. Critical Reviews in Analytical Chemistry 2023, 53, 1239–1262. [Google Scholar] [CrossRef]
- López-Cruz, R.; Sandoval-Contreras, T.; Iñiguez-Moreno, M. Plant pigments: Classification, extraction, and challenge of their application in the food industry. Food and Bioprocess Technology 2023, 16, 2725–2741. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Dubey, K.K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Current Opinion in Food Science 2019, 25, 62–72. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Dubey, K.K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Current Opinion in Food Science 2019, 25, 62–72. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I. A.; Brnčić, M. . & O’Brien, N. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Critical Reviews in Food Science and Nutrition 2022, 62, 1999–2049. [Google Scholar] [PubMed]
- Minchev, I.; Petkova, N.; Milkova-Tomova, I. Ultrasound-assisted extraction of chlorophylls and phycocyanin from Spirulina platensis. Biointerface Res Appl Chem 2020, 11, 9296–9304. [Google Scholar]
- Molina, A.K.; Corrêa, R.C.; Prieto, M.A.; Pereira, C.; Barros, L. Bioactive natural pigments’ extraction, isolation, and stability in food applications. Molecules 2023, 28, 1200. [Google Scholar] [CrossRef]
- Murador, D.C.; Mesquita, L.M. D. S.; Neves, B.V.; Braga, A.R.; Martins, P.L.; Zepka, L.Q.; De Rosso, V.V. Bioaccessibility and cellular uptake by Caco-2 cells of carotenoids and chlorophylls from orange peels: A comparison between conventional and ionic liquid mediated extractions. Food Chemistry 2021, 339, 127818. [Google Scholar] [CrossRef]
- Nakhle, L.; Kfoury, M.; Mallard, I.; Landy, D.; Greige-Gerges, H. Microextraction of bioactive compounds using deep eutectic solvents: A review. Environmental Chemistry Letters 2021, 19, 3747–3759. [Google Scholar] [CrossRef]
- Pasquet, V.; Chérouvrier, J.R.; Farhat, F.; Thiéry, V.; Piot, J.M.; Bérard, J.B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.P. and Picot, L.; 2011. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochemistry, 46, pp.59-67.
- Pereira, A.G.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N. ; .. & Prieto, M.A. Xanthophylls from the sea: algae as source of bioactive carotenoids. Marine drugs 2021, 19, 188. [Google Scholar]
- Pereira, R.N.; Jaeschke, D.P.; Rech, R.; Mercali, G.D.; Marczak, L.D. F.; Pueyo, J.R. Pulsed electric field-assisted extraction of carotenoids from Chlorella zofingiensis. Algal Research 2024, 79, 103472. [Google Scholar] [CrossRef]
- Petibon, F.; Wiesenberg, G.L. Characterization of complex photosynthetic pigment profiles in European deciduous tree leaves by sequential extraction and reversed-phase high-performance liquid chromatography. Frontiers in Plant Science 2022, 13, 957606. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.; Wani, S.M.; Manzoor, S.; Masoodi, F.A.; Dar, M.M. Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: Optimisation, comparison and bioactivity. Food Chemistry 2023, 398, 133871. [Google Scholar] [CrossRef] [PubMed]
- Rezende, Y.R. R. S.; Nogueira, J.P.; Silva, T.O. M.; Barros, R.G. C.; de Oliveira, C.S.; Cunha, G.C. ; .. & Narain, N. Enzymatic and ultrasonic-assisted pretreatment in the extraction of bioactive compounds from Monguba (Pachira aquatic Aubl) leaf, bark and seed. Food Research International 2021, 140, 109869. [Google Scholar]
- Ricarte, G.N.; Coelho, M.A. Z.; Marrucho, I.M.; Ribeiro, B.D. Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; Pérez-Gálvez, A. Metabolomics of chlorophylls and carotenoids: analytical methods and metabolome-based studies. Antioxidants 2021, 10, 1622. [Google Scholar] [CrossRef] [PubMed]
- Saeed, R.; Ahmed, D.; Mushtaq, M. Ultrasound-aided enzyme-assisted efficient extraction of bioactive compounds from Gymnema sylvestre and optimization as per response surface methodology. Sustainable Chemistry and Pharmacy 2022, 29, 100818. [Google Scholar] [CrossRef]
- Shakoor, R.; Hussain, N.; Younas, S.; Bilal, M. Novel strategies for extraction, purification, processing, and stability improvement of bioactive molecules. Journal of Basic Microbiology 2023, 63, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Panwar, D.; Kumar, G.; Kashyap, P. New horizons for the enhanced recovery of phenolic compounds by integration of Natural Deep Eutectic Solvents and microwave-assisted extraction. Food Bioscience 2024, 104375. [Google Scholar] [CrossRef]
- Sousa, C. Anthocyanins, carotenoids and chlorophylls in edible plant leaves unveiled by tandem mass spectrometry. Foods 2022, 11, 1924. [Google Scholar] [CrossRef]
- Sousa, C. Anthocyanins, carotenoids and chlorophylls in edible plant leaves unveiled by tandem mass spectrometry. Foods 2022, 11, 1924. [Google Scholar] [CrossRef]
- Umair, M.; Jabbar, S.; Nasiru, M.M.; Lu, Z.; Zhang, J.; Abid, M. . & Zhao, L. Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology. Molecules 2021, 26, 6763. [Google Scholar] [PubMed]
- Umair, M.; Jabbar, S.; Nasiru, M.M.; Lu, Z.; Zhang, J.; Abid, M. ; .. & Zhao, L. Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology. Molecules 2021, 26, 6763. [Google Scholar] [PubMed]
- Viloria-Pérez, N.; Camargo-Ovalle, L.V.; Rodríguez-Varela, L.I.; Díaz-Moreno, C.; Suárez-Mahecha, H. Supercritical CO2 extraction of carotenoids from high Andean forest bee pollen. The Journal of Supercritical Fluids 2024, 209, 106236. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Sun, D.W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Critical reviews in food science and nutrition 2020, 60, 1826–1841. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, D.; Kim, M.; Gu, M.Y.; Kim, S.M.; Pan, C.H. ; .. & Chung, D. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food chemistry 2019, 291, 87–93. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
