Submitted:
18 July 2024
Posted:
19 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Analyses
2.3. Body Composition Determination
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Saponaro, F.; Saba, A.; Zucchi, R. An Update on Vitamin D Metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, M.; Pacini, S. Chronic kidney disease and vitamin D: how much is adequate? Kidney Int. 2009, 76, 931–933. [Google Scholar] [CrossRef]
- Kuwabara, A.; Tsugawa, N.; Kondo, H.; Ao, M.; Fujiwara, H.; Hosokawa, N.; Matsumoto, S.; Tanaka, K.; Nakano, T. Associations between serum 25-hydroxyvitamin D 3 level and skeletal muscle mass and lower limb muscle strength in Japanese middle-aged subjects. Osteoporos. Sarcopenia 2017, 3, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin D and Muscle Function. Osteoporos Int. 2002, 13, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Bollen, S.E.; Bass, J.J.; Wilkinson, D.J.; Hewison, M.; Atherton, P.J. The impact of genetic variation within the vitamin D pathway upon skeletal muscle function: A systematic review. J. Steroid Biochem. Mol. Biol. 2023, 229, 106266. [Google Scholar] [CrossRef]
- Bulgay, C.; Bayraktar, I.; Kazan, H.H.; Yıldırım, D.S.; Zorba, E.; Akman, O.; Ergun, M.A.; Cerit, M.; Ulucan, K.; Eken, Ö.; Ceylan, H.İ.; Badicu, G.; Grosz, W.R.; Mijaică, R. Evaluation of the Association of VDR rs2228570 Polymorphism with Elite Track and Field Athletes’ Competitive Performance. Healthcare 2023, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Rabon-Stith, K.M.; Hagberg, J.M.; Phares, D.A.; Kostek, M.C.; Delmonico, M.J.; Roth, S.M.; Ferrell, R.E.; Conway, J.M.; Ryan, A.S.; Hurley, B.F. Vitamin D receptor FokI genotype influences bone mineral density response to strength training, but not aerobic training. Exp. Physiol. 2005, 90, 653–661. [Google Scholar] [CrossRef]
- Massidda, M.; Corrias, L.; Bachis, V.; Cugia, P.; Piras, F.; Scorcu, M.; Calò, C.M. Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players. Exp. Therap. Med. 2015, 9, 1974–1978. [Google Scholar] [CrossRef]
- Krasniqi, E.; Boshnjaku, A.; Wagner, K.-H.; Wessner, B. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass and Function: A Systematic Review. Nutrients 2021, 13, 3109. [Google Scholar] [CrossRef]
- Bass, J.J.; Nakhuda, A.; Deane, C.S.; Brook, M.S.; Wilkinson, D.J.; Phillips, B.E.; Philp, A.; Tarum, J.; Kadi, F.; Andersen, D.; Garcia, A.M.; Smith, K.; Gallagher, I. J.; Szewczyk, N.J.; Cleasby, M.E.; Atherton, P.J. Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Mol. Metab 2020, 42, 101059. [Google Scholar] [CrossRef]
- Arai, H.; Miyamoto, K.-I.; Taketani, Y.; Yamamoto, H.; Iemori, Y.; Morita, K.; Tonai, T.; Nishisho, T.; Mori, S.; Takeda, E. A Vitamin D Receptor Gene Polymorphism in the Translation Initiation Codon: Effect on Protein Activity and Relation to Bone Mineral Density in Japanese Women. J. Bone Min. Res. 1997, 12, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Colin, E.M.; Weel, A.E.A.M.; Uitterlinden, A.G.; Buurman, C.J.; Birkenhäger, J.C.; Pols, H.A.P.; Van Leeuwen, J.P.T.M. Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1,25-dihydroxyvitamin D 3. Clin. Endocrinol. 2000, 52, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.; Krishnan, A.V.; Malloy, P.J.; Eccleshall, T.R.; Zhao, X.-Y.; Feldman, D. The Vitamin D Receptor Gene Start Codon Polymorphism: A Functional Analysis of Fok I Variants. J. Bone Min. Res. 1998, 13, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.M.; Zmuda, J.M.; Cauley, J.A.; Shea, P.R.; Ferrell, R.E. Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, N.S.; Li, K.W.; Kehoe, A.; Humphries, S.E.; Roughton, M.; Moxham, J.; Montgomery, H.; Polkey, M.I. Vitamin D receptor genotypes influence quadriceps strength in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2008, 87, 385–390. [Google Scholar] [CrossRef]
- Xia, Z.; Man, Q.; Li, L.; Song, P.; Jia, S.; Song, S.; Meng, L.; Zhang, J. Vitamin D receptor gene polymorphisms modify the association of serum 25-hydroxyvitamin D levels with handgrip strength in the elderly in Northern China, Nutrition 2019, 57, 202–207. [CrossRef]
- Gussago, C.; Arosio, B.; Guerini, F.R.; Ferri, E.; Costa, A.S.; Casati, M.; Bollini, E.M.; Ronchetti, F.; Colombo, E.; Bernardelli, G.; Clerici, M.; Mari, D. Impact of vitamin D receptor polymorphisms in centenarians. Endocrine 2016, 53, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Micheli, M.L.; Gulisano, M.; Morucci, G.; Punzi, T.; Ruggiero, M.; Ceroti, M.; Marella, M.; Castellini, E.; Pacini, S. Angiotensin-Converting Enzyme/Vitamin D Receptor Gene Polymorphisms and Bioelectrical Impedance Analysis in Predicting Athletic Performances of Italian Young Soccer Players. J. Strength Cond. Res. 2011, 25, 2084–2091. [Google Scholar] [CrossRef]
- Jia, F.: Sun, R.-F.; Li, Q.-H.; Wang, D.-X.; Zhao, F.; Li, J.-M.; Pu, Q.; Zhang, Z.-Z.; Jin, Y.; Liu, B.-L.; Xiong, Y. Vitamin D Receptor Bsm I Polymorphism and Osteoporosis Risk: A Meta-Analysis from 26 Studies. Genet. Test. Mol. Biomark. 2013, 17, 30–34. [CrossRef]
- Qin, G.; Dong, Z.; Zeng, P.; Liu, M.; Liao, X. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol. Biol. Rep. 2013, 40, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Saka, B.; Erten, N.; Ozbek, U.; Coskunpinar, E.; Yildiz, S.; Sahinkaya, T.; Akif Karan, M. BsmI polymorphism in the vitamin D receptor gene is associated with leg extensor muscle strength in elderly men. Aging Clin. Exp. Res. 2010, 22, 198–205. [Google Scholar] [CrossRef]
- Grundberg, E.; Brandstrom, H.; Ribom, E.; Ljunggren, O.; Mallmin, H.; Kindmark, A. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur. J. Endocrinol. 2004, 150, 323–328. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Oono, F.; Iida, K.; Wang, P.-L.; Tachi, Y. Relationship between vitamin D receptor gene polymorphisms (BsmI, TaqI, ApaI, and FokI) and calcium intake on bone mass in young Japanese women. BMC Women’s Health 2021, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Liu, B.; Chen, B.; Zhu, W.; Ye, X.-H.; Li, H.; He, X. Evaluation of Association Studies and an Updated Meta-Analysis of VDR Polymorphisms in Osteoporotic Fracture Risk. Front. Genet. 2022, 12. [Google Scholar] [CrossRef]
- Iki, M.; Saito, Y.; Dohi, Y.; Kajita, E.; Nishino, H.; Yonemasu, K.; Kusaka, Y. Greater Trunk Muscle Torque Reduces Postmenopausal Bone Loss at the Spine Independently of Age, Body Size, and Vitamin D Receptor Genotype in Japanese Women. Calcified Tissue Intern. 2002, 71, 300–307. [Google Scholar] [CrossRef]
- Wu, F.-Y., Liu, C.-S.; Liao, L.-N.; Li, C.-I.; Lin, C.-H.; Yang, C.-W.; Meng, N.-H.; Lin, W.-Y.; Chang, C.-K.; Hsiao, J.-H.; Li, T.-C.; Lin, C.-C. Vitamin D receptor variability and physical activity are jointly associated with low handgrip strength and osteoporosis in community-dwelling elderly people in Taiwan: the Taichung Community Health Study for Elders (TCHS-E). Osteoporosis Int. 2014, 25, 1917–1929. [CrossRef]
- Wang, P.; Ma, L.; Wang, H.; Zhang, W.; Tian, Q.; Cao, D.; Zheng, G.; Sun, Y. Association between Polymorphisms of Vitamin D Receptor Gene ApaI, BsmI and TaqI and Muscular Strength in Young Chinese Women. Int. J. Sports Med. 2005, 27, 182–186. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric standardization reference manual. Ed. Human Kinetics Books, Champaign, IL. 1988. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J. How Well do Skinfold Equations Predict Percent Body Fat in Elite Soccer Players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef]
- Núñez, F.J.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Validity of Field Methods to Estimate Fat-Free Mass Changes Throughout the Season in Elite Youth Soccer Players. Front. Physiol. 2020, 11, 16. [Google Scholar] [CrossRef]
- Frisancho, A. Anthropometric Standards for the Assessment of Growth and Nutritional Status. 1st ed.; Ann Arbor, University of Michigan Press, Michigan (USA) 1990. [CrossRef]
- Yi, X.; Liang, Y.; Huerta-Sanchez, E.; Jin, X.; Cuo, Z.X.P.; Pool, J.E.; Xu, X.; Jiang, H.; Vinckenbosch, N.; Korneliussen, T.S.; et al. Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science 2010, 329, 75–78. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; Sham, P.C. ). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; McVean, G.; Durbin, R. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. https://www.R-project.org/. (n.d.).
- Machiela, M.J.; Chanock, S.J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B. Vitamin D and muscle function. J. Steroid Biochem. Mol. Biol. 2017, 173, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yang, L.; Li, M.; Xiao, H. Relationship of vitamin D receptor gene polymorphism with sarcopenia and muscle traits based on propensity score matching. J. Clin. Lab. Anal. 2020, 34. [Google Scholar] [CrossRef]
- Kerr Whitfield, G.; Remus, L.S.; Jurutka, P.W.; Zitzer, H.; Oza, A.K.; Dang, H.T.L.; Haussler, C.A.; Galligan, M.A.; Thatcher, M.L.; Dominguez, C.E.; Haussler, M.R. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Molecular and Cellular Endocrinology, 177(1–2), 145–159. [CrossRef]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and Cancer. Front. Endocrinol. 2012, 3. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, L.-J.; Zhou, Y.; Badr, R.; Watson, P.; Ye, A.; Zhou, B.; Zhang, J.; Deng, H.-W.; Recker, R.R.; Lappe, J. M. SNP rs11185644 of RXRA gene is identified for dose-response variability to vitamin D3 supplementation: a randomized clinical trial. Sci. Rep. 2017, 7, 40593. [Google Scholar] [CrossRef]

| VDR ApaI rs7975232 (N = 55) | ||||
|---|---|---|---|---|
| A | C | AA | AC | CC |
| 58.18 | 41.82 | 30.91 (17) | 54.54 (30) | 14.55 (8) |
| VDR BsmI rs1544410 (N = 54) | ||||
| G | A | GG | AG | AA |
| 55.56 | 44.44 | 35.18 (19) | 40.74 (22) | 24.08 (13) |
| VDR FokI rs2228570 (N = 54) | ||||
| A | G | AA | AG | GG |
| 25.93 | 74.07 | 3.71 (2) | 44.44 (24) | 51.85 (28) |
| ApaI | BsmI | FokI | ||||
|---|---|---|---|---|---|---|
| F value | p | F value | p | F value | p | |
| FFM Slaughter | 0.997484 | 0.375752 | 0.105224 | 0.900317 | 1.016038 | 0.369237 |
| FFM Reilly | 0.538281 | 0.586968 | 0.046829 | 0.954292 | 0.290343 | 0.749235 |
| AMA | 1.022569 | 0.366788 | 0.08582 | 0.917892 | 1.449376 | 0.244221 |
| CMA | 1.132188 | 0.330143 | 2.263845 | 0.1143 | 0.100998133 | 0.90411506 |
| TMA | 0.536284 | 0.588118 | 1.382144 | 0.260282 | 0.536284 | 0.588118 |
| Model | Genotype | n | Response means (s.e.) | Difference (95% CI) | p-value | AIC | BIC |
|---|---|---|---|---|---|---|---|
| Codominant | GG | 19 | 89.04 (2.58) | 0.00 | 0.11 | 420 | 430 |
| AG | 22 | 95.37 (2.93) | 6.93 (0.03–13.82) | ||||
| AA | 13 | 97.18 (2.34) | 6.79 (−1.18–14.77) | ||||
| Dominant | GG | 19 | 89.04 (2.58) | 0.00 | 0.034 | 418 | 426 |
| AG – AA | 35 | 96.05 (2.02) | 6.88 (0.68–13.08) | ||||
| Recessive | GG – AG | 41 | 92.44 (2.02) | 0.00 | 0.4 | 422 | 430 |
| AA | 13 | 97.18 (2.34) | 3.16 (−4.15–10.46) | ||||
| Overdominant | GG -AA | 32 | 92.34 (1.92) | 0.00 | 0.19 | 421 | 429 |
| AG | 22 | 95.37 (2.93) | 4.26 (−1.99–10.52) | ||||
| Log-additive | 3.71 (−0.25–7.67) | 0.072 | 419 | 427 |
| ApaI | BsmI | Frequency | Difference (95% CI) | p-value |
|---|---|---|---|---|
| A | A | 0.4138 | 0.00 | --- |
| C | G | 0.3807 | −3.68 (−8.74–1.39) | 0.16 |
| A | G | 0.168 | −6.49 (−12.59–−0.4) | 0.04 |
| C | A | 0.0375 | −11.09 (−27.62–5.45) | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
