Submitted:
26 June 2025
Posted:
30 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Participants
Genotyping
Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kim, S.K.; Roos, T.R.; Roos, A.K.; Kleimeyer, J.P.; Ahmed, M.A.; Goodlin, G.T.; Fredericson, M.; Ioannidis, J.P.A.; Avins, A.L.; Dragoo, J.L. Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS One 2017, 12, 3. [CrossRef]
- Ljungqvist, A.; Schwellnus, M.P.; Bachl, N.; Collins, M.; Cook J.; Khan, K.M.; Maffulli, N.; Pitsiladis, Y.; Riley, G.; Golspink, G.; et al. International Olympic Committee Consensus Statement: Molecular Basis of Connective Tissue and Muscle Injuries in Sport. Clin Sports Med 2008, 27, 231–239. [CrossRef]
- Vosseller, J.T.; Scott, J.E.; Levine, D.S.; Kennedy, J.G.; Elliott, A.J.; Deland, J.T.; Roberts, M.M.; O’Malley M.J. Achilles tendon rupture in women. Foot Ankle Int 2013, 34, 49–53. [CrossRef]
- Hess, G.W. Achilles tendon rupture: A review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec 2010, 3, 29-32. [CrossRef]
- Kujala U.M.; Sarna, S.; Kaprio, J. Cumulative Incidence of Achilles Tendon Rupture and Tendinopathy in Male Former Elite Athletes. Clin J Sport Med 2005, 15, 133-135. [CrossRef]
- de Jonge, S.; van den Berg, C.; de Vos, R.J.; van der Heide, H.J.L.; Weir, A.; Verhaar, J.A.N.; Bierma-Zeimstra, S.M.A.; Tol, J.L. Incidence of midportion Achilles tendinopathy in the general population. Br J Sports Med 2011, 45, 1026–1028. [CrossRef]
- Longo, U.G.; Loppini, M.; Margiotti, K.; Salvatore, G.; Berton, A.; Khan, W.S.; Maffulli, N.; Denaro, V. Unravelling the Genetic Susceptibility to Develop Ligament and Tendon Injuries. Curr Stem Cell Res Ther 2015, 10, 56–63. [CrossRef]
- Meeuwisse, W.H. Assessing Causation in Sport Injury: A Multifactorial Model. Clinical Journal of Sport Medicine 1994, 4, 166–170.
- Riley, G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology 2004, 43, 131–142. [CrossRef]
- Silver, F.H.; Freeman, J.W.; Seehra, G.P. Collagen self-assembly and the development of tendon mechanical properties. J Biomech 2003, 36, 1529–1553. [CrossRef]
- Mizuno, K.; Adachi, E.; Imamura, Y.; Katsumata, O.; Hayashi, T. The fibril structure of type V collagen triple-helical domain. Micron 2001, 32, 317–323. [CrossRef]
- Niyibizi, C.; Eyre, D.R. Structural characteristics of cross-linking sites in type V collagen of bone Chain specificities and heterotypic links to type I collagen. Eur. J. Biochem 1994, 224, 943–950. [CrossRef]
- Mokone, G.G; Schwellnus, M.P.; Noakes, T.D.; Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports 2006, 16, 19–26. [CrossRef]
- September, A.V.; Cook, J.; Handley, C.J.; van der Merwe, L.; Schwellnus, M.P.; Collins, M. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med 2009, 43, 357–365. [CrossRef]
- Posthumus, M.; September, A.V.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. American Journal of Sports Medicine 2009, 37, 2234–2240. [CrossRef]
- Collins, M.; Posthumus, M.; Schwellnus, M.P. The COL1A1 gene and acute soft tissue ruptures. Br J Sports Med 2010, 44, 1063–1064. [CrossRef]
- Brown, J.C.; Miller, C.J.; Schwellnus, M.P.; Collins, M. Range of motion measurements diverge with increasing age for COL5A1 genotypes. Scand J Med Sci Sports 2011, 21, 266-272. [CrossRef]
- Jones, F.S.; Jones, P.L. The tenascin family of ECM glycoproteins: Structure, function, and regulation during embryonic development and tissue remodeling. Developmental Dynamics 2000, 218, 235–259. [CrossRef]
- Jones, P.L.; Jones, F.S. Tenascin-C in development and disease: gene regulation and cell function. Matrix Biology 2000, 19, 581–596. [CrossRef]
- Järvinen, T.A.H.; Józsa, L.; Kannus, P.; Järvinen, T.L.N.; Hurme, T.; Kvist, M.; Pelto-Huikko, M.; Kalimo, H.; Järvinen, M. Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci 2003, 116, 857-866. [CrossRef]
- Mokone, G.G.; Gajjar, M.; September, A.V.; Schwellnus, M.P.; Greenberg, J.; Noakes, T.D.; Collins, M. The Guanine-Thymine Dinucleotide Repeat Polymorphism Within the Tenascin-C Gene is Associated With Achilles Tendon Injuries. American Journal of Sports Medicine 2005, 33, 1016–1021. [CrossRef]
- Saunders, C.J.; van der Merwe, L.; Cook, J.; Handley, C.J.; Collins, M.; September, A.V. Extracellular matrix proteins interact with cell-signaling pathways in modifying risk of Achilles tendinopathy. Journal of Orthopaedic Research 2015, 33, 898–903. [CrossRef]
- Orsmark-Pietras, C.; Melén, E.; Vendelin, J.; Bruce, S.; Laitinen, A.; Laitinen, L.A.; Lauener, R.; Riedler, J.; von Mutius, E.; Doekes, G.; et al. Biological and genetic interaction between Tenascin C and Neuropeptide S receptor 1 in allergic diseases. Hum Mol Genet 2008, 17, 1673–1682. [CrossRef]
- Matsuda, A.; Hirota, T.; Akahoshi, M.; Shimizu, M.; Tamari, M.; Miyatake, A.; Takahashi, A.; Nakashima, K.; Takahashi, N.; Obara, K.; et al. Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma. Hum Mol Genet 2005, 14, 2779–2786. [CrossRef]
- Pace, J.M.; Corrado, M.; Missero, C.; Byers, P.H. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biology 2003, 22, 3-14. [CrossRef]
- Boot-Handford, R.P.; Tuckwell, D.S.; Plumb, D.A.; Farrington Rock, C.; Poulsom, R. A novel and highly conserved collagen (proα1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. Journal of Biological Chemistry 2003, 278, 31067–31077. [CrossRef]
- Saunders, C.J.; van der Merwe, W.; Posthumus, M.; Cook, J.; Handley, C.J.; Collins, M.; September, A.V. Investigation of variants within the COL27A1 and TNC genes and Achilles tendinopathy in two populations. Journal of Orthopaedic Research 2013, 31, 632–637. [CrossRef]
- Gibbon, A.; Saunders, C.J.; M. Collins, M.; Gamieldien, J.; September, A.V. Defining the molecular signatures of Achilles tendinopathy and anterior cruciate ligament ruptures: A whole-exome sequencing approach. PLoS One 2018, 13, e0205860. [CrossRef]
- Nyholt, D.R. A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other. Am J Hum Genet 2004, 74, 765–769. [CrossRef]
- Vaughn, N.H.; Stepanyan, H.; Gallo, R.A.; Dhawan, A. Genetic factors in tendon injury: A systematic review of the literature. Orthop J Sports Med 2017, 5, 2325967117724416. [CrossRef]
- Briški, N.; Vrgoč, G.; Knjaz, D.; Janković, S.; Ivković, A.; Pećina, M.; Lauc, G. Association of the matrix metalloproteinase 3 (MMP3) single nucleotide polymorphisms with tendinopathies: case-control study in high-level athletes,” Int Orthop 2021, 45, 1163–1168. [CrossRef]
- Brown, K.L; Seale, K.B.; El Khoury, L.Y.; Posthumus, M.; Ribbans, W.J.; Raleigh, S.M.; Collins, M.; September, A.V. Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. J Sports Sci 2017, 35, 1475–1483. [CrossRef]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; , Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; Squires, P.; et al. The genetic association with injury risk in male academy soccer players depends on maturity status. Scand J Med Sci Sports 2022, 32, 338–350. [CrossRef]
- Figueiredo, E.A.; Loyola, L.C.; Belangero, P.S.; Campos Ribeiro-Dos-Santos, Â.K.; Emanuel Batista Santos, S.; Cohen, C.; Wajnsztejn, A.; Martins de Oliveira, A.; Smith, M.C.; Pochini, A.C.; et al. Rotator Cuff Tear Susceptibility Is Associated With Variants in Genes Involved in Tendon Extracellular Matrix Homeostasis. Journal of Orthopaedic Research 2020, 38, 192–201. [CrossRef]
- Heffernan, S.M; Kilduff, L.P.; Erskine, R.M.; Day, S.H.; Stebbings, G.K.; Cook, C.J.; Raleigh, S.M.; Bennett, M.A.; Wang, G.; Collins M,: et al. COL5A1 gene variants previously associated with reduced soft tissue injury risk are associated with elite athlete status in rugby. BMC Genomics 2017, 18, 820. [CrossRef]
- van der Linden, P.D.; van de Lei, J.; Nab, H.W.; Knol, A.; Stricker, B.H. Achilles tendinitis associated with fluoroquinolones. Br J Clin Pharmacol 1999, 48, 433–437. [CrossRef]
- Abate, M.; Silbernagel, K.G.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther 2009, 11, 235. [CrossRef]
- Ackermann, P.W.; Renström, P. Tendinopathy in Sport. Sports Health 2012, 4, 193–201. [CrossRef]
- Lemme, N.J; Li, N.Y.; DeFroda, S.F.; Kleiner, J.; Owens, B.D. Epidemiology of Achilles Tendon Ruptures in the United States: Athletic and Nonathletic Injuries From 2012 to 2016. Orthop J Sports Med 2018, 6, 2325967118808238. [CrossRef]
- Khalil, L.S.; Jildeh, T.R.; Tramer, J.S.; Abbas, M.J.; Hessburg, L.; Mehran, N.; Okoroha, K.R. Effect of Achilles Tendon Rupture on Player Performance and Longevity in National Basketball Association Players. Orthop J Sports Med 2020, 8, 2325967120966041. [CrossRef]
- Hodgens, B.H; Geller, J.S.; Rizzo, M.G.; Munoz, J.; Kaplan, J.; Aiyer, A. Performance Outcomes After Surgical Repair of Achilles Tendon Rupture in the Women’s National Basketball Association. Orthop J Sports Med 2021, 9, 23259671211030473. doi: 10.1177/23259671211030473.
- Goodlin, G.T.; Roos, A.K.; Roos, T.R.; Hawkins, C.; Beache, S.; Baur, S.; Kim, S.K. Applying personal genetic data to injury risk assessment in athletes. PLoS One 2015, 10, e0122676. [CrossRef]
| TEN (n=63) | Controls (n=92) | P-value | |||||
| Age (years) | 32.1 ± 12.8 | 39.0 ± 11.4 | 0.006 | ||||
| Height (cm) | 180.5 ± 8.8 | 179.8 ± 9.6 | 0.6454 | ||||
| Weight (kg) | 79.4 ± 14.9 | 84.6 ± 15.4 | 0.0381 | ||||
| BMI (kg/m2) | 24.1 ± 3.6 | 26.0 ± 3.3 | 0.009 | ||||
| Ethnicity (Caucasian) | 100% (63) | 100% (92) | 1.0000 | ||||
| gender (% male) | 75% (47) | 78% (92) | 0.6639 | ||||
| COL5A1 | Allele frequency | |||||||
| SNP | C>T | TEN | CON | |||||
| rs12722 | n=63 | n=92 | p | FDR | OR | 95% CI | Association | |
| 1 | C | 42.1% (53) | 45.1% (83) | 0.5957 | 0.8835 | 0.5590 - 1.3962 | none | |
| 2 | T | 57.9% (73) | 54.9% (101) | 0.5957 | 1.1319 | 0.7162 - 1.7888 | none | |
| Genotype frequency | ||||||||
| SNP | C>T | TEN | CON | |||||
| rs12722 | n=63 | n=92 | p | FDR | OR | 95% CI | Association | |
| 11 | CC | 14.3% (9) | 21.7% (20) | 0.2456 | 0.6000 | 0.2533 - 1.4210 | none | |
| 12 | CT | 55.6% (35) | 46.7% (43) | 0.2816 | 14.244 | 0.7481 - 2.7121 | none | |
| 22 |
TT |
30.1% (19) |
31.6% (29) |
0.8570 |
0.9381 |
0.4682 - 1.8795 |
none | |
| HWE | 0.267 | |||||||
| COL27A1 | Allele frequency | |||||||
| SNP | G>T | TEN | CON | |||||
| rs946053 | n=63 | n=92 | p | FDR | OR | 95% CI | Association | |
| 1 | G | 43.7% (55) | 56.5% (104) | 0.0264 | 0.0264 | 0.5959 | 0.3773 - 0.9412 | protection |
| 2 | T | 56.3% (71) | 43.5% (80) | 0.0264 | 0.0264 | 1.6782 | 1.0625 - 2.6506 | Predisposition |
| Genotype frequency | ||||||||
| SNP | G>T | TEN | CON | |||||
| rs946053 | n=63 | n=92 | p | FDR | OR | 95% CI | Association | |
| 11 | GG | 14.3% (9) | 32.6% (30) | 0.0118 | 0.0354 | 0.3444 | 0.1503 - 0.7895 | protection |
| 12 | GT | 58.7% (37) | 47.8% (44) | 0.1829 | 15.524 | 0.8127 - 2.9656 | none | |
| 22 | TT | 27% (17) | 19.6% (18) | 0.279 | 15.193 | 0.7118 - 3.2428 | none | |
| HWE | 0.124 | |||||||
| TNC | Allele frequency | |||||||
| SNP | T>A | TEN | CON | |||||
| rs2104772 | n=63 | n=92 | p | FDR | OR | 95% CI | Association | |
| 1 | T | 61.1% (77) | 48.4% (89) | 0.0276 | 0.0276 | 1.6774 | 1.0586 - 2.6579 | predisposition |
| 2 | A | 38.9% (49) | 51.6% (95) | 0.0276 | 0.0276 | 0.5962 | 0.3762 - 0.9447 | protection |
| Genotype frequency | ||||||||
| SNP | T>A | TEN | CON | |||||
| rs2104772 | n=63 | n=92 | p | FDR | OR | 95% CI | Association | |
| 11 | TT | 42.9% (27) | 22.8% (21) | 0.0089 | 0.0267 | 25.357 | 1.2628 - 5.0918 | predisposition |
| 12 | TA | 36.5% (23) | 51.1% (47) | 0.0745 | 0.5505 | 0.2857 - 1.0608 | none | |
| 22 | AA | 20.6% (13) | 26.1% (24) | 0.4351 | 0.7367 | 0.3402 - 1.5869 | none | |
| HWE | 0.066 | |||||||
| Hap code | Haplotype | CON | TEN | p | FDR | OR | 95% CI | Association |
| 1 | G - A - T | 16 | 5 | 0.1038 | 0.4339 | 0.1547 - 1.2166 | none | |
| 2 | G - A - C | 25 | 8 | 0.0424 | 0.0424 | 0.4310 | 0.1880 - 0.9900 | protection |
| 3 | G - T - T | 32 | 21 | 0.8678 | 0.9500 | 0.5193 - 1.7380 | none | |
| 4 | G - T - C | 31 | 21 | 0.9666 | 0.9871 | 0.5379 - 1.8114 | none | |
| 5 | T - A - T | 42 | 30 | 0.7729 | 1.0565 | 0.6186 - 1.8046 | none | |
| 6 | T - A - C | 11 | 6 | 0.6441 | 0.7864 | 0.2831 - 2.1843 | none | |
| 7 | T - T - T | 11 | 17 | 0.0234 | 0.0424 | 2.453 | 1.107 - 5.434 | predisposition |
| 8 | T - T - C | 16 | 18 | 0.1219 | 1.7500 | 0.8556 - 3.5792 | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
