Submitted:
30 March 2024
Posted:
01 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
3. Results and Discussion
3.1. Soil Moisture Evaluation
3.2. Actual Evapotranspiration (ETr) of Avocado
3.3. Avocado Nutrition
3.4. Water Use Efficiency
4. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Anuario Estadístico de la Producción Agrícola. Gobierno de México. 2022, https://nube.siap.gob.mx/cierreagricola/ (reviewed dec. 2023).
- Ayala, R.S.M. El aguacate: el gran oro verde. Contaduría Pública. Universidad del Valle de Atemajac. Campus Zamora. 2018, https://www.univa.mx/zamora/wp-content/uploads/sites/3/2019/07/el-aguacate.pdf.
- Moreno-Ocampo, A.A.; Leos-Rodríguez, J.A.; Contreras-Castillo, J.M.; Cruz-Delgado, D. Análisis comparativo del comercio agropecuario de tres países (México, China y Canadá) con Estados Unidos de América (1990-2011). Agric. Soc. Des. 2015, 12, 131–146. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). 2016, website: http://www.fao.org/faostat/en/#home.
- Franco-Sánchez, M.A.; Leos-Rodríguez, J.A.; Salas-González, J.M.; Acosta-Ramos, F.; García-Munguía, A. Análisis de costos y competitividad en la producción de aguacate en Michoacán, México. Revista Mexicana de Ciencias Agrícolas. 2018, 9, 391–404. [Google Scholar] [CrossRef]
- Méndez–García, T.; Palacios–Mayorga, S.; Rodríguez–Domínguez, L. Análisis de suelo, foliar y de calidad del agua para el cultivo del aguacatero. Terra Latinoamericana. 2008, 26, 145–155. [Google Scholar]
- Dubrovina, I.; Bautista, F. Analysis of the Suitability of Various Soil Groups and Types of Climate for Avocado Growing in the State of Michoacán, Mexico. Eurasian Soil Science, Agricultural Chemistry and Soil Fertility. 2014, 47, 491–503. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.G.; Castañeda-Sánchez, D.; Morales-Osorio, J.G. Edaphic factors associated with the development of avocado wilt complex and implementation of a GIS tool for risk visualization. Scientia Horticulturae. 2021, 288, 115–125. [Google Scholar] [CrossRef]
- Hernández, E. Se dispara 300% el precio de fertilizantes en México por conflicto Rusia-Ucrania: agricultores. Forbes 2022, 6, 54–56. [Google Scholar]
- López, R. México experimenta escasez de agua y falta equidad en su distribución. Gaceta UNAM. Dirección General de Comunicación Social. 2017, 4876, 14–16. [Google Scholar]
- Caro, D.; Alessandrini, A.; Sporchia, F.; Borghes, S. Global virtual water trade of avocado. Journal of Cleaner Production. 2021, 285, 155–164. [Google Scholar] [CrossRef]
- Cao, X.; Li, Y.; Wu, M. . Irrigation water use and efficiency assessment coupling crop cultivation, commutation, and consumption processes. Agricultural Water Management. 2022, 261, 365–374. [Google Scholar] [CrossRef]
- Rosa-Rodríguez, R.; Lara-Herrera, A.; Trejo-Téllez, L.I.; Padilla- Bernal, L.E.; Solís-Sánchez, L.O.; Ortiz-Rodríguez, J.M. Water and fertilizers use efficiency in two hydroponic systems for tomato production. Horticultura Brasileira. 2020, 38, 47–52. [Google Scholar] [CrossRef]
- Gil, P.M.; Bonomelli, C.; Schaffer, B.; Ferreyra, R.; Gentina, C. Effect of soil water-to-air ratio on biomass and mineral nutrition of avocado trees. Journal of Soil Science and Plant Nutrition. 2012, 12, 609–630. [Google Scholar] [CrossRef]
- Hagin, J.; A. Lowengart. Fertigation for minimizing environmental pollution by fertilizers. In: Rodriguez-Barrueco, C. (eds.) Fertilizers and Environment. Developments in Plant and Soil Sciences. 1996, 66, 23–25. [Google Scholar]
- Silber, A.; Naor, A. ; Cohen, H; Bar-Noy, Y. ; Yechieli, N.; Levi, M.; Noy, M.; Peres, M.; Duari, M; Narkis, K.; Avocado fertilization: Scientia Horticulturae. 2018, 241, 231–240. [Google Scholar]
- Beyer, C.P.; Cuneo, I.F.; Alvaro, V. R.; Pedresch, A.M. . Evaluation of aerial and root plant growth behavior, water and nutrient use efficiency and carbohydrate dynamics for Hass avocado grown in a soilless and protected growing system. Scientia Horticulturae. 2021, 277, 577–585. [Google Scholar] [CrossRef]
- Deanroy, M.; Migliaccio, K.W.; Crane, J.H.; Fraissea, C.; Zotarelli, L.; Morgand, K.T.; Kiggundue, N. An irrigation schedule testing model for optimization of the smart irrigation avocado app. Agricultural Water Management. 2017, 179, 390–400. [Google Scholar]
- Ferré, P.A; Topp, G.C. “Time domain reflectometry”. In: Dana, J.H. & Topp, G. C. (Eds), Methods of soil Analysis, Part 4-Physical Methods. American Soc. of Agron. 2002, Madison, WI, USA. pp. 434-446.
- Mounzer, O.H.; Vera, J.; Tapia, L.M.; Garcia-Orellana, Y.; Conejero, W.; Abrisqueta, I.; Ruiz-Sanchez, Ma. C.; Abrisqueta-Garcia, J. Ma. Irrigation scheduling of peach trees (Prunus persica L.) by continuous measurement of soil water status. Agrociencia. 2008, 42, 857–868. [Google Scholar]
- García, P. M.; Castel, J.R. Water balance and crop coefficient estimation of citrus orchard in Uruguay. Spanish Journal of Agricultural Research. 2007, 5, 1–12. [Google Scholar]
- Tapia V., L. M.; Larios G., A.; Hernández P., A.; Vidales F., I. Control del riego en línea y tiempo real del aguacatero y eficiencia del uso del agua. Rev. de Ciencias Naturales y Agropecuarias. 2016, 3, 11–18. [Google Scholar]
- Pizarro, C.F. Riegos localizados de alta frecuencia. 3ª. Ed. Mundiprensa. Barcelona, España. 1996, 513 p.
- FAO (Food and Agriculture Organization). Yield response to water. Irrigation and Drainage. 1979, Paper No. 33. Rome, Italy. 505 p.
- Zamora-Salgado, S.; Ruiz-Espinoza, F.H.; Beltrán-Morales, F.A.; Fenech-Larios, L.; Murillo-Amador, B.; Loya-Ramírez, J.; Troyo-Diéguez, E. Régimen hídrico del maíz en una zona árida, determinado en porcentajes de evaporación. Tropical and Subtropical Agroecosystems. 2011, 13, 181–186. [Google Scholar]
- Cao, X.; Zenga, W.; Wua, M.; Guoa, X.; Wang, W. A hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation. Agricultural Water Management. 2020, 231, 647–655. [Google Scholar] [CrossRef]
- Tapia, V. L. M.; Larios, A.; Vidales, I.; Pedraza, M.E; Barradas, V.V. El cambio climático en la zona aguacatera de Michoacán: análisis de la precipitación y la temperatura a largo plazo. Revista Mexicana de Ciencias Agrícolas. 2011, 2, 325–335. [Google Scholar]
- Holzapfel, E.; Alves, S.J.; Jara, J.; Carvallo, G.H. Responses of avocado production to variation in irrigation levels. Irrigation Science. 2017, 35, 205–215. [Google Scholar] [CrossRef]
- Salgado, E.; Cautin, R. Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation. Agricultural Water Management. 2008, 95, 817–824. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of avocado (Persea Americana) a review. Experimental Agriculture. 2013, 49, 256–278. [Google Scholar] [CrossRef]
- Purbopuspito, J.; Van Rees, K.C.J. Root distribution at various distances from clove trees growing in Indonesia. Plant and Soil. 2002, 239, 313–320. [Google Scholar] [CrossRef]
- Shereif, H. M.; Thian, Y. G. Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data. Agricultural Water Management 2019, 212, 35–47. [Google Scholar]
- Lichang, Y.; Tao, F.; Chen, Y.; Wang, Y. Reducing agriculture irrigation water consumption through reshaping cropping systems across China. Agricultural and Forest Meteorology. 2022, 312, 515–525. [Google Scholar]
- Russo, D.; Laufer, A.; Bar-Tal, A. Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study. Agricultural Water Management. 2020, 229, 250–259. [Google Scholar] [CrossRef]
- Barker V.A.; Stratton, M.L. Nutrient density of fruit crops as a function of soil fertility. A.K. Srivastava and Chengxiao Hu (Editors). Fruit Crops,2020, pp.13-31.
- Silber, A.; Goldberg, T.; Shapirad, O.; Hochberg, U. Nitrogen uptake and macronutrients distribution in mango (Mangifera indica L. cv. Keitt) tres. Plant Physiology and Biochemistry, 2022, 181, 23–32. [Google Scholar] [CrossRef]
- Alder, G. Using the evapotranspiration rate to water your garden better. The yard posts. 2019, https://gregalder.com/yardposts/using-the-evapotranspiration-rate-to-water-your-garden-better/ consultado (02/may/2022).
- FAO (Food and Agriculture Organization). Yield response to water. Irrigation and Drainage, 1979, Paper No. 33. Rome, Italy. 505 p.
- Grismer, M.E. Long-term evapotranspiration from coastal avocado/citrus orchard. Journal of Irrigation and Drainage Engineering, 2000, 126, 1–7. [Google Scholar] [CrossRef]




| Cutzato | Tiamba | ||||||
| Month | Mean Temperature (°C) |
Precipitation (mm) |
ETo (mm) |
Mean Temperature (°C) |
Precipitation (mm) |
ETo (mm day-1) |
|
| January | 18.4 | 0.7 | 2.7 | 12.1 | 10.6 | 2.6 | |
| February | 19.4 | 17.3 | 3.1 | 12.0 | 50.8 | 3.0 | |
| March | 21.3 | 0.3 | 4.8 | 14.8 | 1.7 | 4.3 | |
| April | 22.3 | 0.1 | 5.1 | 15.9 | 0.4 | 4.6 | |
| May | 22.4 | 44.6 | 4.7 | 16.9 | 51.9 | 4.4 | |
| June | 20.7 | 196.7 | 4.1 | 16.5 | 319.2 | 3.0 | |
| July | 20.1 | 273.3 | 3.6 | 16.6 | 529.8 | 2.9 | |
| August | 20.0 | 359.8 | 3.7 | 16.5 | 502.3 | 2.9 | |
| September | 19.7 | 407.7 | 3.1 | 16.2 | 504.1 | 2.6 | |
| October | 20.0 | 132.9 | 3.2 | 16.2 | 198.3 | 3.1 | |
| November | 20.0 | 9.7 | 3.3 | 13.5 | 12 | 2.9 | |
| December | 19.1 | 2.0 | 2.8 | 12.8 | 15.1 | 2.5 | |
| Average | 20.3 | 1444.9 | 3.7 | 15.0 | 2196.2 | 3.2 | |
| Month | Cutzato | Tiamba | ||||||||
| Soil depth (cm) | ETr (mm) |
Soil depth (cm) | ETr (mm) |
|||||||
| 0-15 | 15-30 | 30-45 | 45-60 | 0-15 | 15-30 | 30-45 | 45-60 | |||
| Dec | 27.1 | 13.2 | 7.3 | 55.7 | 103.3 | 18.6 | 20.9 | 19.3 | 17.0 | 75.8 |
| Jan | 15.9 | 16.3 | 15.0 | 8.7 | 55.8 | 25.5 | 24.8 | 28.9 | 10.2 | 89.4 |
| Feb | 55.4 | 20.6 | 15.3 | 12.1 | 103.4 | 22.1 | 10.2 | 26.8 | 6.3 | 65.3 |
| Mar | 36.2 | 14.5 | 18.2 | 14.4 | 83.4 | 16.3 | 47.5 | 25.1 | 16.8 | 105.6 |
| Apr | 76.5 | 30.3 | 17.9 | 16.5 | 141.2 | 35.6 | 54.1 | 42.2 | 16.3 | 148.2 |
| May | 61.1 | 25.7 | 25.5 | 19.0 | 131.2 | 23.2 | 32.0 | 34.7 | 17.9 | 107.8 |
| Jun | 21.3 | 8.3 | 9.3 | 1.6 | 40.5 | 7.8 | 18.6 | 14.8 | 7.8 | 49.1 |
| Jul | 31.3 | 3.9 | 5.5 | 2.5 | 43.2 | 9.7 | 14.2 | 10.4 | 3.4 | 37.7 |
| Aug | 23.0 | 15.1 | 9.0 | 1.4 | 48.5 | 12.4 | 18.5 | 13.1 | 8.6 | 52.5 |
| Sep | 28.8 | 3.5 | 8.4 | 5.3 | 45.9 | 165.2 | 16.5 | 12.8 | 9.2 | 50.2 |
| Oct | 20.0 | 6.1 | 4.1 | 3.3 | 33.5 | 12.1 | 14.4 | 12.9 | 11.5 | 50.8 |
| Nov | 23.1 | 11.0 | 8.8 | 5.7 | 48.5 | 8.3 | 10.9 | 9.0 | 9.1 | 37.3 |
| Dec | 28.2 | 25.4 | 19.7 | 13.5 | 86.7 | 14.7 | 16.7 | 11.9 | 8.6 | 51.9 |
| Total (mm) | 447.8 | 194.0 | 163.9 | 159.7 | 965.3 | 371.5 | 299.1 | 261.7 | 142.8 | 921.6 |
| Site | ETo (mm year-1) |
ETr (mm year-1) |
Kc | NWV (m3 ha-1) |
ISA (mm) |
Yield (kg tree-1) |
WUE (kg m-3) |
IUA (ETr ISA-1) |
| Cutzato | 1341.5 | 965.3 | 0.72 | 4426.9 | 1490.0 | 54.6 | 4.4 | 0.65 |
| Tiamba | 1180.7 | 921.0 | 0.78 | 3896.3 | 1311.9 | 61.2 | 5.6 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
