Submitted:
04 June 2024
Posted:
05 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Daily Maximum () and Minimum Temperature ()
2.2.2. Imputation of Missing Data, Homogenization of Series and Determination of the Mean Daily Temperature (Tmn)
2.2.3. Wind Speed at 10 m Height (Uz)
2.3. Empirical Equations to Estimate Penman–Monteith Reference Evapotranspiration, Calculated with Missing Data (PMC) and Observed Data (PMO)
2.3.1. Wind Speed at 2 m Height (U2)
2.4. Calculated Hargreaves Reference Evapotranspiration (HAC, Alternative Method Used)
2.5. Pre-Validation
2.5.1. Normality Test and Correlation Coefficients
2.5.2. Simple Linear Regressions (SLR) and Simple Nonlinear Regressions (SNR)
2.5.3. Hypothesis Test

2.6. Validation
2.7. Software Used
3. Results
3.1. Calculated Monthly Average Reference Evapotranspiration: Penman–Monteith (PMC) and Hargreaves (HAC) Methods
3.2. Normality Test for the Calculated Average Reference Evapotranspiration: Penman–Monteith (PMC) and Hargreaves (HAC) Methods
3.2.1. Monthly (Jan–Dec), Seasonal (Mar–Aug) and Annual (Jan–Dec) Series
3.3. Pearson (rP) and Spearman (rS) Correlations of Calculated Average Reference Evapotranspiration: Penman–Monteith (PMC) and Hargreaves (HAC) Methods
3.3.1. Monthly Correlations (Jan–Dec)
3.3.2. Seasonal (Mar–Aug) and Annual (Jan–Dec) Correlations
3.4. Linear (SLR) and Simple Nonlinear Regressions (SNR) of Calculated Average Reference Evapotranspiration: Penman–Monteith (PMR, Dependent Variable) and Hargreaves (HAC, Independent Variable) Methods
3.4.1. Normality Test Of Monthly (Jan–Dec), Seasonal (Mar–Aug) and Annual (Jan–Dec) Residuals
3.4.2. Monthly Coefficients and Goodness of Fit (Jan–Dec)
3.4.3. Coefficients and Seasonal (Mar–Aug) and Annual (Jan–Dec) Goodness of Fit
3.5. Validation
3.5.1. Simple Linear Regressions (SLR) between Calculated and Observed Values from: 1) Incident Radiation (SR vs SRg), 2) Penman–Monteith Reference Evapotranspiration, Calculated with Equations (PMC vs PMO) and 3) Calculated with Regressions (PMR vs PMO)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ribeiro, V.P.; Desuó, N.L.; Marques, P.A.A.; Achcar, J.A. , Junqueira, A.M.; Chinatto, A.W.; Jr. Junqueira, C.C.M.; Maciel, C.D.; Balestieri, J.A.P. A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates. Agronomy 2023, 13, 2970. [Google Scholar] [CrossRef]
- Raheem, A.; Ahmad, I.; Arshad, A.; Liu, J.; Rehman, Z.U.; Shafeeque, M.; Rahman, M.M.; Saifullah, M.; Iqbal, U. Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan. Water 2024, 16, 34. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022. Available online: https://population.un.org/wpp/Download/Standard/Population/.
- Yu, X.J.; Zhang, L.X.; Zhou, T.J.; Zheng, J.H. Assessing the performance of CMIP6 models in simulating droughts across global drylands. Adv. Atmos. Sci. 2024, 41, 193–208. [Google Scholar] [CrossRef]
- Abel, D.; Ziegler, K.; Gbode, I.E.; Weber, T.; Ajayi, O.V.; Traoré, S.B.; Paeth, H. Robustness of climate indices relevant for agriculture in Africa deduced from GCMs and RCMs against reanalysis and gridded observations. Clim. Dyn. 2024, 62:1077–1106. [CrossRef]
- 6. Cardoso, do Vale T.M.; Constantino, S.M.E.; Bezerra, C.J.; Barbosa, A.L.M.; Bezerra, B.G.; Tôrres, R.D.; Rodrigues, M.P. Climate and water balance influence on agricultural productivity over the Northeast Brazil. Theor. Appl. Climatol. 2024, 155:879–900. [CrossRef]
- Llanes, C.O.; Norzagaray, C.M.; Gaxiola, A.; Pérez, G.E.; Montiel, M.J.; Troyo, D.E. Sensitivity of four indices of meteorological drought for rainfed maize yield prediction in the state of Sinaloa, Mexico. Agriculture 2022, 12, 525. [Google Scholar] [CrossRef]
- González, C.J.M.; Cervantes, O.R.; Ojeda, B.W.; López, C.I. Predicción de la evapotranspiración de referencia mediante redes neuronales artificiales. Ing. Hidrául. Méx. 2008; XXIII, 127–138, http://repositorio.imta.mx/handle/20.500.12013/852. [Google Scholar]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97: 635–644. [CrossRef]
- Zhang, J.; Zhou, X.; Yang, S.; Ao, Y. Spatiotemporal Variations in Evapotranspiration and Their Driving Factors in Southwest China between 2003 and 2020. Remote Sens. 2023, 15, 4418. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Manes, A.; Kitta, E. Calibration and validation of solar radiation-based equations to estimate crop evapotranspiration in a semi-arid climate. Int. J. Biometeorol. 2024, 68:1–15. [CrossRef]
- Sekhar, S.M.; Prasad, R.S.; Maity, R. Climate change may cause oasification or desertification both: an analysis based on the spatio-temporal change in aridity across India. Theor. Appl. Climatol. 2024, 155:1167–1184. [CrossRef]
- Espinosa, E.B.; Flores, M.H.; Hernández, R.A.; Carrillo, F.G. Diseño de un sistema de riego hidrante parcelario con los los métodos por turnos y Clement: análisis técnico económico. Terra Latinoam. 2016; 34, 431–440, https://www.scielo.org.mx/scielo.php?pid=S0187-57792016000400431&script=sci_abstract. [Google Scholar]
- Zhao, L.; Wang, Y.; Shi, Y.; Zhao, X.; Cui, N.; Zhang, S. Selecting essential factors for predicting reference crop evapotranspiration through tree-based machine learning and Bayesian optimization. Theor. Appl. Climatol. 2023. [Google Scholar] [CrossRef]
- Pereira, S.L.; Paredes, P.; Oliveira, M.C.; Montoya, F.; López, U.R.; Salman, M. Single and basal crop coefficients for estimation of water use of tree and vine woody crops with consideration of fraction of ground cover, height, and training system for Mediterranean and warm temperate fruit and leaf crops. Irrig. Sci. 2023. [Google Scholar] [CrossRef]
- Kiraga, S.; Peters, R.T.; Molaei, B.; Evett, S.R.; Marek, G. Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment. Water 2024, 16, 12. [Google Scholar] [CrossRef]
- Peng, X.; Liu, X.; Wang, Y.; Cai, H. Evapotranspiration Partitioning and Estimation Based on Crop Coefficients of Winter Wheat Cropland in the Guanzhong Plain, China. Agronomy 2023, 13, 2982. [Google Scholar] [CrossRef]
- Farmer, W.; Strzepek, K.; Schlosser, A.C.; Droogers, P.; Gao, X. A method for calculating reference evapotranspiration on daily time scales . Global Sciece Policy Change MIT 2011, 195, 1–21, https://www.researchgate.net/publication/265591168_A_Method_for_Calculating_Reference_Evapotranspiration_on_Daily_Time_Scales. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. Ed. FAO, 1998, 56, 298p. https://openknowledge.fao.org/server/api/core/bitstreams/8802ddc9-86b6-4f13-96b7-4871dd3aee65/content.
- Sabino, M.; de Souza, A.P. Global Sensitivity of Penman–Monteith Reference Evapotranspiration to Climatic Variables in Mato Grosso, Brazil. Earth 2023, 4, 714–727. [Google Scholar] [CrossRef]
- Abdel, F.M.K.; Abd, E.K.S.; Zhang, Z.; Merwad, A.R.M.A. Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions. Sustainability 2023, 15, 15494. [Google Scholar] [CrossRef]
- Allen, R.G. , Pereira, L.S., Raes, D., Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO, FAO Irrig. Drain. 1998b, 56. 300 p. https://www.researchgate.net/publication/235704197_Crop_evapotranspiration-Guidelines_for_computing_crop_water_requirements-FAO_Irrigation_and_drainage_paper_56.
- Liang, Y.; Feng, D.; Sun, Z.; Zhu, Y. Evaluation of Empirical Equations and Machine Learning Models for Daily Reference Evapotranspiration Prediction Using Public Weather Forecasts. Water 2023, 15, 3954. [Google Scholar] [CrossRef]
- Okkan, U.; Fistikoglu, O.; Ersoy, B.Z.; Noori, T.A. Analyzing the uncertainty of potential evapotranspiration models in drought projections derived for a semi-arid watershed. Theor. Appl. Climatol. 2024, 155:2329–2346. [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99, https://www.researchgate.net/publication/247373660_Reference_Crop_Evapotranspiration_From_Temperature. [Google Scholar] [CrossRef]
- Trezza, R. Estimación de la evapotranspiración de referencia a nivel mensual en Venezuela. ¿cuál método utilizar? Bioagro, 2008; 20, 89–95, https://www.researchgate.net/publication/293459862_Estimation_of_monthly_reference_evapotranspiration_in_Venezuela_Which_method_to_be_used. [Google Scholar]
- Toro, T.A.M.; Arteaga, R.R.; Vázquez, P.M.A.; Ibáñez, C.L.A. Estimation models for the reference evapotranspiration value in the northern Banana zone of Antioquian Uraba (Colombia). Agrociencia, 2015; 49, 821–836, https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000800001.
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Agenda Técnica Agrícola de Sinaloa, Segunda Edición; SAGARPA, 2015: Mexico City, Mexico, 242 p. Available online: https://issuu.com/senasica/docs/25_sinaloa_2015_sin.
- Comisión Nacional del Agua (CONAGUA). Estaciones meteorológicas. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica. Accessed on 15 January 2024.
- Comisión Nacional del Agua (CONAGUA)–Servicio Meteorológico Nacional (SMN). Estaciones meteorológicas (Estación Acaponeta). https://smn.conagua.gob.mx/tools/GUI/sivea_v3/sivea.php. Accessed on 03 March 2024.
- 31. Oxford Cambridge and RSA (OCR). Formulae and statistical tables (ST1), 2022; 1–8, Available online: https://www.ocr.org.uk/Images/174103-unit-h869-02-statistical-problem-solving-statistical-tables-st1-.pdf.
- Galindo, R.J.G.; Alegría, H. Toxic effects of exposure to pesticides in farm workers in Navolato, Sinaloa (Mexico). Rev. Int. Contam. Ambie. 2018, 34, 505–516. [Google Scholar] [CrossRef]
- SAGARPA. Estimación de las exportaciones agroalimentarias a nivel de entidad federativa. Secretaría de Agricultura, Ganadería, Pesca y Acuacultura. 2011, p. Available online: http://www.sagarpa.gob.mx/agronegocios/Documentos/pablo/Documentos/Estima_Exp_Edo.pdf 23/07/2017.
- Llanes, C.O. Predictive association between meteorological drought and climate indices in the state of Sinaloa, northwestern Mexico. Arab. J. Geosci. 2023, 16:79. [CrossRef]
- Guijarro, J.A. Homogenization of climatic series with Climatol. 2018, 23 p. https://www.researchgate.net/publication/325203476_Homogenization_of_climatic_series_with_Climatol?channel=doi&linkId=5afda3fea6fdcc3a5a90bd5b&showFulltext=true.
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Index of /Datasets/ncep.reanalysis2/Monthlies/gaussian_grid. https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis2/Monthlies/gaussian_grid/. Accessed on 22 January 2024.
- Varga, H.Z.; Szalka, É.; Szakál, T. Determination of Reference Evapotranspiration Using Penman-Monteith Method in Case of Missing Wind Speed Data under Subhumid Climatic Condition in Hungary. Atmos. Clim. Sci. 2022, 12, 235–245. [Google Scholar]
- Leal, L.H.D.C.; Rocha, W.F.D.C. Model adequacy checking in homogeneity and stability studies. MAPAN 2023, 39, 445–448. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical analysis. 2010, 944 p. https://bayesmath.com/wp-content/uploads/2021/05/Jerrold-H.-Zar-Biostatistical-Analysis-5th-Edition-Prentice-Hall-2009.pdf.
- López, A.J.E.; Díaz, V.T.; Watts, T.T.; Rodríguez, J.C.; Castellanos, V.A.E.; Partida, R.L.; Velázquez, A.T.J. Evapotranspiración y coeficientes de cultivo de chile Bell en el Valle de Culiacán, México. Terra Latinoam. 2015, 33, 209–219. [Google Scholar]
- Pugh, S.; Fosdick, B. K, Nehring, M.; Gallichotte, E.N.; VandeWoude, S.; Wilson, A. Estimating cutoff values for diagnostic tests to achieve target specificity using extreme value theory. BMC Med. Res. Methodol. 2024, 24–30. [CrossRef]
- Bressane, A.; Siminski, A.; Gurjon, G.I.; Peres, M.C.; Scofano, G.C.; dos Santos, G.A.l.; Silva, M.B; de Castro, L.C.; Galante, N.G. Prioritization of key indicators for the classification of successional stages in regenerating subtropical Atlantic Forest, Southern Brazil: a proposal based on multivariate order statistics. Environ. Syst. Decis. 2023, 43, 232–241. [Google Scholar] [CrossRef]
- Llanes, C.O.; Estrella, G.R.D.; Parra, G. R.E.; Gutiérrez, R.O.G.; Ávila, D.J.A.; Troyo, D.E. Modeling yield of irrigated and rainfed bean in central and southern Sinaloa state, Mexico, based on essential climate variables. Atmosphere 2024, 15, 573. [Google Scholar] [CrossRef]
- Feng, Y.; Jia, Y.; Cui, N.; Zhao, L.; Li, C.; Gong, D. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agric. Water Manag. 2017, 181, 1–9. [Google Scholar] [CrossRef]
- Gu, X.; Long, A.; He, X.; Wang, H.; Lai, X.; Pang, N.; Liu, H.; Yu, H. Response of runoff to climate change in the Manas River Basin flow-producing area, Northwest China. Appl. Water Sci. 2024, 14, 43. [Google Scholar] [CrossRef]
- Kumar, S.; Sharda, R.; Goyal, P.; Siag, M.; Kaur, P. Reference Evapotranspiration Modelling Using Artificial Neural Networks Under Scenarios of Limited Weather Data: A Case Study in the Malwa Region of Punjab. Environ. Model. Assess. 2023. [Google Scholar] [CrossRef]
- Córdova, M.; Carrillo, R.G.; Crespo, P.; Wilcox, B.; Célleri, R. Evaluation of the Penman–Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mt. Res. Dev. 2015, 35, 230–239. [Google Scholar] [CrossRef]
- Valle, J.G.L.C.; Vourlitis, G.L.; Amorim, C.L.F.; da Silva, P.R.; Nogueira, J.S.; Lobo, F.A.; Abu, R.Md.T.I.; Rangel, R.T. Evaluation of FAO-56 Procedures for Estimating Reference Evapotranspiration Using Missing Climatic Data for a Brazilian Tropical Savanna. Water 2021, 13, 1763. [Google Scholar] [CrossRef]





| Weather station | Statistical variable | Tmax (°C day–1) | Tmin (°C day–1) | Tmn (°C day–1) |
|---|---|---|---|---|
| Culiacán | Maximum | 45.50 | 29.80 | 35.00 |
| Minimum | 15.50 | 2.00 | 11.00 | |
| Average | 33.29 | 19.30 | 26.30 | |
| El Playón | Maximum | 45.50 | 37.00 | 38.00 |
| Minimum | 13.00 | –6.00 | 8.75 | |
| Average | 31.54 | 16.52 | 24.03 | |
| Las Tortugas | Maximum | 41.50 | 28.00 | 33.50 |
| Minimum | 17.50 | –6.00 | 11.00 | |
| Average | 33.56 | 16.87 | 25.21 | |
| Rosario | Maximum | 41.00 | 31.00 | 35.00 |
| Minimum | 17.00 | 1.40 | 14.00 | |
| Average | 32.66 | 18.86 | 25.76 | |
| La Concha | Maximum | 43.50 | 30.00 | 34.90 |
| Minimum | 19.00 | 4.00 | 14.00 | |
| Average | 33.86 | 20.17 | 27.02 | |
| Ixpalino | Maximum | 46.40 | 28.50 | 34.65 |
| Minimum | 19.00 | –1.30 | 11.70 | |
| Average | 35.08 | 17.34 | 26.21 | |
| Sanalona II | Maximum | 43.00 | 27.20 | 34.35 |
| Minimum | 17.00 | –5.00 | 8.25 | |
| Average | 33.94 | 15.19 | 24.56 |
| Type of correlation | Weather station | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pearson (rP) | Culiacán | 0.895 | 0.848 | 0.869 | 0.780 | 0.639 | 0.781 | 0.908 | 0.867 | 0.865 | ||||
| El Playón | 0.896 | 0.443 | 0.691 | 0.888 | 0.841 | 0.845 | 0.840 | |||||||
| Las Tortugas | 0.929 | 0.878 | 0.808 | 0.772 | 0.734 | 0.848 | 0.831 | 0.850 | 0.829 | 0.866 | ||||
| Rosario | 0.890 | 0.793 | 0.852 | 0.913 | 0.857 | 0.842 | ||||||||
| La Concha | 0.831 | 0.839 | 0.753 | 0.820 | 0.850 | 0.811 | 0.831 | |||||||
| Ixpalino | 0.887 | 0.856 | 0.812 | 0.566 | 0.822 | 0.473 | 0.754 | 0.867 | 0.853 | 0.842 | ||||
| Sanalona II | 0.920 | 0.892 | 0.864 | 0.560 | 0.722 | 0.702 | 0.846 | 0.836 | 0.877 | |||||
| Spearman (rS) | Culiacán | 0.846 | 0.719 | 0.845 | ||||||||||
| El Playón | 0.767 | 0.682 | 0.816 | 0.725 | 0.749 | |||||||||
| Las Tortugas | 0.656 | 0.798 | ||||||||||||
| Rosario | 0.793 | 0.820 | 0.721 | 0.790 | 0.757 | 0.832 | ||||||||
| La Concha | 0.856 | 0.809 | 0.866 | 0.859 | 0.843 | |||||||||
| Ixpalino | 0.916 | 0.750 | ||||||||||||
| Sanalona II | 0.740 | 0.551 | 0.837 | |||||||||||
| n = 39; rcP = |0.316|; rcS = |0.318| | ||||||||||||||
| Type of correlation | Weather station | Seasonal (Mar–Aug) | Annual (Jan–Dec) | |
| Pearson (rP) | Culiacán | 0.852 | 0.895 | |
| El Playón | ||||
| Las Tortugas | ||||
| Rosario | 0.865 | |||
| La Concha | 0.907 | 0.921 | ||
| Ixpalino | 0.698 | |||
| Sanalona II | 0.693 | 0.848 | ||
| Spearman (rS) | Culiacán | |||
| El Playón | 0.794 | 0.831 | ||
| Las Tortugas | 0.773 | 0.854 | ||
| Rosario | 0.823 | |||
| La Concha | ||||
| Ixpalino | 0.839 | |||
| Sanalona II | ||||
| n = 39; rcP = |0.316|; rcS = |0.318| | ||||
| Coefficients of each equation by weather station | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Month | Type of coefficient of the equation | Culiacán | El Playón | Las Tortugas | Rosario | La Concha | Ixpalino | Sanalona II | |||||
| Jan | a | –1.330 | –1.864 | –2.877 | –1.942 | –2.116 | –3.322 | –2.851 | |||||
| Feb | –2.734 | –2.612 | –2.359 | –2.335 | –1.838 | –3.967 | –3.833 | ||||||
| Mar | –2.178 | –2.952 | –2.485 | –2.225 | –2.486 | –3.926 | –3.479 | ||||||
| Apr | –3.045 | –2.405 | –3.781 | –3.793 | –3.274 | –4.429 | –4.668 | ||||||
| May | –1.781 | –2.705 | –2.400 | –2.113 | –3.364 | –3.021 | –0.777 | ||||||
| Jun | –1.495 | –1.551 | –2.915 | –2.650 | –1.694 | –5.048 | –3.747 | ||||||
| Jul | 0.105 | –0.313 | –1.712 | –1.042 | –1.269 | 0.286 | –0.100 | ||||||
| Aug | –0.951 | –1.938 | –1.229 | –1.137 | –1.164 | –1.935 | –1.079 | ||||||
| Sep | –1.784 | –1.655 | –0.914 | –0.851 | –0.966 | –2.229 | –2.295 | ||||||
| Oct | –2.350 | –2.887 | –2.354 | –1.469 | –1.935 | –2.901 | 0.530 | ||||||
| Nov | –2.440 | –2.280 | –2.558 | –1.947 | –2.062 | –2.521 | –3.186 | ||||||
| Dec | –1.409 | –0.956 | –2.661 | –1.763 | –1.673 | –2.705 | –2.731 | ||||||
| Jan | b | 1.250 | 1.456 | 1.639 | 1.368 | 1.426 | 1.779 | 1.714 | |||||
| Feb | 1.488 | 1.486 | 1.379 | 1.340 | 1.228 | 1.716 | 1.733 | ||||||
| Mar | 1.193 | 1.368 | 1.266 | 1.190 | 1.227 | 1.507 | 1.460 | ||||||
| Apr | 1.192 | 1.094 | 1.314 | 1.310 | 1.224 | 1.402 | 1.454 | ||||||
| May | 0.883 | 1.033 | 0.988 | 0.936 | 1.120 | 1.069 | 0.782 | ||||||
| Jun | 0.782 | 0.798 | 1.009 | 0.974 | 0.816 | 1.302 | 1.113 | ||||||
| Jul | 0.526 | 0.605 | 0.829 | 0.709 | 0.751 | 0.515 | 0.576 | ||||||
| Aug | 0.664 | 0.852 | 0.708 | 0.691 | 0.700 | 0.832 | 0.688 | ||||||
| Sep | 0.885 | 0.883 | 0.704 | 0.686 | 0.717 | 0.963 | 0.976 | ||||||
| Oct | 1.140 | 1.293 | 1.128 | 0.932 | 1.044 | 1.239 | 0.366 | ||||||
| Nov | 1.388 | 1.409 | 1.364 | 1.209 | 1.251 | 1.382 | 1.570 | ||||||
| Dec | 1.259 | 1.179 | 1.561 | 1.295 | 1.287 | 1.610 | 1.670 | ||||||
| Plain | Simple linear regression (SLR) | ||||||||||||
| Bold | Simple nonlinear regression (SNR) | ||||||||||||
| Weather station | Seasonal (Mar–Aug) | Annual (Jan–Dec) | |||
|---|---|---|---|---|---|
| a | b | a | b | ||
| Culiacán | –0.916 | 0.761 | –1.182 | 0.888 | |
| El Playón | –2.216 | 0.992 | –2.304 | 1.141 | |
| Las Tortugas | 0.352 | 1.328 | –1.365 | 0.947 | |
| Rosario | –1.428 | 0.853 | –0.124 | 0.841 | |
| La Concha | –2.005 | 0.945 | –1.771 | 1.001 | |
| Ixpalino | –3.036 | 1.114 | –3.994 | 1.420 | |
| Sanalona II | –1.358 | 0.869 | –2.873 | 1.233 | |
| Plain | Simple linear regression (SLR) | ||||
| Bold | Simple nonlinear regression (SNR) | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
