Submitted:
28 March 2024
Posted:
29 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Effective Lagrangian of Dense Star Matter with Hidden Local Symmetry and Scale Symmetry and Mean Field Calculation
3. Speed of Sound and Pseudo-Confornality
4. Parity Doubling
5. Summary and Discussion
Acknowledgments
References
- Coleman, S. Aspects of Symmetry: Selected Erice lectures, Cambridge University Press, Cambridge, U.K., 1985.
- Lattimer, J.M. Neutron stars and the nuclear matter equation of state. Ann. Rev. Nucl. Part. Sci. 2023, 71, 433. [Google Scholar] [CrossRef]
- Paeng, W.G.; Kuo, T.T.S.; Lee, H.K.; Ma, Y.L.; Rho, M. Scale-invariant hidden local symmetry, topology change and dense baryonic matter II. Phys. Rev. D 2017, 96, 014031. [Google Scholar] [CrossRef]
- Rho, M. Pseudo-conformal sound speed in the core of compact stars. Symmetry 2022, 14, 2154. [Google Scholar] [CrossRef]
- Rho, M. Dense baryonic matter predicted in "Pseudo Conformal Model”. Symmetry 2023 15, 1271 (2023).
- Crewther R., J.; Tunstall, L. C. Δ I = 1/2 rule for kaon decays derived from QCD infrared fixed point. Phys. Rev. D 2015, 91, 034016. [Google Scholar] [CrossRef]
- Crewther, R. J. Genuine dilatons in gauge theories. Universe, 2020, 6, 96. [Google Scholar] [CrossRef]
- Del Debbio, L.; Zwicky, R. Dilaton and massive hadrons in a conformal phase. JHEP, 2022, 08, 007. [Google Scholar] [CrossRef]
- Zwicky, R. QCD with an infrared fixed point – Pion sector. arXiv 2023, arXiv:2306.06752 ;Zwicky, R. QCD with an infrared fixed point and a dilaton. arXiv 2023, arXiv:2312.13761. [Google Scholar] [CrossRef]
- Yamawaki, K. On the anomalous dimension in QCD. Symmetry 2024, 2024 16, 2. [Google Scholar] [CrossRef]
- Detar, C. E.; Kunihiro, T. Linear sigma model with parity doubling. Phys. Rev. D 1989, 39, 2805. [Google Scholar] [CrossRef] [PubMed]
- Jido, D.; Hatsuda, T.; Kunihiro, T. Chiral-Symmetry Realization for Even- and Odd-Parity Baryon Resonances. Phys. Rev. Lett. 2000, 84, 3252. [Google Scholar] [CrossRef] [PubMed]
- Jido, D.; Oka, M.; Hosaka, A. Chiral Symmetry of Baryons. Prog. Theor. Phys. 2001, 106, 873. [Google Scholar] [CrossRef]
- Motohiro, Y.; Kim, Y.; Harada, M. Asymmetric nuclear matter in a parity doublet model with hidden local symmetry. Phys. Rev. C 2015, 92, 025201. [Google Scholar] [CrossRef]
- Rho, M.; Ma, Y.L. Manifestation of hidden symmetries in baryonic matter: From finite nuclei to neutron stars. Mod. Phys. Lett. A 2021, 36, 2130012. [Google Scholar] [CrossRef]
- Ma, Y.L. ; Rho,M. Pseudoconformal structure in dense baryonic matter. Phys. Rev. D 2019, 99, 014034.
- Lee, H.K.; Ma, Y.L.; Paeng, W.G.; Rho, M. Cusp in the symmetry energy, speed of sound in neutron stars and emergent pseudo-conformal symmetry. Modern Physics Letters A, 2022, 37, 2230003. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is rho meson a dynamical gauge boson of hidden local symmetry? Phys. Rev. Lett. 1985, 54, 1215. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rept. 2003, 381, 1. [Google Scholar] [CrossRef]
- Yamawaki, K. Proving rho meson be a dynamical gauge boson of hidden local symmetry. Symmetry 2023, 15, 2209. [Google Scholar] [CrossRef]
- Paeng, W.G.; Lee, H.K.; Ma, Y.L.; Rho, M.; Sasaki, C. Interplay between omega-Nucleon Interaction and Nucleon Mass in Dense Baryonic Matter. Phys. Rev. D 2013, 88, 105019. [Google Scholar] [CrossRef]
- Fujimoto,Y. ; Fukushima, K. ; McLerran, L. D. ; Praszalowicz, M. , Trace Anomaly as Signature of Conformality in Neutron Stars. Phys. Rev. Lett. 2022, 129, 252702.
- Gell-Mann, M.; Levy, M. The axial vector current in beta decay. Nuovo Cim. 1960, 16, 705–1960. [Google Scholar] [CrossRef]
- Sasaki, C.; Lee, H.K.; Paeng, W.G.; Rho, M. Conformal anomaly and the vector coupling in dense matter Phys. Rev.D 2011, 84, 034021. [Google Scholar] [CrossRef]
- Paeng, W. G.; Lee, H. K.; Rho, M.; Sasaki, C. Dilaton-Limit Fixed Point in Hidden Local Symmetric Parity Doublet Model. Phys. Rev. D 2012, 85, 054022. [Google Scholar] [CrossRef]
- Beane. S.R. ; van Kolck, U. The dilated chiral quark model. Phys. Lett. B 1994, 328, 137.
- Paeng, W.G.; Lee, H.K.; Ma, Y.L.; Rho, M.; Sasaki, C. Interplay between omega-Nucleon Interaction and Nucleon Mass in Dense Baryonic Matter. em Phys. Rev. D 2013, 105019. [Google Scholar] [CrossRef]
- Chodos, A.; Jaffe, R.L.; Johnson, K.; Thorn, C.B. Baryon structure in the bag theory. Phys. Rev. D 1974, 10, 2599. [Google Scholar] [CrossRef]
- Brown, G.E.; Rho, M. The Little Bag. Phys.Lett. B 1979, 82. [Google Scholar] [CrossRef]
- Lee, H.K.; Rho, M. Dilatons in Hidden Local Symmetry for Hadrons in Dense Matter. Nucl. Phys. A 2009, 829, 76. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Nattila, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nature Phys. 2020, 16, 907. [Google Scholar] [CrossRef]
- Rho, M. Dense Baryonic Matter Predicted in “Pseudo-Conformal Model”. arXiv 2023, arXiv:2305.0471. [Google Scholar] [CrossRef]
- Fujimoto Y. ; Kojo ,T. ; McLerran, L.D. Momentum Shell in Quarkyonic Matter from Explicit Duality: A Dual Model for Cold, Dense QCD. Phys. Rev. Lett. 2024 , 132, 112701.
| 1 | Without the presence of the second term is determined only by the nucleon number density. One can see that without -nucleon coupling the density independent solution of would be impossible. |
| 2 | What is observed in [27], is actually the behavior of at higher density not . We do not have the meanfield result on which does not couple to omega meson directly in this work, but is assumed to be sufficiently small enough to be ignored at high density, . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).