Submitted:
20 March 2024
Posted:
21 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials and Regents
2.2. Fermentation of NTF
2.3. Sample Preparation
2.4. UHPLC-Q-TOF/MS/MS Analysis
2.5. Determination of Fructose, Sucrose, Maltose and Glucose
3. Result and Discussion
3.1. Fermentation Reduced Saccharides Content in NTF
3.2. Fermentation Modified Bioactive Compounds in NTF and Altered Their Relative Content
3.3. Fermented NTF Product Displays Anti-Diabetic Potential
4. Conclusion
| Samples | Fructose (mg/g) | Glucose (mg/g) | Sucrose (mg/g) | Maltose (mg/g) |
| NTF | 94 | 73 | 11 | 14 |
| NTJ | Not detected | Not detected | Not detected | Not detected |
| NTR | 6.3 | 11 | 8.5 | 5.5 |
| Identified compounds | Molecular formula | Theoretical Mass | relative content in NTF | relative content in NTR | relative content in NTJ |
|---|---|---|---|---|---|
| Amino acid and its derivatives | |||||
| Arginine | C6H14N4O2 | 175.1195 | 3.65% | 1.73% | 2.47% |
| Tyrosine | C9H11NO3 | 182.0817 | 1.03% | ND | ND |
| Tryptamine | C10H12N2 | 161.1079 | 0.07% | ND | ND |
| L-Phenylalanine | C9H11NO2 | 166.0868 | 0.83% | ND | 0.19% |
| N-Acetylphenylalanine | C11H13NO3 | 208.0974 | 0.30% | 0.23% | 0.79% |
| L-Pyroglutamic acid | C5H7NO3 | 130.0504 | ND | ND | 3.18% |
| 3-Hydroxyanthranilic acid | C7H7NO3 | 154.0504 | ND | ND | 0.69% |
| N-Acetylleucine | C8H15NO3 | 174.113 | ND | ND | 0.74% |
| Alkaloid | |||||
| Theophylline | C7H8N4O2 | 203.0545 | 3.61% | ND | ND |
| Quinoline 4-carboxylic acid | C10H7NO2 | 174.0555 | 0.34% | 0.20% | 0.87% |
| Lupinine | C10H19NO | 170.1545 | 2.10% | 2.00% | 3.26% |
| Harmol | C12H10N2O | 199.0871 | 0.12% | 0.39% | 0.73% |
| Norharman | C11H8N2 | 169.0766 | 0.34% | 0.79% | 0.63% |
| Sparteine | C15H26N2 | 235.2174 | 0.58% | ND | ND |
| Harmane | C12H10N2 | 183.0922 | 1.11% | 2.21% | 1.98% |
| Deoxyvasicinone | C11H10N2O | 187.0871 | 0.07% | 0.13% | ND |
| Vinpocetine | C22H26N2O2 | 351.2073 | 0.08% | ND | ND |
| 2-(hydroxymethyl)-4(3H)-quinazolinone | C9H8N2O2 | 177.0664 | 0.23% | ND | ND |
| Harmine | C13H12N2O | 213.1028 | ND | ND | 0.09% |
| Ephedrine | C10H15NO | 166.1232 | ND | ND | 0.67% |
| L-Oxonoreleagnine | C11H10N2O | 187.0871 | ND | 0.97% | ND |
| Hordenine | C10H15NO | 166.1232 | ND | ND | 0.06% |
| Tabersonine | C21H24N2O2 | 337.1916 | ND | ND | 0.09% |
| Amine | |||||
| Etilefrine | C10H15NO2 | 182.1181 | ND | 0.12% | 0.13% |
| Anthocyanin | |||||
| Cyanidin-3-O-rhamnoside | C21H21O10 | 433.1135 | 0.07% | ND | ND |
| Cyanidin-3-O-glucoside | C21H20O11 | 449.1084 | 0.43% | 0.58% | ND |
| Cyanidin 3-O-galactoside | C21H21O11 | 449.1084 | ND | 0.06% | |
| Cyanidin | C15H10O6 | 287.0556 | ND | 0.21% | 0.13% |
| Peonidin-3-O-D-glucopyranoside | C22H23O11 | 463.1240 | 0.13% | 0.15% | ND |
| Peonidin 3-O-glucoside | C22H22O11 | 463.124 | 0.97% | 1.09% | 0.06% |
| Peonidin 3-O-galactoside | C22H23O11 | 463.124 | 0.52% | 1.12% | 0.11% |
| Petunidin-3-O-glucoside | C22H22O12 | 479.1190 | 0.24% | 0.51% | ND |
| Petunidin 3-galactoside | C22H23O12 | 479.119 | ND | ND | 0.09% |
| Indole derivatives | |||||
| Indole-3-carboxaldehyde | C9H7NO | 146.0606 | 0.48% | 1.29% | ND |
| 3-Formylindole | C9H7NO | 146.0606 | 0.43% | 1.13% | ND |
| Serotonin | C10H12N2O | 177.1027 | ND | ND | 0.09% |
| Alpha-oxo-1h-indole 3-propanoic acid | C11H9NO3 | 204.0661 | ND | ND | 0.13% |
| 2-(5-methoxy-1H-indol-3-yl)acetic acid | C11H11NO3 | 206.0817 | ND | ND | 0.24% |
| Indole 3-acetic acid | C10H9NO2 | 176.0712 | ND | ND | 0.10% |
| 5-Hydroxyindole-3-acetic acid | C10H9NO3 | 192.0661 | ND | 0.46% | |
| Beta-oxo-1h-indole-3-propanoic acid | C11H9NO3 | 204.0661 | ND | 0.24% | ND |
| Organic acid | |||||
| Hippuric acid | C9H9NO3 | 180.0661 | 0.13% | ND | ND |
| Kojic Acid | C6H6O4 | 143.0344 | ND | ND | 18.91% |
| Phenolic compounds | |||||
| Neochlorogenic acid | C16H18O9 | 355.1029 | 0.39% | 0.12% | ND |
| Gentisinic acid | C7H6O4 | 155.0344 | 0.38% | ND | ND |
| trans-Caffeic acid | C9H8O4 | 181.0486 | 0.11% | ND | 0.46% |
| Caffeic acid | C9H8O4 | 181.0501 | 0.50% | 0.61% | 1.08% |
| 4-Coumaric acid | C9H8O3 | 165.0552 | 0.39% | 0.09% | |
| Trans-4-Coumaric acid | C9H8O3 | 165.0552 | 1.62% | 3.66% | 3.35% |
| Esculetin | C9H6O4 | 179.0341 | 0.15% | 0.14% | 1.40% |
| Chlorogenic acid | C16H18O9 | 355.103 | 9.95% | 3.16% | 9.20% |
| Daphnetin | C9H6O4 | 179.0344 | 0.62% | 0.75% | 0.27% |
| 3-Acetylphenanthrene | C16H12O | 221.0966 | 0.64% | ND | ND |
| gerberinside | C16H18O8 | 339.1080 | 0.29% | ND | ND |
| Vicenin 2 | C27H30O15 | 595.1663 | 0.31% | 0.36% | 0.42% |
| Isorhamnetin 3,7-di-O-glucoside | C28H32O17 | 641.1718 | 0.10% | 0.06% | 0.09% |
| Isorhamnetin 3-O-galactoside 6''-rhamnoside | C28H32O16 | 625.1769 | 1.13% | 1.40% | 1.11% |
| Isorhamnetin 3-glucoside-7-rhamnoside | C28H32O16 | 625.1769 | 1.62% | 0.56% | ND |
| Isorhamnetin | C16H12O7 | 317.0661 | 2.82% | ND | 1.08% |
| Isorhamnetin 3-O-rutinoside | C28H32O16 | 625.1769 | 8.10% | 3.12% | 0.60% |
| Isorhamnetin 3-galactoside | C22H22O12 | 479.119 | 1.94% | 1.82% | 0.68% |
| Isorhamnetin 3-O-glucoside | C22H22O12 | 479.1190 | 2.92% | 5.21% | ND |
| Isorhamnetin 3-O-neohesperoside | C28H32O16 | 625.1769 | 0.07% | ND | ND |
| 4-methoxy-6-prop-2-enyl-1,3-benzodioxole | C11H12O3 | 193.0865 | 0.95% | ND | ND |
| Quercetin-3-O-rhamnopyranosyl(1-2)-D-glucopyranoside-7-O-rhamnopyranoside | C33H40O20 | 757.2191 | 0.15% | ND | ND |
| Quercetin 3-O-beta-glucopyranosyl-7-O-alpha-rhamnopyranoside | C27H30O16 | 611.1612 | 0.19% | 0.17% | 0.23% |
| Quercetin-3-O-robinobioside | C27H30O16 | 611.1612 | 0.12% | ND | ND |
| Quercetin 4'-O-glucoside | C21H21O12 | 465.1033 | 0.48% | ND | 0.11% |
| Rutin | C27H30O16 | 611.1612 | 0.47% | 0.16% | 0.30% |
| 7-O-Methylquercetin-3-O-galactoside-6''-rhamnoside | C34H42O20 | 771.2348 | 2.26% | ND | ND |
| Isoquercetin | C21H20O12 | 465.1033 | 1.27% | 0.50% | 0.46% |
| Quercetin-3-Rhamnoside | C21H20O11 | 449.1084 | 0.95% | 3.87% | ND |
| Quercetin | C15H10O7 | 303.0505 | 0.38% | 0.58% | ND |
| Quercetin 3-O-alpha-L-rhamnopyranosyl(1-2)-beta-D-glucopyranoside 7-O-alpha-L-rhamnopyranoside | C33H40O20 | 757.2191 | ND | 0.13% | 0.16% |
| Ferulic acid | C10H10O4 | 195.0657 | 0.64% | 1.15% | 4.36% |
| Sinapic acid | C11H12O5 | 225.0763 | 0.21% | 0.15% | 1.81% |
| Kaempferol 3-O-glucoside-2''-rhamnoside-7-Rhamnoside | C33H40O19 | 741.2242 | 0.10% | 0.06% | 0.09% |
| Kaempferol 3-O-robinoside-7-O-rhamnoside | C33H40O19 | 741.2242 | 0.08% | 0.07% | 0.07% |
| Kaempferol 3-O-galactoside-7-O-rhamnoside | C27H30O15 | 595.1663 | 0.17% | 0.16% | 0.16% |
| Kaempferol 3-O-rutinoside | C27H30O15 | 595.1663 | 0.25% | 0.24% | 0.16% |
| Kaempferol 3-O-glucoside-7-O-rhamnoside | C27H30O15 | 595.1663 | 0.40% | 0.11% | 0.18% |
| Kaempferol | C15H10O6 | 287.0557 | 0.39% | 0.30% | ND |
| Kaempferol-3-O-glucoside | C21H20O11 | 449.1084 | 0.99% | 0.99% | ND |
| Kaempferol-3-rhamnoside | C21H20O10 | 433.1135 | 1.31% | 3.78% | ND |
| Kaempferol-3-O-glucoside-6''-p-coumaroyl | C30H26O13 | 595.1452 | 0.04% | ND | ND |
| Kaempferol 3-O-rhamnoside | C21H20O10 | 433.1135 | ND | ND | 0.06% |
| Kaempferol 7-O-glucoside | C21H20O11 | 449.1084 | ND | 0.20% | 0.12% |
| Vitexin | C21H20O10 | 433.1135 | 0.43% | 0.50% | 0.66% |
| Isovitexin | C21H20O10 | 433.1135 | 0.44% | 0.28% | 0.27% |
| Apigenin 6-C-glucoside-8-C-arabinoside | C26H28O14 | 565.1557 | 0.19% | ND | 0.31% |
| Apigenin-7-O-glucoside | C21H20O10 | 433.1135 | 0.26% | 0.38% | ND |
| Hispiduloside | C22H22O11 | 463.1240 | 0.18% | ND | ND |
| Datiscetin-3-O-rutinoside | C27H30O15 | 595.1663 | 1.13% | 0.37% | ND |
| Naringenin-7-O-glucoside | C21H22O10 | 435.1291 | 0.09% | ND | ND |
| Apigenin-7-O-neohesperidoside | C27H30O14 | 579.1714 | 0.07% | ND | ND |
| Diosmetin-7-O-neohesperidoside | C28H32O15 | 609.1820 | 0.16% | 0.14% | ND |
| Diosmetin 7-O-rutinoside | C28H32O15 | 609.182 | 5.40% | 7.75% | 1.51% |
| Diosmetin | C16H12O6 | 301.0712 | ND | 0.15% | ND |
| Luteolin-7-O-glucoside | C21H20O11 | 449.1084 | 0.14% | ND | ND |
| Luteolin | C15H10O6 | 287.0557 | 0.24% | 0.37% | ND |
| Pectolinarin | C29H34O15 | 623.1976 | 0.27% | 0.30% | ND |
| Acacetin-7-O-rutinoside | C28H32O14 | 593.1873 | 1.29% | 1.48% | ND |
| Acacetin-7-glucoside | C22H22O10 | 447.1291 | 0.11% | 0.23% | ND |
| Acacetin | C16H12O5 | 285.0763 | 0.19% | 0.25% | ND |
| Demethoxycentaureidin 7-O-rutinoside | C29H34O16 | 639.1925 | 0.35% | 0.20% | ND |
| Licoflavanone | C20H20O5 | 341.1389 | 1.00% | 1.63% | 1.16% |
| Citreorosein | C15H10O6 | 287.0556 | 0.12% | ND | ND |
| Fisten | C15H10O6 | 287.0557 | 0.26% | 0.42% | ND |
| Chrysoeriol | C16H12O6 | 301.0712 | 1.93% | 4.84% | ND |
| Eupafolin | C16H12O7 | 317.0661 | 2.25% | 5.89% | ND |
| Aurantioobtusin | C17H14O7 | 331.0818 | 0.06% | ND | ND |
| cirsimaritin | C17H14O6 | 315.0869 | 0.14% | 0.29% | ND |
| Wogonin | C16H12O5 | 285.0763 | 0.04% | ND | ND |
| Daidzein | C15H10O4 | 255.0657 | 0.07% | 0.06% | ND |
| Jaceosidin | C17H14O7 | 331.0818 | 0.20% | ND | ND |
| Xanthotoxol | C11H6O4 | 203.0344 | 0.30% | ND | ND |
| Osthol | C15H16O3 | 267.0997 | ND | ND | 0.31% |
| Protocatechuic acid | C7H6O4 | 155.0344 | ND | ND | 0.19% |
| Xanthurenic Acid | C10H7NO4 | 206.0453 | ND | 0.26% | ND |
| 7,8-Dihydroxy-4-methylcoumarin | C10H8O4 | 193.0481 | ND | 0.18% | ND |
| Syringic acid | C9H10O5 | 199.0607 | ND | ND | 2.57% |
| Vanillin | C8H8O3 | 153.0552 | ND | 2.48% | ND |
| Syringaldehyde | C9H10O4 | 183.0657 | ND | ND | 1.49% |
| Scopoletin | C10H8O4 | 193.0501 | ND | 0.15% | ND |
| Feruloyl quinic acid | C17H20O9 | 369.1186 | ND | 0.86% | |
| Hispiduloside | C22H22O11 | 463.1240 | ND | 0.08% | ND |
| Homoorientin | C21H20O11 | 449.1084 | ND | 0.31% | ND |
| Fraxetin | C10H8O5 | 209.045 | ND | ND | 0.20% |
| Lonicerin | C27H30O15 | 595.1663 | ND | 0.09% | ND |
| Coumarin | C9H6O2 | 147.0446 | ND | 0.42% | ND |
| Nepetin 7-glucoside | C22H22O12 | 479.119 | ND | ND | 0.75% |
| 3,5-Dimethoxycinnamic acid | C11H12O4 | 209.0814 | ND | 0.11% | ND |
| Cirsimarin | C23H24O11 | 477.1397 | ND | 0.16% | ND |
| Oenin | C23H25O12 | 493.1346 | ND | 0.37% | ND |
| Tricin | C17H14O7 | 331.0818 | ND | 0.07% | ND |
| Saccharide | |||||
| Trehalose | C12H22O11 | 365.106 | ND | ND | 9.12% |
| Sucrose | C12H22O11 | 365.1060 | 5.59% | 10.05% | ND |
| Sesquiterpene | |||||
| Atractylenolide III | C15H20O3 | 271.1310 | 0.14% | ND | ND |
| Tetratepnoid derivative | |||||
| Abscisic acid | C15H20O4 | 265.144 | 0.16% | ND | 4.49% |
| Vitamins | |||||
| Pyridoxine | C8H11NO3 | 170.0817 | 1.00% | ND | 1.56% |
| D-Pantothenic acid | C9H17NO5 | 220.1185 | ND | ND | 1.87% |
| Others | |||||
| Uridine | C9H12N2O6 | 245.0774 | 0.13% | ND | ND |
| Guanosine | C10H13N5O5 | 284.0995 | 0.27% | ND | ND |
| 2-O-Methyladenosine | C11H15N5O4 | 282.1202 | 0.29% | ND | ND |
| 6-methoxyquinoline | C10H9NO | 160.0762 | 0.27% | ND | ND |
| Kynurenic acid | C10H7NO3 | 190.0504 | 1.55% | 2.14% | 3.42% |
| 4-oxo-5-phenylpentanoic acid | C11H12O3 | 193.0865 | 0.62% | ND | 0.77% |
| Loliolide | C11H16O3 | 197.1178 | 2.27% | ND | ND |
| Lumichrome | C12H10N4O2 | 243.0882 | 0.23% | ND | ND |
| Aloe-emodin | C15H10O5 | 271.0607 | 0.17% | 0.21% | ND |
| Octadecanedioic acid | C18H34O4 | 315.2535 | 0.95% | ND | ND |
| Anileridine | C22H28N2O2 | 353.2229 | 0.13% | ND | ND |
| Isopimpinellin | C13H10O5 | 247.0607 | 0.06% | 0.15% | ND |
| Lauramidopropyl betaine | C19H39N2O3 | 343.2961 | 0.09% | ND | ND |
| Imperatorin | C16H14O4 | 271.0903 | 0.24% | ND | ND |
| Senegenin | C30H45ClO6 | 537.2983 | 0.20% | 0.08% | ND |
| isoimperatorin | C16H14O4 | 271.0903 | 0.10% | ND | ND |
| Schisandrin A | C24H32O6 | 417.2277 | 4.54% | ND | ND |
| Maltol | C6H6O3 | 127.0395 | ND | 7.17% | ND |
| 2-Phenylacetamide | C8H9NO | 136.0762 | ND | 0.70% | ND |
| Tryptoline | C11H12N2 | 173.1089 | ND | 0.21% | ND |
| 2-ureidopentanedioic acid | C6H10N2O5 | 191.0668 | ND | 0.12% | ND |
| Ophiopogonoside A | C21H38O8 | 441.2464 | ND | 0.19% | ND |
| Phytosphingosine | C18H39NO3 | 318.3008 | ND | ND | 0.16% |
Supplementary Materials
References
- Suo, Yourui. Research and Application of Nitraria in Tsaiam Basin. Beijing : Sciencep, 2010.
- DiNicolantonio, J. J., & O'Keefe, J. H. Effects of dietary fats on blood lipids: a review of direct comparison trials. Open heart 2018, 5(2), e. [CrossRef]
- Zhang, M., Ma, J., Bi, H., Song, J., Yang, H., Xia, Z., Du, Y., Gao, T., & Wei, L. Characterization and cardioprotective activity of anthocyanins from Nitraria tangutorum Bobr. by-products. Food & function 2017, 8(8), 2771–2782. [CrossRef]
- Du, Q., Xin, H., & Peng, C. Pharmacology and phytochemistry of the Nitraria genus (Review). Molecular medicine reports 2015, 11(1), 11–20. [CrossRef]
- Wang, H., Zhou, J., Bi, H., Yang, X., Chen, W., Jiang, K., Yao, Y., & Ni, W. . Bioactive Ingredients from Nitraria tangutorun Bobr . Protect Against Cerebral Ischemia/Reperfusion Injury Through Attenuation of Oxidative Stress and the Inflammatory Response. Journal of medicinal food 2021, 24(7), 686–696. [CrossRef]
- Les, F., Cásedas, G., Gómez, C., Moliner, C., Valero, M. S., & López, V. . The role of anthocyanins as antidiabetic agents: from molecular mechanisms to in vivo and human studies , Journal of physiology and biochemistry 2021, 77(1), 109–131. [CrossRef]
- Sharma, Savvy, Ghumika Pandita and Yuvraj Khasherao Bhosale. Anthocyanin: Potential tool for diabetes management and different delivery aspects. Trends in Food Science & Technology 2023, n. pag. [CrossRef]
- Lee, JH., Lee, JH. & Jin, JS. Fermentation of traditional medicine: present and future. Orient Pharm Exp Med 2012, 12, 163–165 .
- Klotz S, Kaufmann N, Kuenz A, Prüße U. Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 2016,100(22):9423-9437. [CrossRef]
- Peter Stolz, Georg Böcker, Rudi F. Vogel, Walter P. Hammes, Utilisation of maltose and glucose by lactobacilli isolated from sourdough, FEMS Microbiology Letters 1993,109 2-3: 237–242.
- Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012,3. [CrossRef]
- Hedberg M, Hasslöf P, Sjöström I, Twetman S, Stecksén-Blicks C. Sugar fermentation in probiotic bacteria--an in vitro study. Oral Microbiol Immunol. 2008,23(6):482-485.
- Stern, Norman J., Fumiko Konishi, Clifford W. Hesseltine and H. L. Wang. Lactobacillus acidophilus Utilization of Sugars and Production of a Fermented Soybean Product. Canadian Institute of Food Science and Technology journal 1977, 10 : 197-200. [CrossRef]
- Kim, HH., Jung, JH., Seo, DH. et al. Novel enzymatic production of trehalose from sucrose using amylosucrase and maltooligosyltrehalose synthase-trehalohydrolase. World J Microbiol Biotechnol 2011,27, 2851–2856. [CrossRef]
- Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology (Reading) 2008,154(Pt 1):72-80. [CrossRef]
- Chen C, Zhao G, Chen W, Guo B. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity. Appl Environ Microbiol 2015,81(22):7697-7707. [CrossRef]
- Brian Picazo, Adriana C. Flores-Gallegos, Diana B. Muñiz-Márquez, Abril Flores-Maltos, Mariela R. Michel-Michel, Orlando de la Rosa, Rosa Maria Rodríguez-Jasso, Raúl Rodríguez-Herrera, Cristóbal Noé Aguilar-González,Chapter 18 - Enzymes for Fructooligosaccharides Production: Achievements and Opportunities, Editor(s): Mohammed Kuddus, Enzymes in Food Biotechnology, Academic Press, 2019, Pages 303-320, ISBN 9780128132807.
- Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol. 2002,9(12):1337-1346. [CrossRef]
- Ryu SI, Park CS, Cha J, Woo EJ, Lee SB. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun. 2005,329(2):429-436. [CrossRef]
- Mizote A, Yamada M, Yoshizane C, et al. Daily Intake of Trehalose Is Effective in the Prevention of Lifestyle-Related Diseases in Individuals with Risk Factors for Metabolic Syndrome. J Nutr Sci Vitaminol (Tokyo). 2016, 62(6):380-387. [CrossRef]
- Arai C, Arai N, Mizote A, et al. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutr Res. 2010, 30(12):840-848. [CrossRef]
- van Can JG, van Loon LJ, Brouns F, Blaak EE. Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose-tolerant subjects. Br J Nutrition. 2012,108(7):1210-1217. [CrossRef]
- Yaribeygi H, Yaribeygi A, Sathyapalan T, Sahebkar A. Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes & Metabolic Syndrome. 2019,13(3):2214-2218. [CrossRef]
- Zhe, G., Ying-Chun, W., & Yan-Xu, C. Determination of Flavonoids and Anthocyanins in Nitraria tangutorum by High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Protein and peptide letters, 2016, 23(5), 424–432.
- G. Mucchetti, F. Locci, P. Massara, R. Vitale, E. Neviani, Production of Pyroglutamic Acid by Thermophilic Lactic Acid Bacteria in Hard-cooked Mini-Cheeses, Journal of Dairy Science 2002, 85 : 10, 2489-2496. [CrossRef]
- Gianolio, S., Roura Padrosa, D., & Paradisi, F. Combined chemoenzymatic strategy for sustainable continuous synthesis of the natural product hordenine. Green chemistry : an international journal and green chemistry resource 2022 : GC, 24(21), 8434–8440. [CrossRef]
- Mora-Villalobos, J. A., & Zeng, A. P. Synthetic pathways and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli. Journal of biological engineering 2018, 12, 3. [CrossRef]
- Kang, S., Kang, K., Lee, K., & Back, K. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant cell reports 2007, 26(11), 2009–2015. [CrossRef]
- Zhou W, Wang Y, Yang F, Dong Q, Wang H, Hu N. Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules. 2019, 24(9):1665. [CrossRef]
- Rosfarizan, M., Mohd, S.M., Nurashikin,S., Madihah, M.S., Arbakariya B. A. Kojic acid: Applications and development of fermentation process for production. Biotechnology and Molecular Biology Reviews, 2010, 5(2), 24-37.
- Mukherjee, G., Sachan, A., Ghosh, S., & Mitra, A. Conversion of sinapic acid to syringic acid by a filamentous fungus Paecilomyces variotii. The Journal of general and applied microbiology 2006, 52(2), 131–135. [CrossRef]
- Nguyen, V. P. T., Stewart, J. D., Ioannou, I., & Allais, F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Frontiers in chemistry 2021, 9, 664602. [CrossRef]
- Kamimura, N., Goto, T., Takahashi, K. et al. A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde. Sci Rep 2017, 7, 44422. [CrossRef]
- Chen, LM., Bao, CH., Wu, Y. et al. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 2021, 18, 135. [CrossRef]
- Guy Roussel, Alban Bessede, Christian Klein, Michel Maitre, Ayikoe Guy Mensah-Nyagan, Xanthurenic acid is localized in neurons in the central nervous system, Neuroscience 2016, Volume 329, 226-238. [CrossRef]
- An, S.H., Choi, GS. & Ahn, JH. Biosynthesis of fraxetin from three different substrates using engineered Escherichia coli. Appl Biol Chem 2020, 63, 55. [CrossRef]
- Xiaodong Zhang, Caixia Li, Zhanchao Hao, Yongjiang Liu, Transcriptome analysis provides insights into coumarin biosynthesis in the medicinal plant Angelica dahurica cv. Yubaizhi,Gene 2023, Volume 888,14775. [CrossRef]
- Currò D. The role of gut microbiota in the modulation of drug action: a focus on some clinically significant issues. Expert Rev Clin Pharmacol. 2018;11(2):171-183. [CrossRef]
- Poulev A, Heckman JR, Raskin I, Belanger FC. Tricin levels and expression of flavonoid biosynthetic genes in developing grains of purple and brown pericarp rice. PeerJ. 2019, 18;7.
- Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020;132:110841. [CrossRef]
- Noyan Gokce, L-Arginine and Hypertension, The Journal of Nutrition 2004, 134:10, 2807S-2811S.
- Ohishi M. Hypertension with diabetes mellitus: physiology and pathology. Hypertens Res. 2018, 41(6):389-393. [CrossRef]
- Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells 2018,7(7):84.
- Zuñiga LY, Aceves-de la Mora MCA, González-Ortiz M, Ramos-Núñez JL, Martínez-Abundis E. Effect of Chlorogenic Acid Administration on Glycemic Control, Insulin Secretion, and Insulin Sensitivity in Patients with Impaired Glucose Tolerance. J Med Food. 2018, 21(5):469-473. [CrossRef]
- Vinayagam R, Xu B. 7, 8-Dihydroxycoumarin (daphnetin) protects INS-1 pancreatic β-cells against streptozotocin-induced apoptosis. Phytomedicine 2017, 24:119-126. [CrossRef]
- Jung, U. J., Lee, M. K., Park, Y. B., Jeon, S. M., & Choi, M. S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. The Journal of pharmacology and experimental therapeutics 2006, 318(2), 476–483. [CrossRef]
- Oršolić, N., Sirovina, D., Odeh, D., Gajski, G., Balta, V., Šver, L., & Jazvinšćak Jembrek, M. Efficacy of Caffeic Acid on Diabetes and Its Complications in the Mouse. Molecules 2021, 26(11), 3262. [CrossRef]
- Li X, Wu J, Xu F, et al. Use of Ferulic Acid in the Management of Diabetes Mellitus and Its Complications. Molecules. 2022, 27(18). [CrossRef]
- Cherng, Y. G., Tsai, C. C., Chung, H. H., Lai, Y. W., Kuo, S. C., & Cheng, J. T. Antihyperglycemic action of sinapic acid in diabetic rats. Journal of agricultural and food chemistry 2013, 61(49), 12053–12059. [CrossRef]
- Li, Y., Li, C., Wu, J., Liu, W., Li, D., & Xu, J. Harmane ameliorates obesity though inhibiting lipid accumulation and inducing adipocyte browning. RSC advances 2020, 10(8), 4397–4403. [CrossRef]
- Zhang, R., Yao, Y., Wang, Y., & Ren, G. Antidiabetic activity of isoquercetin in diabetic KK -Ay mice. Nutrition & metabolism 2011, 8, 85. [CrossRef]
- Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305-312. [CrossRef]
- Wang, H., Chen, L., Yang, B., Du, J., Chen, L., Li, Y., & Guo, F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023, 15(8), 1947. [CrossRef]
- Mustafa, S., Akbar, M., Khan, M. A., Sunita, K., Parveen, S., Pawar, J. S., Massey, S., Agarwal, N. R., & Husain, S. A. Plant metabolite diosmin as the therapeutic agent in human diseases. Current research in pharmacology and drug discovery 2022, 3, 100122. [CrossRef]
- Ku, S. K., & Bae, J. S. Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo. Canadian journal of physiology and pharmacology 2016, 94(3), 287–295. [CrossRef]
- Abdulai,I.L., Kwofie, S.K., Gbewonyo, W.S., Boison, D., Puplampu J B., Adinortey, M. B., Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications, The Scientific World Journal, 2021, 6641128, 20. [CrossRef]
- Srinivasan S, Muthukumaran J, Muruganathan U, Venkatesan R S, Jalaludeen A M, Antihyperglycemic effect of syringic acid on attenuating the key enzymes of carbohydrate metabolism in experimental diabetic rats, Biomedicine & Preventive Nutrition, 2014 ,4:4, 2210-Pages 595-602. [CrossRef]
- Zhu, C. W., Lü, H., Du, L. L., Li, J., Chen, H., Zhao, H. F., Wu, W. L., Chen, J., & Li, W. L.. Five blueberry anthocyanins and their antioxidant, hypoglycemic, and hypolipidemic effects in vitro. Frontiers in nutrition 2023, 10. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).