Submitted:
14 February 2024
Posted:
15 February 2024
Read the latest preprint version here
Abstract
Keywords:
Introduction
Rationalage for Usage
Renin Angiotensin Aldosterone System



Calcium Channel Blocker

Diuretic
Clinical Trial Evaluation
Perindopril/Indapamide vs. Placebo (PROGRESS TRAIL)
Perindopril/Indapamide vs. Placebo (ADVANCE TRAIL)
Perindopril/Indapamide vs. Placebo (HYVET TRAIL)
Losartan/Hydrochlorothiazide vs. Atenolol/Hydrochlorothiazide (LIFE TRAIL)
A calcium Antagonist vs. Non-Calcium Antagonist (INVEST TRAIL)
Amlodipine-Based Regiment vs. Atenolol Based Regiment (ASCOT-BPLA TRAIL)
Benazepril/Amlodipine vs. Benazepril/Hydrochlorothiazide (ACCOMPLISH TRAIL)
Benazepril/Amlodipine vs. Benazepril/Hydrochlorothiazide (ACCOMPLISH TRAIL)
| Therapeutical class | Maximum time to plasma concentration | Bioavailability | Half-life | Volume of distribution | Protein binding | Clearance | Refer-once |
|---|---|---|---|---|---|---|---|
|
CCB Amlodipine |
6-8h |
64% |
40-50h |
21L/kg |
98% |
0.23-0.4L/h/kg |
[159] |
| Felodipine | 0.5-5h | 15% | 25 h | 10 L/kg | >99 | 1-1.5 L/min | [160] |
| Verapamil | 2.2h | 20% | 2.7-4.8h | 310-406 L | 90% | 875 ml/min | [161] |
|
ARB Olmesartan medoxomil/Olmesartan |
1.7–2.5h |
26% |
15 h |
35L |
99.7% |
1.31 L/h |
[162, 163] |
| valsartan | 2h | 23% | 6.1h | 17L | 85-99% | 2.2 L/h | [164] |
| Telmisartan | 1h | 43% | 24h | 500L | >99% | >800ml/min | [165] |
| Candesartan cilexetil/candesartan | 3,5-6h | 40% | 3.5-11h | 0.13L/kg | 99.5% | 0.0222 L/h/kg | [166, 167] |
| Eprosartan | 1-2h | 13% | 5-9h | 13L | 98% | 130ml/min | [168] |
| Irbesartan | 1.3-3h | 60-80% | 11-18h | 53-93L | 90% | 167ml/min | [166] |
| Losartan | 1-2h | 33% | 1.7-2.1h | 34.4 ± 17.9L | 98.6–98.8% | 4.3-5.6L/h | [169] |
|
ACEI Benazepril/Benazeprilat |
1.5h |
37% |
22.3h |
8.7L |
95% |
1.4-1.7L/h |
[170] |
| Captopril | 0.75-1h | 65% | 2h | 0.8 L/kg | 23-31% | 0.7L/h/kg | [171] |
| Enalapril/ enalaprilat | 4h | 36-44% | 11h | 50% | 8-9.5L/h | [172,173] | |
| Fosinopril/Fosinoprilat | 2.8-3.1h | 25-29% | 11.5-12h | 9.8-10.6L | 95-99.8% | 1.55-2.35 L/h | [174] |
| Lisinopril | 8h | 20-28% | 12.6h | 24L | no | 6.36L/h | [175] |
| Quinapril/quinaprilat | 2.5h | 50-60% | 3.2h | 13.9L | 97% | 68 ml/min. | [176] |
| Diuretics hydrochlorothiazide |
1.5-4h |
60-70% |
5.6-14.8h |
275.3 L |
40-68% |
[177] |
| Combination type | Dose (mg) | Trade name | Cost |
|---|---|---|---|
|
CCB+ACEI Amlodipine-benazepril Hydrochloride |
2.5/10, 5/10, 5/20, 10/20 | Lotrel | $14 ($215)- $16 ($390) |
| Enalaprilmaleate-felodipine | 5/5 | Lexxel | |
| Trandolapril-verapamil | 2/180, 1/240, 2/240, 4/240 | Tarka | $47 ($185)- $65 ($185) |
|
CCB+ARB Amlodipine/Olmesartan medoxomil |
5/20,5/40,10/20,10/40 |
Azor |
$23 ($280)- $28 ($350) |
| Amlodipine/Valsartan |
5/160,320/5,10/160,10/320 | Exforge | $20 ($270)- $25 ($385) |
| Amlodipine/Telmisartan | 5/40,5/80,10/40,10/80 | Twynsta | $50 (NA)- $55 ($240) |
|
Diuretic+ACEI Benazepril-hydrochlorothiazide |
5/6.25, 10/12.5, 20/12.5, 20/25 | Lotensin HCT | $21 (NA)- $24 (NA) |
| Captopril-hydrochlorothiazide | 25/15, 25/25, 50/15, 50/25 | Capozide | |
| Enalapril-hydrochlorothiazide | 5/12.5, 10/25 | Vaseretic | $10 (NA)- $10 ($395) |
| Fosinopril-hydrochlorothiazide | 10/12.5, 20/12.5 | Monopril/HCT | |
| Lisinopril-hydrochlorothiazid | 10/12.5, 20/12.5, 20/25 | Prinzide, Zestoretic | $4 ($400)- $6 ($400) |
| Moexipril-hydrochlorothiazide | 7.5/12.5, 15/25 | Uniretic | |
| Quinapril-hydrochlorothiazide | 10/12.5, 20/12.5, 20/25 | Accuretic | $17 ($150) |
| Diuretic+ARB Candesartan-hydrochlorothiazide |
16/12.5, 32/12.5,32/25 |
Atacand HCT | $48 ($150)- $50 ($165) |
| Eprosartan-hydrochlorothiazide | 600/12.5, 600/25 | Teveten-HCT | |
| Irbesartan-hydrochlorothiazide | 150/12.5, 300/12.5 | Avalide | $15 ($235)- $20 ($255) |
| Losartan-hydrochlorothiazide | 50/12.5, 100/12.5,100/25 | Hyzaar | $4 ($130)- $9 ($175) |
| Olmesartan medoxomil-hydrochlorothiazide | 20/12.5,40/12.5,40/25 | Benicar HCT | $14 ($225)- $16 ($310) |
| Telmisartan-hydrochlorothiazide | 40/12.5, 80/12.5 | Micardis-HCT | $47 ($220) |
| Valsartan-hydrochlorothiazide | 80/12.5, 160/12.5, 160/25,320/12.5,320/25 | Diovan-HCT | $14 ($270)- $18 ($420) |
Pharmacological Treatment Strategy

Conclusions
Author Contribution
Funding
Consent of participants
Consent of publication
Data availability
Conflict of interest
Acknowledgments
Conflicts of Interest
References
- Gaziano, T.; Reddy, K.S.; Paccaud, F.; Horton, S.; Chaturvedi, V. (2006). Cardiovascular disease. Disease Control Priorities in Developing Countries. 2nd edition.
- Nabel, E.G. Cardiovascular disease. New England Journal of Medicine 2003, 349, 60–72. [Google Scholar] [CrossRef]
- Kannel, W.B. Hypertension as a risk factor for cardiac events--epidemiologic results of long-term studies. Journal of cardiovascular pharmacology 1993, 21, S27–S37. [Google Scholar] [CrossRef]
- Snow, P.J.D.; Jones, A.M.; Daber, K.S. Coronary disease: a pathological study. British Heart Journal 1955, 17, 503. [Google Scholar] [CrossRef]
- Henderson, A. Coronary heart disease: overview. The Lancet 1996, 348, S1–S4. [Google Scholar] [CrossRef]
- Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation 2005, 111, 3481–3488. [Google Scholar] [CrossRef]
- Yildiz, M.; Oktay, A.A.; Stewart, M.H.; Milani, R.V.; Ventura, H.O.; Lavie, C.J. Left ventricular hypertrophy and hypertension. Progress in cardiovascular diseases 2020, 63, 10–21. [Google Scholar] [CrossRef]
- Maganti, K.; Rigolin, V.H.; Sarano, M.E.; Bonow, R.O. (2010, May). Valvular heart disease: diagnosis and management. In Mayo Clinic Proceedings (Vol. 85, No. 5, pp. 483–500). Elsevier. [CrossRef]
- Wijesurendra, R.S.; Casadei, B. (2019). Mechanisms of atrial fibrillation. Heart.
- Wijesurendra, R.S.; Casadei, B. Atrial fibrillation: effects beyond the atrium? Cardiovascular research 2015, 105, 238–247. [Google Scholar] [CrossRef]
- Markus, H. Cerebral perfusion and stroke. Journal of neurology, neurosurgery, and psychiatry 2004, 75, 353. [Google Scholar] [CrossRef]
- Novak, V.; Chowdhary, A.; Farrar, B.; Nagaraja, H.; Braun, J.; Kanard, R.; Slivka, A. Altered cerebral vasoregulation in hypertension and stroke. Neurology 2003, 60, 1657–1663. [Google Scholar] [CrossRef]
- Albright Jr, R.C. (2001, January). Acute renal failure: a practical update. In Mayo Clinic Proceedings (Vol. 76, No. 1, pp. 67–74). Elsevier.
- Bellomo, R.; Kellum, J.A.; Ronco, C. Defining acute renal failure: physiological principles. Intensive care medicine 2004, 30, 33–37. [Google Scholar] [CrossRef]
- Luke, R.G. Chronic renal failure—a vasculopathic state. New England Journal of Medicine 1998, 339, 841–843. [Google Scholar] [CrossRef]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacological research 2018, 129, 95–99. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; He, J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef]
- Fryar, C.D.; Ostchega, Y.; Hales, C.M.; Zhang, G.; Kruszon-Moran, D. Hypertension Prevalence and Control Among Adults: United States, 2015-2016. NCHS data brief 2017, (289), 1–8. [Google Scholar]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nature Reviews Nephrology 2020, 16, 223–237. [Google Scholar] [CrossRef]
- Kumar, J. Epidemiology of hypertension. Clinical Queries: Nephrology 2013, 2, 56–61. [Google Scholar] [CrossRef]
- Giles, T.D.; Materson, B.J.; Cohn, J.N.; Kostis, J.B. Definition and classification of hypertension: an update. The journal of clinical hypertension 2009, 11, 611–614. [Google Scholar] [CrossRef]
- Izzo, J.L.; Sica, D.A.; Black, H.R. (Eds.). (2008). Hypertension primer. Lippincott Williams & Wilkins.
- Beevers, G.; Lip, G.Y.; O’Brien, E. The pathophysiology of hypertension. Bmj 2001, 322, 912–916. [Google Scholar] [CrossRef]
- Messerli, F.H.; Williams, B.; Ritz, E. Essential hypertension. The Lancet 2007, 370, 591–603. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. (2019). Hypertension in adults: diagnosis and management. London: National Institute for Health and Care Excellence (UK).
- James, P.A., Oparil, S., Carter, B.L., Cushman, W.C., Dennison-Himmelfarb, C., Handler, J., ... & Ortiz, E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). Jama 2014, 311, 507–520.
- Watkins, P.J.; Drury, P.L.; Taylor, K.W. (1990). Diabetes and its management. Boston: Blackwell Scientific.
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiological reviews 2013, 93, 137–188. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. The lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. The lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J. Chronic kidney disease. The lancet 2012, 379, 165–180. [Google Scholar] [CrossRef]
- Cohn, J.N. Blood pressure and cardiac performance. The American Journal of Medicine 1973, 55, 351–361. [Google Scholar] [CrossRef]
- Loushin, M.K.; Quill, J.L.; Iaizzo, P.A. Mechanical aspects of cardiac performance. In Handbook of cardiac anatomy, physiology, and devices; 2015; pp. 335–360. [Google Scholar]
- Touyz, R.M.; Alves-Lopes, R.; Rios, F.J.; Camargo, L.L.; Anagnostopoulou, A.; Arner, A.; Montezano, A.C. Vascular smooth muscle contraction in hypertension. Cardiovascular research 2018, 114, 529–539. [Google Scholar] [CrossRef]
- Michael, S.K.; Surks, H.K.; Wang, Y.; Zhu, Y.; Blanton, R.; Jamnongjit, M.; Mendelsohn, M.E. High blood pressure arising from a defect in vascular function. Proceedings of the National Academy of Sciences 2008, 105, 6702–6707. [Google Scholar] [CrossRef]
- Beevers, G.; Lip, G.Y.; O’Brien, E. The pathophysiology of hypertension. Bmj 2001, 322, 912–916. [Google Scholar] [CrossRef]
- Hingorani, A.D.; Sharma, P.; Jia, H.; Hopper, R.; Brown, M.J. Blood pressure and the M235T polymorphism of the angiotensinogen gene. Hypertension 1996, 28, 907–911. [Google Scholar] [CrossRef]
- Canbakan, B. Rational approaches to the treatment of hypertension: drug therapy—monotherapy, combination, or fixed-dose combination? Kidney international supplements 2013, 3, 349–351. [Google Scholar] [CrossRef]
- Guerrero-García, C.; Rubio-Guerra, A.F. Combination therapy in the treatment of hypertension. Drugs in context 2018, 7. [Google Scholar] [CrossRef]
- Chalmers, J. The place of combination therapy in the treatment of hypertension in 1993. Clinical and Experimental Hypertension 1993, 15, 1299–1313. [Google Scholar] [CrossRef]
- Gradman, A.H.; Basile, J.N.; Carter, B.L.; Bakris, G.L.; American Society of Hypertension Writing Group. Combination therapy in hypertension. Journal of the American Society of Hypertension 2010, 4, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., ... & Desormais, I. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). European heart journal 2018, 39, 3021–3104.
- Morris, L.S.; Schulz, R.M. Patient compliance—an overview. Journal of clinical pharmacy and therapeutics 1992, 17, 283–295. [Google Scholar] [CrossRef]
- Blackwell, B. Patient compliance. New England Journal of Medicine 1973, 289, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Salahuddin, A.; Mushtaq, M.; Materson, B.J. Combination therapy for hypertension 2013: an update. Journal of the American Society of Hypertension 2013, 7, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.; Kalra, B.; Agrawal, N. Combination therapy in hypertension: An update. Diabetology & metabolic syndrome 2010, 2, 1–11. [Google Scholar] [CrossRef]
- Gorostidi, M.; de la Sierra, A. Combination therapy in hypertension. Advances in therapy 2013, 30, 320–336. [Google Scholar] [CrossRef]
- Chaszczewska-Markowska, M.; Sagan, M.; Bogunia-Kubik, K. The renin-angiotensin-aldosterone system (RAAS)–physiology and molecular mechanisms of functioning. Advances in Hygiene and Experimental Medicine 2016, 70, 917–927. [Google Scholar] [CrossRef]
- Atlas, S.A. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. Journal of managed care pharmacy 2007, 13(8 Supp B), 9–20. [Google Scholar] [CrossRef]
- Thatcher, S.E. A brief introduction into the renin-angiotensin-aldosterone system: new and old techniques. The Renin-Angiotensin-Aldosterone System: Methods and Protocols 2017, 1-19.
- Schweda, F. Salt feedback on the renin-angiotensin-aldosterone system. Pflügers Archiv-European Journal of Physiology 2015, 467, 565–576. [Google Scholar] [CrossRef]
- Taugner, R.; Hackenthal, E. On the character of the secretory granules in juxtaglomerular epithelioid cells. International review of cytology 1988, 110, 93–131. [Google Scholar] [PubMed]
- Barajas, L. Anatomy of the juxtaglomerular apparatus. American Journal of Physiology-Renal Physiology 1979, 237, F333–F343. [Google Scholar] [CrossRef] [PubMed]
- Schweda, F.; Friis, U.; Wagner, C.; Skott, O.; Kurtz, A. Renin release. Physiology 2007, 22, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Trerattanavong, K., & Chen, J. (2023). Biochemistry, Renin. In StatPearls. StatPearls Publishing.
- Morgan, L.; Pipkin, F.B.; Kalsheker, N. Angiotensinogen: molecular biology, biochemistry and physiology. The international journal of biochemistry & cell biology 1996, 28, 1211–1222. [Google Scholar]
- Lu, H.; Cassis, L.A.; Vander Kooi, C.W.; Daugherty, A. Structure and functions of angiotensinogen. Hypertension Research 2016, 39, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Jeunemaitre, X.; Soubrier, F.; Kotelevtsev, Y.V.; Lifton, R.P.; Williams, C.S.; Charru, A.; Corvol, P. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992, 71, 169–180. [Google Scholar] [CrossRef]
- Wu, C.; Lu, H.; Cassis, L.A.; Daugherty, A. Molecular and pathophysiological features of angiotensinogen: a mini review. North American journal of medicine & science 2011, 4, 183. [Google Scholar] [CrossRef]
- Dickson, M.E.; Sigmund, C.D. Genetic basis of hypertension: revisiting angiotensinogen. Hypertension 2006, 48, 14–20. [Google Scholar] [CrossRef]
- Wu, C.; Lu, H.; Cassis, L.A.; Daugherty, A. Molecular and pathophysiological features of angiotensinogen: a mini review. North American journal of medicine & science 2011, 4, 183. [Google Scholar] [CrossRef]
- Griendling, K.K.; Murphy, T.J.; Alexander, R.W. Molecular biology of the renin-angiotensin system. Circulation 1993, 87, 1816–1828. [Google Scholar] [CrossRef]
- Sparks, M.A.; Crowley, S.D.; Gurley, S.B.; Mirotsou, M.; Coffman, T.M. Classical renin-angiotensin system in kidney physiology. Comprehensive Physiology 2014, 4, 1201. [Google Scholar]
- Dorer, F.E.; Kahn, J.R.; Lentz, K.E.; Levine, M.; Skeggs, L.T. Hydrolysis of bradykinin by angiotensin-converting enzyme. Circulation Research 1974, 34, 824–827. [Google Scholar] [CrossRef]
- Pirahanchi, Y., Sharma, S. (2019). Physiology, Bradykinin.
- Ng, K.K.F.; Vane, J.R. Conversion of angiotensin I to angiotensin II. Nature 1967, 216, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Erdös, E.G. Conversion of angiotensin I to angiotensin II. The American journal of medicine 1976, 60, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. (2023). Physiology, renin angiotensin system. In StatPearls [Internet]. StatPearls Publishing.
- Peti-Peterdi, J.; Harris, R.C. Macula densa sensing and signaling mechanisms of renin release. Journal of the American Society of Nephrology: JASN 2010, 21, 1093. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Chung, O.; Csikos, T.; Culman, J.; Gallinat, S.; Gohlke, P.; Zhu, Y.Z. Angiotensin receptors. Journal of hypertension. Supplement: official journal of the International Society of Hypertension 1996, 14, S95–S103. [Google Scholar] [PubMed]
- Greindling, K.K.; Lassegue, B.; Alexander, R.W. Angiotensin receptors and their therapeutic implications. Annual review of pharmacology and toxicology 1996, 36, 281–306. [Google Scholar] [CrossRef] [PubMed]
- Greindling, K.K.; Lassegue, B.; Alexander, R.W. Angiotensin receptors and their therapeutic implications. Annual review of pharmacology and toxicology 1996, 36, 281–306. [Google Scholar] [CrossRef] [PubMed]
- Henrion, D.; Kubis, N.; Lévy, B.I. Physiological and pathophysiological functions of the AT2 subtype receptor of angiotensin II: from large arteries to the microcirculation. Hypertension 2001, 38, 1150–1157. [Google Scholar] [CrossRef]
- Padia, S.H.; Carey, R.M. AT 2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflügers Archiv-European Journal of Physiology 2013, 465, 99–110. [Google Scholar] [CrossRef]
- Volpe, M.; Musumeci, B.; De Paolis, P.; Savoia, C.; Morganti, A. Angiotensin II AT2 receptor subtype: an uprising frontier in cardiovascular disease? Journal of hypertension 2003, 21, 1429–1443. [Google Scholar] [CrossRef]
- Kostenis, E., Milligan, G., Christopoulos, A., Sanchez-Ferrer, C.F., Heringer-Walther, S., Sexton, P.M.,... & Walther, T. G-protein–coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 2005, 111, 1806-1813. [CrossRef]
- Oro, C.; Qian, H.; Thomas, W.G. Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacology & therapeutics 2007, 113, 210–226. [Google Scholar] [CrossRef]
- Thiriet, M.; Thiriet, M. G-Protein-Coupled Receptors. Signaling at the Cell Surface in the Circulatory and Ventilatory Systems 2012, 425–591. [Google Scholar]
- Nguyen Dinh Cat, A.; Touyz, R.M. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Current hypertension reports 2011, 13, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Abadir, P.M.; Periasamy, A.; Carey, R.M.; Siragy, H.M. Angiotensin II type 2 receptor–bradykinin B2 receptor functional heterodimerization. Hypertension 2006, 48, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Duka, A.; Duka, I.; Gao, G.; Shenouda, S.; Gavras, I.; Gavras, H. Role of bradykinin B1 and B2 receptors in normal blood pressure regulation. American Journal of Physiology-Endocrinology and Metabolism 2006, 291, E268–E274. [Google Scholar] [CrossRef] [PubMed]
- Bernier, S.G.; Haldar, S.; Michel, T. Bradykinin-regulated interactions of the mitogen-activated protein kinase pathway with the endothelial nitric-oxide synthase. Journal of Biological Chemistry 2000, 275, 30707–30715. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Münzel, T. Organic nitrate therapy, nitrate tolerance, and nitrate-induced endothelial dysfunction: emphasis on redox biology and oxidative stress. Antioxidants & redox signaling 2015, 23, 899–942. [Google Scholar] [CrossRef]
- Maron, B.A.; Michel, T. Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Circulation Journal 2012, 76, 2497–2512. [Google Scholar] [CrossRef]
- Stocco, D.M.; Clark, B.J. Regulation of the acute production of steroids in steroidogenic cells. Endocrine reviews 1996, 17, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Lymperopoulos, A.; Rengo, G.; Zincarelli, C.; Kim, J.; Soltys, S.; Koch, W.J. An adrenal β-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proceedings of the National Academy of Sciences 2009, 106, 5825–5830. [Google Scholar] [CrossRef] [PubMed]
- Bollag, W.B. Regulation of aldosterone synthesis and secretion. Comprehensive physiology 2011, 4, 1017–1055. [Google Scholar]
- Bollag, W.B. Regulation of aldosterone synthesis and secretion. Comprehensive physiology 2011, 4, 1017–1055. [Google Scholar]
- Scott, J.H.; Menouar, M.A.; Dunn, R.J. (2017). Physiology, aldosterone.
- Pearce, D.; Soundararajan, R.; Trimpert, C.; Kashlan, O.B.; Deen, P.M.; Kohan, D.E. Collecting duct principal cell transport processes and their regulation. Clinical journal of the American Society of Nephrology: CJASN 2015, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Sandgren, J.A.; Linggonegoro, D.W.; Zhang, S.Y.; Sapouckey, S.A.; Claflin, K.E.; Pearson, N.A.; Grobe, J.L. Fluid and Electrolyte Homeostasis: Angiotensin AT1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2018, 314, R770. [Google Scholar] [CrossRef] [PubMed]
- Okuya, S.; Inenaga, K.; Kaneko, T.; Yamashita, H. Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain research 1987, 402, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Cuzzo, B.; Padala, S.A.; Lappin, S.L. Physiology, vasopressin. In StatPearls [Internet]; StatPearls Publishing, 2023. [Google Scholar]
- Hanoune, J. (2010). Vasopressin receptors, the signalling cascade and mechanisms of action. Perspectives on Vasopressin.
- Morla, L.; Edwards, A.; Crambert, G. New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors. World journal of biological chemistry 2016, 7, 44. [Google Scholar] [CrossRef]
- Severs, W.B.; Summy-Long, J. The role of angiotensin in thirst. Life Sciences 1975, 17, 1513–1526. [Google Scholar] [CrossRef]
- Fitzsimons, J.T. Angiotensin, thirst, and sodium appetite. Physiological reviews 1998, 78, 583–686. [Google Scholar] [CrossRef]
- Dibona, G.F. Sympathetic nervous system and hypertension. Hypertension 2013, 61, 556–560. [Google Scholar] [CrossRef]
- Dibona, G.F. The sympathetic nervous system and hypertension: recent developments. Hypertension 2004, 43, 147–150. [Google Scholar] [CrossRef]
- Esler, M. The sympathetic system and hypertension. American journal of hypertension 2000, 13(S4), 99S–105S. [Google Scholar] [CrossRef]
- Wnorowski, A.; Jozwiak, K. Homo-and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cellular Signalling 2014, 26, 2259–2265. [Google Scholar] [CrossRef]
- Ecker, P.M.; Lin, C.C.; Powers, J.; Kobilka, B.K.; Dubin, A.M.; Bernstein, D. Effect of targeted deletions of β1-and β2-adrenergic-receptor subtypes on heart rate variability. American Journal of Physiology-Heart and Circulatory Physiology 2006, 290, H192–H199. [Google Scholar] [CrossRef]
- Woo, A.Y.H.; Xiao, R.P. β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacologica Sinica 2012, 33, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.J.; Rockman, H.A.; Koch, W.J. Catecholamines, cardiac β-adrenergic receptors, and heart failure. Circulation 2000, 101, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Stiles, G.L.; Caron, M.G.; Lefkowitz, R.J. Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiological reviews 1984, 64, 661–743. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.D. Neural control of the circulation. Advances in physiology education 2011, 35, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G. Renin–angiotensin–sympathetic crosstalks in hypertension: reappraising the relevance of peripheral interactions. Journal of hypertension 2001, 19, 1713–1716. [Google Scholar] [CrossRef]
- Aldehni, F.; Tang, T.; Madsen, K.; Plattner, M.; Schreiber, A.; Friis, U.G.; Schweda, F. Stimulation of renin secretion by catecholamines is dependent on adenylyl cyclases 5 and 6. Hypertension 2011, 57, 460–468. [Google Scholar] [CrossRef]
- Messerli, F.H.; Bangalore, S.; Bavishi, C.; Rimoldi, S.F. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? Journal of the American College of Cardiology 2018, 71, 1474–1482. [Google Scholar] [CrossRef]
- Uehara, Y.; Miura, S.I.; Yahiro, E.; Saku, K. Non-ACE pathway-induced angiotensin II production. Current pharmaceutical design 2013, 19, 3054–3059. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, P.; Nagy, J.; Karawajczyk, M.; Nordang, L.; Islander, G.; Norling, P.; Wadelius, M. Comparison of clinical factors between patients with angiotensin-converting enzyme inhibitor–induced angioedema and cough. Annals of Pharmacotherapy 2017, 51, 293–300. [Google Scholar] [CrossRef]
- Robles, N.R.; Cerezo, I.; Hernandez-Gallego, R. Renin–angiotensin system blocking drugs. Journal of cardiovascular pharmacology and therapeutics 2014, 19, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, R.; Sosa-Canache, B.; Velasco, M.; Armas-Hernandez, M.J.; Armas-Padilla, M.C.; Cammarata, R. Angiotensin II receptor antagonists role in arterial hypertension. Journal of human hypertension 2002, 16, S93–S99. [Google Scholar] [CrossRef] [PubMed]
- Pantzaris, N.D.; Karanikolas, E.; Tsiotsios, K.; Velissaris, D. Renin inhibition with aliskiren: A decade of clinical experience. Journal of Clinical Medicine 2017, 6, 61. [Google Scholar] [CrossRef]
- Trimarchi, H. Role of aliskiren in blood pressure control and renoprotection. International Journal of Nephrology and Renovascular Disease 2011, 41–48. [Google Scholar] [CrossRef]
- Cooper, D.; Dimri, M. (2020). Biochemistry, Calcium Channels.
- Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacological reviews 2005, 57, 411–425. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Z.; Li, Z.; Yan, C.; Lu, S.; Dong, M.; Yan, N. Structure of the voltage-gated calcium channel Cav1. 1 complex. Science 2015, 350, aad2395. [Google Scholar] [CrossRef] [PubMed]
- Ertel, E.A.; Campbell, K.P.; Harpold, M.M.; Hofmann, F.; Mori, Y.; Perez-Reyes, E.; Catterall, W.A. Nomenclature of voltage-gated calcium channels. Neuron 2000, 25, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. The Journal of physiology 2016, 594, 5369–5390. [Google Scholar] [CrossRef]
- Shah, K.; Seeley, S.; Schulz, C.; Fisher, J.; Gururaja Rao, S. Calcium channels in the heart: Disease states and drugs. Cells 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Hockerman, G.H.; Peterson, B.Z.; Johnson, B.D.; Catterall, W.A. Molecular determinants of drug binding and action on L-type calcium channels. Annual review of pharmacology and toxicology 1997, 37, 361–396. [Google Scholar] [CrossRef]
- Neagoe, A.M.; Rexhaj, E.; Grossman, E.; Messerli, F.H. Beta blockers and calcium channel blockers. Cardiovascular Hemodynamics: An Introductory Guide 2019, 73-88.
- Weir, M.R. Calcium channel blockers: their pharmacologic and therapeutic role in hypertension. American journal of cardiovascular drugs 2007, 7 (Suppl. 1), 5–15. [Google Scholar] [CrossRef]
- Khalil, H.; Zeltser, R. Antihypertensive medications.[Updated 2022 May 15]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, 2023. [Google Scholar]
- Elliott, W.J.; Ram, C.V.S. Calcium channel blockers. The Journal of Clinical Hypertension 2011, 13, 687. [Google Scholar] [CrossRef]
- Padilla, M.C.A.; Armas-Hernández, M.J.; Hernández, R.H.; Israili, Z.H.; Valasco, M. Update of diuretics in the treatment of hypertension. American journal of therapeutics 2007, 14, 154–160. [Google Scholar] [CrossRef]
- Tamargo, J.; Segura, J.; Ruilope, L.M. Diuretics in the treatment of hypertension. Part 2: loop diuretics and potassium-sparing agents. Expert opinion on pharmacotherapy 2014, 15, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Roush, G.C.; Sica, D.A. Diuretics for hypertension: a review and update. American journal of hypertension 2016, 29, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- McNally, R.J.; Morselli, F.; Farukh, B.; Chowienczyk, P.J.; Faconti, L. A review of the prescribing trend of thiazide-type and thiazide-like diuretics in hypertension: A UK perspective. British journal of clinical pharmacology 2019, 85, 2707–2713. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ma, H.; Cao, L.; Yan, W.; Yang, J. Comparison of thiazide-like diuretics versus thiazide-type diuretics: a meta-analysis. Journal of cellular and molecular medicine 2017, 21, 2634–2642. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, R.M.; Soleimani, M. Mechanism of thiazide diuretic arterial pressure reduction: the search continues. Frontiers in Pharmacology 2019, 10, 815. [Google Scholar] [CrossRef] [PubMed]
- Blowey, D.L. Diuretics in the treatment of hypertension. Pediatric nephrology 2016, 31, 2223–2233. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.D.; Cooper-DeHoff, R.M. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert review of cardiovascular therapy 2010, 8, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.L.; Ernst, M.E.; Cohen, J.D. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension 2004, 43, 4–9. [Google Scholar] [CrossRef]
- Wiggam, M.I.; Bell, P.M.; Sheridan, B.; Walmsley, A.; Atkinson, A.B. Low dose bendrofluazide (1.25 mg) effectively lowers blood pressure over 24 h: results of a randomized, double-blind, placebo-controlled crossover study. American journal of hypertension 1999, 12, 528–531. [Google Scholar] [CrossRef]
- Peterzan, M.A.; Hardy, R.; Chaturvedi, N.; Hughes, A.D. Meta-analysis of dose-response relationships for hydrochlorothiazide, chlorthalidone, and bendroflumethiazide on blood pressure, serum potassium, and urate. Hypertension 2012, 59, 1104–1109. [Google Scholar] [CrossRef]
- Grossman, E.; Verdecchia, P.; Shamiss, A.; Angeli, F.; Reboldi, G. Diuretic treatment of hypertension. Diabetes care 2011, 34 (Suppl. 2), S313. [Google Scholar] [CrossRef]
- Rockhold, R.W. Thiazide diuretics and male sexual dysfunction. Drug development research 1992, 25, 85–95. [Google Scholar] [CrossRef]
- Krane, R.J.; Goldstein, I.; de Tejada, I.S. Impotence. New England Journal of Medicine 1989, 321, 1648–1659. [Google Scholar] [CrossRef]
- Ravioli, S.; Bahmad, S.; Funk, G.C.; Schwarz, C.; Exadaktylos, A.; Lindner, G. Risk of electrolyte disorders, syncope, and falls in patients taking thiazide diuretics: results of a cross-sectional study. The American Journal of Medicine 2021, 134, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Akbari, P.; Khorasani-Zadeh, A. Thiazide Diuretics. In StatPearls; StatPearls Publishing, 2023. [Google Scholar]
- Nochaiwong, S.; Chuamanochan, M.; Ruengorn, C.; Noppakun, K.; Awiphan, R.; Phosuya, C.; Knoll, G.A. Use of thiazide diuretics and risk of all types of skin cancers: an updated systematic review and meta-analysis. Cancers 2022, 14, 2566. [Google Scholar] [CrossRef] [PubMed]
- Malha, L.; Mann, S.J. Loop diuretics in the treatment of hypertension. Current hypertension reports 2016, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Pickkers, P.; Dormans, T.P.; Russel, F.G.; Hughes, A.D.; Thien, T.; Schaper, N.; Smits, P. Direct vascular effects of furosemide in humans. Circulation 1997, 96, 1847–1852. [Google Scholar] [CrossRef]
- Musini, V.M.; Rezapour, P.; Wright, J.M.; Bassett, K.; Jauca, C.D. (2015). Blood pressure-lowering efficacy of loop diuretics for primary hypertension. Cochrane Database of Systematic Reviews, (5).
- Blowey, D.L. Diuretics in the treatment of hypertension. Pediatric nephrology 2016, 31, 2223–2233. [Google Scholar] [CrossRef] [PubMed]
- Sica, D.A.; Carter, B.; Cushman, W.; Hamm, L. Thiazide and loop diuretics. The journal of clinical hypertension 2011, 13, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Huxel, C.; Raja, A.; Ollivierre-Lawrence, M.D. Loop diuretics. In StatPearls [Internet]; StatPearls Publishing, 2023. [Google Scholar]
- Calhoun, D.A.; White, W.B. Effectiveness of the selective aldosterone blocker, eplerenone, in patients with resistant hypertension. Journal of the American Society of Hypertension 2008, 2, 462–468. [Google Scholar] [CrossRef] [PubMed]
- PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack. The Lancet 2001, 358, 1033–1041. [Google Scholar] [CrossRef]
- Patel, A. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. The Lancet 2007, 370, 829–840. [Google Scholar] [CrossRef]
- Beckett, N.S.; Peters, R.; Fletcher, A.E.; Staessen, J.A.; Liu, L.; Dumitrascu, D.; Bulpitt, C.J. Treatment of hypertension in patients 80 years of age or older. New England Journal of Medicine 2008, 358, 1887–1898. [Google Scholar] [CrossRef]
- Dahlöf, B.; Devereux, R.B.; Kjeldsen, S.E.; Julius, S.; Beevers, G.; de Faire, U.; Wedel, H. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. The Lancet 2002, 359, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Pepine, C.J., Handberg, E.M., Cooper-DeHoff, R.M., Marks, R.G., Kowey, P., Messerli, F.H., ... & INVEST Investigators. A calcium antagonist vs a non–calcium antagonist hypertension treatment strategy for patients with coronary artery disease: the International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. Jama 2003, 290, 2805–2816.
- Dahlöf, B.; Sever, P.S.; Poulter, N.R.; Wedel, H.; Beevers, D.G.; Caulfield, M.; Östergren, J. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. The Lancet 2005, 366, 895–906. [Google Scholar]
- Jamerson, K.; Weber, M.A.; Bakris, G.L.; Dahlöf, B.; Pitt, B.; Shi, V.; Velazquez, E.J. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. New England Journal of Medicine 2008, 359, 2417–2428. [Google Scholar] [CrossRef]
- Bakris, G.L.; Sarafidis, P.A.; Weir, M.R.; Dahlöf, B.; Pitt, B.; Jamerson, K.; Weber, M.A. Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised controlled trial. The Lancet 2010, 375, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Meredith, P.A.; Elliott, H.L. Clinical pharmacokinetics of amlodipine. Clinical pharmacokinetics 1992, 22, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Edgar, B.; Lundborg, P.; Regårdh, C.G. Clinical pharmacokinetics of felodipine: a summary. Drugs 1987, 34, 16–27. [Google Scholar] [CrossRef]
- Hamann, S.R.; Blouin, R.A.; McAllister, R.G. Clinical pharmacokinetics of verapamil. Clinical pharmacokinetics 1984, 9, 26–41. [Google Scholar] [CrossRef]
- Scott, L.J.; McCormack, P.L. Olmesartan medoxomil: a review of its use in the management of hypertension. Drugs 2008, 68, 1239–1272. [Google Scholar] [CrossRef]
- Warner, G.T.; Jarvis, B. Olmesartan medoxomil. Drugs 2002, 62, 1345–1353. [Google Scholar] [CrossRef]
- Markham, A.; Goa, K.L. Valsartan: a review of its pharmacology and therapeutic use in essential hypertension. Drugs 1997, 54, 299–311. [Google Scholar] [CrossRef]
- McClellan, K.J.; Markham, A. Telmisartan. Drugs 1998, 56. [Google Scholar] [CrossRef]
- Israili, Z.H. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. Journal of human hypertension 2000, 14, S73–S86. [Google Scholar] [CrossRef] [PubMed]
- Gleiter, C.H.; Mörike, K.E. Clinical pharmacokinetics of candesartan. Clinical pharmacokinetics 2002, 41, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Bottorff, M.B.; Tenero, D.M. Pharmacokinetics of eprosartan in healthy subjects, patients with hypertension, and special populations. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 1999, 19(4P2), 73S-78S.
- Sica, D.A.; Gehr, T.W.; Ghosh, S. Clinical pharmacokinetics of losartan. Clinical pharmacokinetics 2005, 44, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Balfour, J.A.; Goa, K.L. Benazepril: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and congestive heart failure. Drugs 1991, 42, 511–539. [Google Scholar] [CrossRef] [PubMed]
- Duchin, K.L.; McKinstry, D.N.; Cohen, A.I.; Migdalof, B.H. Pharmacokinetics of captopril in healthy subjects and in patients with cardiovascular diseases. Clinical pharmacokinetics 1988, 14, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Gomez, H.J.; Cirillo, V.J.; Irvin, J.D. Enalapril: a review of human pharmacology. Drugs 1985, 30, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Todd, P.A.; Goa, K.L. Enalapril: a reappraisal of its pharmacology and therapeutic use in hypertension. Drugs 1992, 43, 346–381. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.; McTavish, D. Fosinopril: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in essential hypertension. Drugs 1992, 43, 123–140. [Google Scholar] [CrossRef]
- Goa, K.L.; Balfour, J.A.; Zuanetti, G. Lisinopril: a review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs 1996, 52, 564–588. [Google Scholar] [CrossRef]
- Kieback, A.G.; Felix, S.B.; Reffelmann, T. Quinaprilat: a review of its pharmacokinetics, pharmacodynamics, toxicological data and clinical application. Expert Opinion on Drug Metabolism & Toxicology 2009, 5, 1337–1347. [Google Scholar]
- Commander, S.J., Wu, H., Boakye-Agyeman, F., Melloni, C., Hornik, C.D., Zimmerman, K., ... & Best Pharmaceuticals for Children Act–Pediatric Trials Network Steering Committee. Pharmacokinetics of Hydrochlorothiazide in Children: A Potential Surrogate for Renal Secretion Maturation. The Journal of Clinical Pharmacology 2021, 61, 368–377. [CrossRef]
- Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo Jr, J.L., ... & National High Blood Pressure Education Program Coordinating Committee. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. hypertension 2003, 42, 1206–1252.
- Smith, D.K.; Lennon, R.P.; Carlsgaard, P.B. Managing hypertension using combination therapy. American family physician 2020, 101, 341–349. [Google Scholar] [PubMed]
- Williams, B.; Poulter, N.R.; Brown, M.J.; Davis, M.; McInnes, G.T.; Potter, J.F.; Thom, S.M. British Hypertension Society guidelines for hypertension management 2004 (BHS-IV): summary. Bmj 2004, 328, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Umemura, S.; Arima, H.; Arima, S.; Asayama, K.; Dohi, Y.; Hirooka, Y.; Hirawa, N. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertension Research 2019, 42, 1235–1481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
