Submitted:
29 January 2024
Posted:
30 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Field experiment
2.1.1. Design and method of the field experiment
2.2. Greenhouse experiment
2.2.1. General procedures
2.3. Statistical analysis:
3. Results and Discussions
3.1. Field survey
3.1.1. Plant height and lateral branch number at chickpea flowering stage
3.1.2. Final chickpea hright and grain yield
3.1.3. Correlation between seed yield, number of lateral branch and height of chickpea varieties
3.2. Greenhous experiments
3.2.1. Plant height
3.2.2. Number leaflets per plant
3.2.3. Plant stem diameter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nosratti, I.; Sabeti, P.; Chaghamirzaee, G.; Heidari, H. Weed problems, challenges, and opportunities in Iran. Crop Protection 2020, 134, 104371. [Google Scholar] [CrossRef]
- Nosratti, I.; Muhammadyari, A. First report of multiple resistance in Galium aparine to ALS-inhibiting and auxin analog herbicides in Kermanshah, Iran. Planta Daninha 2019, 37, e019187358. [Google Scholar] [CrossRef]
- Bagheri, A.; Sohrabi, N.; Mondani, F.; Nosratti, I. Weed infestation is affected by chickpea farmer demographics and agronomic practices. Weed Research 2021, 61, 45–54. [Google Scholar] [CrossRef]
- Ahmadkhani, E.; Nosratti, I.; Sabeti, P. Evaluation of various herbicides for controlling annual ground cherry Physalis divaricata in sugar beet Beta vulgaris fields. Journal of Applied Research in Plant Protection 2023, 11, 97–109. [Google Scholar] [CrossRef]
- Ahmadi, F.; Nosratti, I.; Mosavi, S.K.; Sabeti, P. Evaluation of efficiency of some soil-applied herbicides for weed control in chickpea (Cicer aretinum L.) and their residual effect on growth and grain yield of bread wheat (Triticum aestivum L.) in crop rotation under rainfed conditions. Iranian Journal of Crop Sciences 2022, 24, 136–149. [Google Scholar]
- Singh, S.B.; Kulshrestha, G. Determination of sulfosulfuron residues in soil under wheat crop by a novel and cost-effective method and evaluation of its carryover effect. Journal of Environmental Science and Health Part B 2007, 42, 27–31. [Google Scholar] [CrossRef]
- HernÁNdez-Sevillano, E.; Villarroya, M.; Alonso-Prados, J.L.; García-Baudín, J.M. Bioassay to detect MON-37500 and triasulfuron residues in soils. Weed Technology 2001, 15, 447–452. [Google Scholar] [CrossRef]
- Bhattacherjee, A.; Dureja, P. Light-induced transformations of tribenuron-methyl in aqueous solution. Pesticide science 1999, 55, 183–188. [Google Scholar] [CrossRef]
- Rector, L.S.; Pittman, K.B.; Beam, S.C.; Bamber, K.W.; Cahoon, C.W.; Frame, W.H.; Flessner, M.L. Herbicide carryover to various fall-planted cover crop species. Weed Technology 2020, 34, 25–34. [Google Scholar] [CrossRef]
- Brown, H.M. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pesticide Science 1990, 29, 263–281. [Google Scholar] [CrossRef]
- Rosenbom, A.E.; Kjær, J.; Olsen, P. Long-term leaching of rimsulfuron degradation products through sandy agricultural soils. Chemosphere 2010, 79, 830–838. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Alebrahim, M.T.; Roushani, M. Determination of two sulfonylurea herbicides residues in soil environment using HPLC and phytotoxicity of these herbicides by lentil bioassay. Bulletin of environmental contamination and toxicology 2017, 99, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, M.; Alebrahim, M.T.; Roushani, M.; Streibig, J.C. Evaluation of four different crops’ sensitivity to sulfosulfuron and tribenuron methyl soil residues. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 2016, 66, 706–713. [Google Scholar] [CrossRef]
- Payamani, R.; Nosratti, I.; Amerian, M. Variations in the germination characteristics in response to environmental factors between the hairy and spiny seeds of hedge parsley (Torilis arvensis Huds.). Weed Biology and Management 2018, 18, 176–183. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Mushtaq, W.; Siddiqui, S.A.; Ayadi, S.; Kaur, P.; Yeboah, S.; Mazraedoost, S.; AL-Taey, D.K.; Tampubolon, K. Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants. Reviews in Agricultural Science 2021, 9, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Cessna, A.J.; Donald, D.B.; Bailey, J.; Waiser, M. Persistence of the sulfonylurea herbicides sulfosulfuron, rimsulfuron, and nicosulfuron in farm dugouts (ponds). Journal of environmental quality 2015, 44, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Grey, T.L.; McCullough, P.E. Sulfonylurea herbicides' fate in soil: dissipation, mobility, and other processes. Weed Technology 2012, 26, 579–581. [Google Scholar] [CrossRef]
- Si, Y.; Wang, S.; Zhou, J.; Hua, R.; Zhou, D. Leaching and degradation of ethametsulfuron-methyl in soil. Chemosphere 2005, 60, 601–609. [Google Scholar] [CrossRef]
- Khorami, S.S.; Kazemeini, S.A.; Afzalinia, S.; Gathala, M.K. Changes in soil properties and productivity under different tillage practices and wheat genotypes: A short-term study in Iran. Sustainability 2018, 10, 3273. [Google Scholar] [CrossRef]
- Moyer, J.R.; Hamman, W.M. Factors affecting the toxicity of MON 37500 residues to following crops. Weed Technology 2001, 15, 42–47. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Yates, S.R.; Zhang, J.; Gan, J.; Ma, J.; Wu, J.; Xuan, R. Mineralization of metsulfuron-methyl in Chinese paddy soils. Chemosphere 2010, 78, 335–341. [Google Scholar] [CrossRef]
- Wang, N.-X.; Tang, Q.; Ai, G.-M.; Wang, Y.-N.; Wang, B.-J.; Zhao, Z.-P.; Liu, S.-J. Biodegradation of tribenuron methyl that is mediated by microbial acidohydrolysis at cell-soil interface. Chemosphere 2012, 86, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Study on sensitivity of sulfonylurea herbicides to maize and residue dynamics. J Henan VocatTechni Teachers College 2004, 32, 24–26. [Google Scholar]
- Kotoula-syka, E.; Eleftherohorinos, I.; Gagianas, A.; Sficas, A. Phytotoxicity and persistence of chlorsulfuron, metsulfuron-methyl, triasulfuron and tribenuron-methyl in three soils. Weed Research 1993, 33, 355–367. [Google Scholar] [CrossRef]
- Serim, A.; Maden, S. Effects of soil residues of sulfosulfuron and mesosulfuron methyl+ iodosulfuron methyl sodium on sunflower varieties. Journal of Agricultural Sciences 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Alonso-Prados, J.L.; Hernández-Sevillano, E.; Llanos, S.; Villarroya, M.; Garcı́a-Baudı́n, J.M. Effects of sulfosulfuron soil residues on barley (Hordeum vulgare), sunflower (Helianthus annuus) and common vetch (Vicia sativa). Crop Protection 2002, 21, 1061–1066. [Google Scholar] [CrossRef]
- Volova, T.; Shumilova, A.; Zhila, N.; Sukovatyi, A.; Shishatskaya, E.; Thomas, S. Efficacy of slow-release formulations of metribuzin and tribenuron methyl herbicides for controlling weeds of various species in wheat and barley stands. ACS omega 2020, 5, 25135–25147. [Google Scholar] [CrossRef]
- SANTÍN-MONTANYÁ, I.; ALONSO-PRADOS, J.L.; Villarroya, M.; Garcia-Baudin, J. Bioassay for determining sensitivity to sulfosulfuron on seven plant species. Journal of Environmental Science and Health Part B 2006, 41, 781–793. [Google Scholar] [CrossRef]
- Villaverde, J.; Kah, M.; Brown, C.D. Adsorption and degradation of four acidic herbicides in soils from southern Spain. Pest Management Science: formerly Pesticide Science 2008, 64, 703–710. [Google Scholar] [CrossRef]



| Region | O.C (%) |
N (%) |
P (ppm) |
K (ppm) |
Soil texture | PH | EC (ds/m) |
| Khoramabad | 0.59 | 0.08 | 7.4 | 280 | Silty clay loam | 7.8 | 0.84 |
| Meskinabad | 0.63 | 0.06 | 8 | 250 | Clay Loamy | 7.3 | 0.55 |
| Moradabad | 0.75 | 0.05 | 7.3 | 260 | Silty clay loam | 7.6 | 0.81 |
| Heavily tribenuron-methyl-infested Soil Sample | 0.7 | 0.07 | 8.1 | 285 | Silty Clay Loam | 7.4 | 0.6 |
| Region | Herbicide usage frequency | Chickpea cultivar | Plant height (cm) | Plant branch (per plant) | |
| Khoramabad | None | Adel | 30.67 ef | 3.33 a-c | |
| Bivanij | 22.33 h-j | 3.67 ab | |||
| Mansour | 40.67 a | 2.33 bc | |||
| Two times | Adel | 33.33 de | 2.33 bc | ||
| Bivanij | 21.00 hi | 4.00 a | |||
| Mansour | 31.67 d-f | 2.33 bc | |||
| once | Adel | 34.00 c-e | 3.00 a-c | ||
| Bivanij | 21.00 hi | 4.00 a | |||
| Mansour | 41.00 a | 2.00 bc | |||
| Meskinabad | None | Adel | 32.00 d-f | 2.67 bc | |
| Bivanij | 23.33 g | 3.33 a-c | |||
| Mansour | 34.67 c-e | 2.33 bc | |||
| Two times | Adel | 30.00 ef | 2.67 a-c | ||
| Bivanij | 17.33 i | 3.00 a-c | |||
| Mansour | 32.00 d-f | 3.33 a-c | |||
| Once | Adel | 29.33 ef | 2.00 bc | ||
| Bivanij | 22.00 h-j | 3.67 ab | |||
| Mansour | 34.33 c-e | 2.33 bc | |||
| Moradabad | None | Adel | 37.00 a-d | 3.33 a-c | |
| Bivanij | 27.00 g | 3.00 a-c | |||
| Mansour | 39.67 ab | 2.67 a-c | |||
| Two times | Adel | 30.33 ef | 2.67 a-c | ||
| Bivanij | 21.67 hi | 3.07 ab | |||
| Mansour | 35.33 c-e | 3.33 a-c | |||
| Once | Adel | 32.67 d-f | 2.67 a-c | ||
| Bivanij | 21.67 hi | 3.00 ab | |||
| Mansour | 40.67 a | 3.00 a-c | |||
| Means with the same letter are not significantly different based on Duncan's Multiple Range Test | |||||
| Region | Herbicide usage frequency | Chickpea cultivar | Final Plant height (cm) | Grain yield (g m -1) | |
| Khoramabad | None | Adel | 59.33 de | 178.86 cd | |
| Bivanij | 41.00 hi | 371.21 ab | |||
| Mansour | 68.67 a | 278.33 a-d | |||
| Two times | Adel | 52.00 g | 167.29 d | ||
| Bivanij | 37.67 i-k | 247.27 b-d | |||
| Mansour | 62.33 cd | 259.50 a-d | |||
| Once | Adel | 53.33 gf | 172.50 cd | ||
| Bivanij | 37.67 i-k | 345.42 ab | |||
| Mansour | 64.00 c | 267.84 a-d | |||
| Meskinabad | None | Adel | 56.00 ef | 183.85 cd a | |
| Bivanij | 41.00 hi | 363.32 ab | |||
| Mansour | 68.67 a | 285.01 a-c | |||
| Two times | Adel | 54.33 fg | 170.28 cd | ||
| Bivanij | 37.33 i-k | 334.50 ab | |||
| Mansour | 64.00 c | 264.15 a-d | |||
| Once | Adel | 55.33 fg | 182.77 cd | ||
| Bivanij | 39.00 i-j | 361.96 ab | |||
| Mansour | 69.33 a | 284.17 a-c | |||
| Moradabad | None | Adel | 59e | 178.94 cd | |
| Bivanij | 41.33 hi | 352.55 ab | |||
| Mansour | 69.00 a | 277.50 a-d | |||
| Two times | Adel | 54.67 fg | 172.88 cd | ||
| Bivanij | 35.33 k | 340.72 ab | |||
| Mansour | 65.00 bc | 268.08 a-d | |||
| Once | Adel | 56.33 ef | 178.33 cd | ||
| Bivanij | 35.33 k | 351.64 ab | |||
| Mansour | 69.33 a | 275.95 a-d | |||
| Means with the same letter are not significantly different based on Duncan's Multiple Range Test | |||||
| Seed yield | Plant height | Number of Plant branch | |
| Seed yield | 1.00 | 0.23* | -0.25* |
| Plant height | 0.23* | 1.00 | -0.44** |
| Number of plant branch | -0.25* | -0.44** | 1.00 |
| *, ** indicates that correlation is significant at the 0.05 and 0.01 probability level, respectively. | |||
| Plant species/variety | a | b | X50 | R2 |
| Cicer arietinum Var. Bivanij | 42.81 (0.17) | 1.26 (0.75) | 3.27 (0.46) | 0.98 |
| Cicer arietinum Var. Adel | 35.00 (0.037) | 0.42 (0.08) | 3.18 (0.52) | 0.99 |
| Lens culinaris | 27.11 (0.12) | 1.28 (0.78) | 12.20 (1.03) | 0.99 |
| Cicer arietinum Var. Mansour | 39.02 (0.05) | 0.56 (0.48) | 4.33 (0.74) | 0.99 |
| Vicia sativa | 57.34 (0.16) | 0.72 (0.34) | 9.99 (3.1) | 0.94 |
| Plant species/variety | a | b | X50 | R2 |
| Cicer arietinum Var. Bivanij | 52.21 (0.13) | 0.54 (0.35) | 0.72 (0.39) | 0.97 |
| Cicer arietinum Var. Adel | 63.94 (0.02) | 0.36 (0.06) | 1.89 (0.31) | 0.99 |
| Lens culinaris | 27.13 (0.13) | 0.59 (0.04) | 21.78 (3.03) | 0.99 |
| Cicer arietinum Var. Mansour | 69.30 (0.05) | 0.37 (0.21) | 0.51 (0.23) | 0.99 |
| Vicia sativa | 25.32 (0.16) | 0.62 (0.02) | 2.7 (0.12) | 0.99 |
| Plant species/variety | a | b | X50 | R2 |
| Cicer arietinum Var. Bivanij | 1.75 (0.05) | 0.53 (0.3) | 58 (7.9) | 0.99 |
| Cicer arietinum Var. Adel | 1.7 (0.08) | 0.65 (0.04) | 49.27 (0.31) | 0.98 |
| Lens culinaris | 0.85 (0.18) | 0.64 (0.05) | 35.89 (12.03) | 0.91 |
| Cicer arietinum Var. Mansour | 1.8 (0.05) | 0.78 (0.02) | 50.08 (3.42) | 0.99 |
| Vicia sativa | 0.73 (0.08) | 0.81 (0.02) | 12.96 (1.66) | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
