Submitted:
25 December 2023
Posted:
10 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
Materials and Methods
Experimental Design and Processing
Diets and Bird Management
Sample and Data Collection
Growth Performance
Carcass Traits
Jejunum Morphology
Immune Responses
Statistical Analysis
Results
Growth Performance
Relative Length of the Small Intestine and Jejunum Morphology
Immune Responses
Carcass Traits
Discussion
Growth Performance
Carcass Traits
Immune responses
Relative Length of the Small Intestine and Jejunum Morphology
Gizzard pH
Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdollahi, M.R.; Ravindran, V.; Svihus, B. Influence of grain type and feed form on performance, apparent metabolisable energy and ileal digestibility of nitrogen, starch, fat, calcium and phosphorus in broiler starters. Anim. Feed Sci. Technol. 2013, 186, 193–203. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Wester, T.J.; Ravindran, G.; Thomas, D.V. Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize-and sorghum-based diets. Anim. Feed Sci. Technol. 2010, 162, 106–115. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Wester, T.J.; Ravindran, G.; Thomas, D.V. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Anim. Feed Sci. Technol. 2011, 168, 88–99. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Ravindran, V. Maximising the benefits of pelleting diets for modern broilers. Anim. Prod. Sci. 2019, 59, 2023–2028. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Hunt, H.; Anwar, M.N.; Thomas, D.G.; Ravindran, V. Wheat particle size, insoluble fibre sources and whole wheat feeding influence gizzard musculature and nutrient utilisation to different extents in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 146–161. [Google Scholar] [CrossRef]
- Abdollahi, M.; Ravindran, V.; Wester, T.; Ravindran, G.; Thomas, D. Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize-and wheat-based diets. Br. Poult. Sci. 2010, 51, 648–657. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.l. Macronutrients in corn and human nutrition. Comprehensive Reviews. Food Sci. Food Saf. 2016, 15, 581–598. [Google Scholar] [CrossRef]
- Almirall, M.; Esteve-Garcia, E. Rate of passage of barley diets with chromium oxide: Influence of age and poultry strain and effect of β-glucanase supplementation. Poult. Sci. 1994, 73, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. World's Poult. Sci. J. 2007, 63, 439–455. [Google Scholar] [CrossRef]
- AOAC International. 2006. Official Methods of Analysis of AOAC International. 18th ed. AOAC International.
- Aviagen. 2018. Ross 308 Broiler. Performance Objectives. https://www.winmixsoft.com/files/info/Ross-308-Broiler-PO-2018-EN.pdf. Accessed May 2022.
- Baker, S.; Herrman, T. (2002). Evaluating particle size. MF-2051 feed manufacturing. Dept. Grain Sci. Ind., Kansas State Univ., Manhattan.
- Barrow, P.A. Probiotics for chickens. Probiotics: The scientific basis 1992, 255-257.
- Chewning, C.G.; Stark, C.R.; Brake, J. Effects of particle size and feed form on broiler performance. J. Appl. Poult. Res. 2012, 21, 830–837. [Google Scholar] [CrossRef]
- Choct, M. Managing gut health through nutrition. Br. Poult. Sci. 2009, 50, 9–15. [Google Scholar] [CrossRef]
- Cowieson, A.J. Factors that affect the nutritional value of maize for broilers. Anim. Feed Sci. Technol. 2005, 119, 293–305. [Google Scholar] [CrossRef]
- Creswell, D.; Bedford, M. (2006). In High pelleting temperatures reduce broiler performance. In Proceedings of the 18th Australian Poultry Science Symposium, Sydney, New South Wales, Australia, 20-22 February 2006 (pp. 1-6). Poultry Research Foundation. [Google Scholar]
- Cutlip, S.E.; Hott, J.M.; Buchanan, N.P.; Rack, A.L.; Latshaw, J.D.; Moritz, J.S. The effect of steam-conditioning practices on pellet quality and growing broiler nutritional value. J. Appl. Poult. Res. 2008, 17, 249–261. [Google Scholar] [CrossRef]
- Denbow, D.M. (2015). Gastrointestinal anatomy and physiology. In Sturkie's avian physiology (pp. 337-366). Academic Press.
- Duke, G.E. Recent studies on regulation of gastric motility in turkeys. Poult. Sci. 1992, 71, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Li, J.; Duan, H.; Yu, J.; Yu, Z.; Sun, J.; Qin, Y. Effects of different diet particle size combinations on growth performance of broilers in early and later periods. Chin. J. Anim. Nutr. 2017, 29, 4342–4348. [Google Scholar]
- Ghobadi, Z.; Karimi, A. Effect of feed processing and enzyme supplementation of wheat-based diets on performance of broiler chicks. J. Appl. Anim. Res. 2012, 40, 260–266. [Google Scholar] [CrossRef]
- Goodband, R.D.; Tokach, M.D.; Nelssen, J.L. (2002). The effects of diet particle size on animal performance. MF-2050 Feed Manufacturing. Dept. Grain Sci. Ind., Kansas State Univ., Manhattan.
- Hetland, H.; Svihus, B. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br. Poult. Sci. 2001, 42, 354–361. [Google Scholar] [CrossRef]
- Hetland, H.; Choct, M.; Svihus, B. Role of insoluble non-starch polysaccharides in poultry nutrition. World's Poult. Sci. J. 2004, 60, 415–422. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Choct, M. Role of insoluble fiber on gizzard activity in layers. J. Appl. Poult. Res. 2005, 14, 38–46. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Olaisen, V. Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. Br. Poult. Sci. 2002, 43, 416–423. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.-B. Coarse particle inclusion and lignocellulose-rich fiber addition in feed benefit performance and health of broiler chickens. Poult. Sci. 2017, 96, 3272–3281. [Google Scholar] [CrossRef] [PubMed]
- Kiarie, E.G.; Mills, A. Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens. Front. Vet. Sci. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Koch, K. (1996). Hammermills and rollermills. MF-2048 Feed Manufacturing. Dept. Grain Sci. Ind., Kansas State Univ., Manhattan.
- Korver, D.R. Overview of the immune dynamics of the digestive system. J. Appl. Poult. Res. 2006, 15, 123–135. [Google Scholar] [CrossRef]
- Loar, R.E., II; Wamsley KG, S.; Evans, A.; Moritz, J.S.; Corzo, A. Effects of varying conditioning temperature and mixer-added fat on feed manufacturing efficiency, 28-to 42-day broiler performance, early skeletal effect, and true amino acid digestibility. J. Appl. Poult. Res. 2014, 23, 444–455. [Google Scholar] [CrossRef]
- Lundblad, K.K.; Issa, S.; Hancock, J.D.; Behnke, K.C.; McKinney, L.J.; Alavi, S.; Sørensen, M. Effects of steam conditioning at low and high temperature, expander conditioning and extruder processing prior to pelleting on growth performance and nutrient digestibility in nursery pigs and broiler chickens. Anim. Feed Sci. Technol. 2011, 169, 208–217. [Google Scholar] [CrossRef]
- Lv, M.; Yan, L.; Wang, Z.; An, S.; Wu, M.; Lv, Z. Effects of feed form and feed particle size on growth performance, carcass characteristics and digestive tract development of broilers. Anim. Nutr. 2015, 1, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Massuquetto, A.; Durau, J.F.; Barrilli LN, E.; Dos Santos RO, F.; Krabbe, E.L.; Maiorka, A. Thermal processing of corn and physical form of broiler diets. Poult. Sci. 2020, 99, 3188–3195. [Google Scholar] [CrossRef]
- Meijer, A.; Bosman, A.; van de Kamp, E.E.; Wilbrink, B.; van Beest Holle, M.D.R.; Koopmans, M. Measurement of antibodies to avian influenza virus A (H7N7) in humans by hemagglutination inhibition test. J. Virol. Methods 2006, 132, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Moran, E., Jr. Starch digestion in fowl. Poult. Sci. 1982, 61, 1257–1267. [Google Scholar] [CrossRef]
- Naderinejad, S.; Zaefarian, F.; Abdollahi, M.R.; Hassanabadi, A.; Kermanshahi, H.; Ravindran, V. Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Anim. Feed Sci. Technol. 2016, 215, 92–104. [Google Scholar] [CrossRef]
- Nain, S.; Renema, R.A.; Zuidhof, M.J.; Korver, D. R. Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poult. Sci. 2012, 91, 888–898. [Google Scholar] [CrossRef]
- Netto, M.T.; Massuquetto, A.; Krabbe, E.L.; Surek, D.; Oliveira, S.G.; Maiorka, A. Effect of conditioning temperature on pellet quality, diet digestibility, and broiler performance. J. Appl. Poult. Res. 2019, 28, 963–973. [Google Scholar] [CrossRef]
- Nir, I.; Hillel, R.; Ptichi, I.; Shefet, G. Effect of particle size on performance. : 3. Grinding pelleting interactions. Poult. Sci. 1995, 74, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Nir, I.; Shefet, G.; Aaroni, Y. Effect of particle size on performance.: 1. Corn. Poult. Sci. 1994, 73, 45–49. [Google Scholar] [CrossRef]
- Perera WN, U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. High steam-conditioning temperature during the pelleting process impairs growth performance and nutrient utilization in broiler starters fed barley-based diets, regardless of carbohydrase supplementation. Poult. Sci. 2021, 100, 101166. [Google Scholar] [CrossRef]
- Putra, A.; Ismail, D.; Lubis, N. Technology of animal feed processing (fermentation and silage) in bilah hulu village, labuhan batu regency. J. Saintech Transf. 2018, 1, 41–47. [Google Scholar] [CrossRef]
- Rezaeipour, V.; Gazani, S. Effects of feed form and feed particle size with dietary L-threonine supplementation on performance, carcass characteristics and blood biochemical parameters of broiler chickens. J. Anim. Sci. Technol. 2014, 56, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ross (2019) ‘Ross 308 Broiler: Nutrition Specification, 2019.’ (Ross Breeders Ltd: Newbridge, Midlothian, Scotland).
- Rueda, M.; Rubio, A.A.; Starkey, C.W.; Mussini, F.; Pacheco, W.J. Effect of conditioning temperature on pellet quality, performance, nutrient digestibility, and processing yield of broilers. J. Appl. Poult. Res. 2022, 31, 100235. [Google Scholar] [CrossRef]
- SAS Institute Inc. 2008. Using JMP 9. SAS Institute, Cary, NC.
- Sell, J.L.; Eastwood, J.A.; Mateos, G.G. Influence of supplemental fat on diet metabolisable energy and ingest a transit time in laying hens. Nutr. Rep. Int. 1983, 28, 487–495. [Google Scholar]
- Selle, P.H.; Liu, S.Y.; Cai, J.; Cowieson, A. J. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Anim. Prod. Sci. 2013, 53, 378–387. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Deng, H.C.; Wang, M.; Guo, Q.S.; Zheng, J.H.; Situ, J.S.; Xie, G.M.; Yang, X.Y.; Shen, W.J. Effect of corn particle size on performance and gastrointestinal indices of broilers.Chin. J. Anim. Nutr. 2017, 29, 75–79. [Google Scholar]
- Silversides, F.; Bedford, M. Effect of pelleting temperature on the recovery and efficacy of a xylanase enzyme in wheat-based diets. Poult. Sci. 1999, 78, 1184–1190. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef]
- Svihus, B. The gizzard: function, influence of diet structure and effects on nutrient availability. World’s Poult. Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Svihus, B. Function of the digestive system. J. Appl. Poul. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Svihus, B.; Choct, M.; Classen, H.L. Function and nutritional roles of the avian caeca: a review. World's Poult. Sci. J. 2013, 69, 249–264. [Google Scholar] [CrossRef]
- Svihus, B.; Hetland, H.; Choct, M.; Sundby, F. Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. Br. Poult. Sci. 2002, 43, 662–668. [Google Scholar] [CrossRef]
- Svihus, B.; Kløvstad, K.; Perez, V.; Zimonja, O.; Sahlström, S.; Schüller, R.; Jeksrud, W.; Prestløkken, E. Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Anim. Feed Sci. Technol. 2004, 117, 281–293. [Google Scholar] [CrossRef]
- Tsiagbe, V.K.; Cook, M.E.; Harper, A.E.; Sunde, M.L. Enhanced immune responses in broiler chicks fed methionine-supplemented diets. Poult. Sci. 1987, 66, 1147–1154. [Google Scholar] [CrossRef]
- Unni, D.R.; Chacko, B.; Narayanankutty, K. (2014). Effect of feed particle size on slaughter parameters in broiler chicken.
- Xu, Y.; Lin, Y.; Stark, C.; Ferket, P.; Williams, C.; Brake, J. Effects of dietary coarsely ground corn and 3 bedding floor types on broiler live performance, litter characteristics, gizzard and proventriculus weight, and nutrient digestibility. Poult. Sci. 2017, 96, 2110–2119. [Google Scholar] [CrossRef]
- Yan, L.; An, S.; Lv, Z.Z.; Choct, M.; Zhou, G.L.; Li, Y.; Jia, Y.G. Effects of corn particle size on growth performance, gastrointestinal development, carcass indices and intestinal microbiota of broilers. Poult. Sci. 2022, 101, 102205. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Iji, P.A.; Choct, M. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Zang, J.J.; Piao, X.S.; Huang, D.S.; Wang, J.J.; Ma, X.; Ma, Y.X. Effects of feed particle size and feed form on growth performance, nutrient metabolizability and intestinal morphology in broiler chickens. Asian-Australas. J. Anim. Sci. 2009, 22, 107–112. [Google Scholar] [CrossRef]
| Ingredients | Starter (0-10d) | Grower (11-24d) | Finisher (25-42d) |
|---|---|---|---|
| Corn (7.80% CP) | 48.90 | 52.64 | 57.74 |
| Soybean meal (43.88% CP) | 42.75 | 38.74 | 33.31 |
| Soybean oil | 4.50 | 5.20 | 5.81 |
| Dicalcium phosphate | 1.13 | 0.92 | 0.75 |
| Calcium carbonate | 1.07 | 0.99 | 0.92 |
| Common salt | 0.33 | 0.33 | 0.33 |
| Sodium bicarbonate | 0.15 | 0.13 | 0.13 |
| Mineral premix a | 0.25 | 0.25 | 0.25 |
| Vitamin premix a | 0.25 | 0.25 | 0.25 |
| DL-Methionine | 0.33 | 0.28 | 0.26 |
| L- Lysine HCL | 0.21 | 0.16 | 0.16 |
| L- Threonine | 0.07 | 0.05 | 0.03 |
| Choline Chloride | 0.05 | 0.05 | 0.05 |
| Phytase (1000FTU/kg) | 0.01 | 0.01 | 0.01 |
| Calculated chemical composition | |||
| Apparent metabolizable energy (Kcal/Kg) | 3000 | 3100 | 3200 |
| Crude protein (%) | 23.00 | 21.50 | 19.50 |
| Calcium (%) | 0.96 | 0.87 | 0.79 |
| Available phosphorus (%) | 0.48 | 0.435 | 0.395 |
| Potassium (%) | 0.98 | 0.92 | 0.83 |
| Chlorine (%) | 0.25 | 0.25 | 0.24 |
| Sodium (%) | 0.18 | 0.18 | 0.18 |
| Digestible Lysine (%) | 1.28 | 1.15 | 1.03 |
| Digestible Methionine (%) | 0.63 | 0.57 | 0.53 |
| Digestible Methionine + Cystine (%) | 0.95 | 0.87 | 0.80 |
| Digestible Threonine (%) | 0.86 | 0.77 | 0.72 |
| Digestible Tryptophan (%) | 0.25 | 0.24 | 0.21 |
| Digestible Arginine (%) | 1.52 | 1.42 | 1.26 |
| Digestible Isoleucine (%) | 0.92 | 0.86 | 0.77 |
| Digestible Leucine (%) | 1.77 | 1.68 | 1.55 |
| Digestible Valine (%) | 0.98 | 0.93 | 0.84 |
| Treatments | Starter (1-10 days) | Grower (11-24 days) | Finisher (25-42 days) | Total (1-42 days) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PS* | CT (℃) | ADFI1 (gr/bird/d) | ADWG1 (gr/bird/d) | FCR1 (gr/gr) | ADFI (gr/bird/d) | ADWG (gr/bird/d) | FCR (gr/gr) | ADFI (gr/bird/d) | ADWG (gr/bird/d) | FCR (gr/gr) | ADFI (gr/bird/d) | ADWG (gr/bird/d) | FCR (gr/gr) |
| F | - | 30.9 | 22.7a | 1.360b | 73.7 | 47.6 | 1.552 | 142 | 89.5 | 1.592b | 89.1 | 57.3a | 1.554b |
| C | - | 29.7 | 20.8b | 1.433a | 74.8 | 47.4 | 1.582 | 143 | 87.8 | 1.638a | 89.8 | 56.1b | 1.600a |
| SEM | - | 0.404 | 0.358 | 0.0187 | 0.642 | 0.564 | 0.0205 | 0.850 | 0.823 | 0.0137 | 0.495 | 0.395 | 0.0116 |
| - | U | 29.5 | 20.6b | 1.439a | 73.4 | 45.0b | 1.634a | 142 | 89.0 | 1.602ab | 88.7 | 55.7b | 1.594 |
| - | 75 | 30.4 | 22.4a | 1.354b | 75.0 | 48.2a | 1.555b | 142 | 89.7 | 1.593b | 89.7 | 57.6a | 1.557 |
| - | 90 | 31.0 | 22.2a | 1.396ab | 74.5 | 49.3a | 1.512b | 143 | 87.2 | 1.649a | 89.9 | 56.9ab | 1.580 |
| SEM | 0.494 | 0.439 | 0.0229 | 0.787 | 0.691 | 0.0252 | 1.041 | 1.009 | 0.0168 | 0.607 | 0.484 | 0.0142 | |
| F | U | 30.4 | 21.5 | 1.414 | 73.3 | 44.8 | 1.640 | 141 | 90.4 | 1.567 | 88.6 | 56.4 | 1.571 |
| 75 | 31.2 | 23.5 | 1.325 | 73.9 | 48.3 | 1.528 | 142 | 91.2 | 1.562 | 89.3 | 58.4 | 1.527 | |
| 90 | 31.0 | 23.1 | 1.341 | 74.0 | 49.7 | 1.488 | 143 | 86.9 | 1.647 | 89.4 | 57.1 | 1.564 | |
| C | U | 28.7 | 19.6 | 1.464 | 73.4 | 45.2 | 1.628 | 143 | 87.5 | 1.637 | 88.8 | 54.9 | 1.618 |
| 75 | 29.6 | 21.4 | 1.383 | 76.1 | 48.1 | 1.581 | 143 | 88.3 | 1.624 | 90.1 | 56.7 | 1.588 | |
| 90 | 30.9 | 21.4 | 1.452 | 75.0 | 48.8 | 1.536 | 144 | 87.6 | 1.652 | 90.4 | 56.6 | 1.595 | |
| SEM | 0.699 | 0.621 | 0.0323 | 1.113 | 0.977 | 0.0356 | 1.472 | 1.427 | 0.0237 | 0.858 | 0.685 | 0.0200 | |
| P value | |||||||||||||
| PS | 0.06 | <0.01 | 0.01 | 0.09 | 0.75 | 0.31 | 0.25 | 0.15 | 0.02 | 0.32 | 0.03 | 0.0093 | |
| CT (℃) | 0.14 | 0.01 | 0.04 | 0.23 | <0.01 | 0.007 | 0.61 | 0.22 | 0.05 | 0.36 | 0.03 | 0.2045 | |
| PS × CT (℃) | 0.47 | 0.97 | 0.60 | 0.45 | 0.80 | 0.60 | 0.96 | 0.38 | 0.34 | 0.90 | 0.64 | 0.7767 | |
| PS | CT (℃) | Slaughtered Body Weight (gr) | Carcass yield | Breast | Thigh | Abdominal fat | Gizzard | Liver | Pancreas | Heart | Gizzard pH |
|---|---|---|---|---|---|---|---|---|---|---|---|
| % of live weight | |||||||||||
| F | - | 2522a | 67.8 | 26.2 | 20.1 | 2.036b | 1.033 | 1.906 | 0.2215 | 0.459 | 3.978 |
| C | - | 2472b | 67.5 | 25.7 | 20.3 | 2.412a | 1.171 | 1.852 | 0.2002 | 0.479 | 3.125 |
| SEM | - | 16.8 | 0.28 | 0.34 | 0.27 | 0.1065 | 0.0219 | 0.0568 | 0.0047 | 0.0167 | 0.0640 |
| - | U | 2455 | 67.6 | 25.7 | 20.4 | 2.142 | 1.230 | 1.949 | 0.2318 | 0.479 | 3.623 |
| - | 75 | 2524 | 67.9 | 26.2 | 20.1 | 2.180 | 1.061 | 1.783 | 0.2072 | 0.454 | 3.513 |
| - | 90 | 2512 | 67.4 | 25.9 | 20.0 | 2.320 | 1.016 | 1.904 | 0.1936 | 0.475 | 3.517 |
| - | SEM | 20.6 | 0.34 | 0.42 | 0.33 | 0.1304 | 0.0268 | 0.0696 | 0.0058 | 0.0205 | 0.0784 |
| F | U | 2492 | 67.3b | 26.0 | 20.0 | 1.950 | 1.132bc | 2.170a | 0.2378a | 0.454 | 4.060a |
| 75 | 2562 | 68.9a | 26.3 | 20.6 | 1.975 | 1.071bcd | 1.813ab | 0.2415a | 0.457 | 3.740ab | |
| 90 | 2512 | 67.1b | 26.3 | 19.6 | 2.184 | 0.897d | 1.733ab | 0.1853b | 0.467 | 4.135a | |
| C | U | 2418 | 67.9ab | 25.5 | 20.8 | 2.335 | 1.328a | 1.728b | 0.2258ab | 0.504 | 3.187bc |
| 75 | 2485 | 67.7ab | 26.1 | 19.6 | 2.455 | 1.051cd | 1.832ab | 0.1728b | 0.451 | 3.287bc | |
| 90 | 2513 | 66.8b | 25.5 | 20.5 | 2.456 | 1.135bc | 1.995ab | 0.2019ab | 0.483 | 2.900c | |
| SEM | 29.2 | 0.49 | 0.60 | 0.47 | 0.1844 | 0.0379 | 0.0984 | 0.0082 | 0.0289 | 0.1109 | |
| P Value | |||||||||||
| PS | 0.04 | 0.47 | 0.37 | 0.56 | 0.04 | 0.0009 | 0.55 | 0.01 | 0.45 | <0.0001 | |
| CT | 0.06 | 0.70 | 0.78 | 0.73 | 0.69 | 0.0002 | 0.31 | 0.002 | 0.71 | 0.61 | |
| PS × CT | 0.33 | 0.03 | 0.92 | 0.19 | 0.88 | 0.0148 | 0.02 | 0.0007 | 0.69 | 0.019 | |
| PS | CT (℃) | Primary responses | Secondary responses | ND titer | ||||
|---|---|---|---|---|---|---|---|---|
| Ig T | IgG | IgM | Ig T | IgG | IgM | |||
| F | - | 4.533 | 1.866 | 2.666 | 5.666 | 2.733 | 2.933 | 6.666 |
| C | - | 5.066 | 1.933 | 3.133 | 6.333 | 3.066 | 3.266 | 7.066 |
| SEM | - | 0.3000 | 0.1944 | 0.2963 | 0.3073 | 0.3448 | 0.2186 | 0.3055 |
| - | U | 4.300b | 1.700 | 2.600b | 5.200b | 2.600 | 2.600b | 6.800 |
| - | 75 | 5.500a | 1.900 | 3.600a | 6.600a | 2.800 | 3.800a | 7.100 |
| - | 90 | 4.600ab | 2.100 | 2.500b | 6.200ab | 3.300 | 2.900b | 6.700 |
| - | SEM | 0.3674 | 0.2380 | 0.3629 | 0.3764 | 0.4223 | 0.2677 | 0.3742 |
| F | U | 4.000 | 1.600 | 2.400 | 5.000 | 2.400 | 2.600 | 6.400 |
| 75 | 5.400 | 2.000 | 3.400 | 6.200 | 3.000 | 3.200 | 6.600 | |
| 90 | 4.200 | 2.000 | 2.200 | 5.800 | 2.800 | 3.000 | 7.000 | |
| C | U | 4.600 | 1.800 | 2.800 | 5.400 | 2.800 | 2.600 | 7.200 |
| 75 | 5.600 | 1.800 | 3.800 | 7.000 | 2.600 | 4.400 | 7.600 | |
| 90 | 5.000 | 2.200 | 2.800 | 6.600 | 3.800 | 2.800 | 6.400 | |
| SEM | 0.5196 | 0.3367 | 0.5132 | 0.5323 | 0.5972 | 0.3786 | 0.5292 | |
| P value | ||||||||
| PS | 0.2208 | 0.8104 | 0.2764 | 0.1381 | 0.5008 | 0.2916 | 0.3638 | |
| CT(℃) | <0.01 | 0.5036 | <0.01 | <0.01 | 0.4928 | <0.01 | 0.7367 | |
| PS × CT(℃) | 0.8423 | 0.7921 | 0.9750 | 0.9105 | 0.5105 | 0.1573 | 0.2764 | |
| PS* | CT (℃) | Duodenum | Jejunum | Ileum | Total Small intestine | Cecum | Villus height (µm) |
Villus width (µm) |
Villus height / Crypt depth | Crypt depth (µm) |
Muscle thickness (µm) |
Absorption surface area (µm) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (cm/kg body weight) | ||||||||||||
| F | - | 12.6 | 30.9 | 31.0 | 75.3 | 7.89 | 1080 | 100.4b | 12.77 | 87.8 | 134 | 344090 |
| C | - | 13.3 | 29.4 | 31.0 | 73.1 | 7.93 | 833 | 117.4a | 8.55 | 105.1 | 150 | 306872 |
| SEM | - | 0.392 | 0.546 | 0.810 | 1.500 | 0.1550 | 34.0 | 4.95 | 0.710 | 5.34 | 6.0 | 17340 |
| - | U | 14.2a | 32.7a | 31.4 | 78.4a | 8.46a | 918 | 99.4b | 10.10 | 98.2 | 166 | 284167 |
| - | 75 | 12.0b | 27.8b | 30.2 | 70.1b | 7.40b | 986 | 113.5a | 10.18 | 106.3 | 133 | 348582 |
| - | 90 | 12.7ab | 29.9ab | 31.3 | 74.0ab | 7.87ab | 965 | 113.8a | 11.71 | 84.8 | 128 | 343695 |
| - | SEM | 0.480 | 0.668 | 0.992 | 1.837 | 0.1899 | 41.6 | 6.06 | 0.870 | 6.54 | 7.3 | 21237 |
| F | U | 13.9 | 32.6 | 30.0 | 76.6 | 8.67a | 937b | 88.3 | 12.11a | 79.1b | 116c | 257873c |
| 75 | 11.9 | 25.7 | 30.0 | 67.7 | 6.91b | 1244a | 110.0 | 14.05a | 94.5ab | 156b | 430018a | |
| 90 | 12.0 | 30.1 | 32.8 | 75.0 | 8.11ab | 1057ab | 102.8 | 12.15a | 89.8ab | 129bc | 344379b | |
| C | U | 14.5 | 32.9 | 32.7 | 80.2 | 8.25ab | 899ab | 110.6 | 8.09b | 117.4a | 215a | 310459bc |
| 75 | 12.0 | 30.0 | 30.4 | 72.5 | 7.90ab | 728c | 116.9 | 6.31b | 118.0a | 109c | 267145bc | |
| 90 | 13.4 | 29.8 | 29.8 | 73.1 | 7.64ab | 872bc | 124.7 | 11.27a | 79.9b | 127bc | 343009b | |
| SEM | 0.680 | 0.945 | 1.403 | 2.598 | 0.2685 | 58.9 | 8.57 | 1.231 | 9.26 | 10.4 | 30034 | |
| P value | ||||||||||||
| PS | 0.279 | 0.099 | 0.995 | 0.366 | 0.891 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.03 | |
| CT (℃) | 0.027 | 0.0008 | 0.697 | 0.034 | <0.01 | 0.26 | 0.03 | 0.12 | <0.01 | <0.01 | <0.01 | |
| PS × CT (℃) | 0.68 | 0.086 | 0.208 | 0.481 | 0.042 | <0.01 | 0.35 | <0.01 | <0.01 | <0.01 | <0.01 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
