Submitted:
26 December 2023
Posted:
28 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental design
2.2. Experimental protocol and sample collection
2.3. Physiological properties assay
2.4. Statistical analysis
3. Results and discussion
3.1. Growth performance
3.2. Physiological properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorlov, I.F.; Semenova, I.A.; Knyazhechenko, O.A.; Mosolov, A.A.; Karpenko, E.V. Assessment of the impact of new complex feed additives in the production of rabbit meat. IOP Conf. Series: Earth and Environmental Science. 2020, 548. [CrossRef]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2015, 44(1), 359−369. [CrossRef]
- Nguyen, D.H.; Lee, K.Y.; Mohammadigheisar; M.; Kim, I.H. Evaluation of the blend of organic acids and medium-chain fatty acids in matrix coating as antibiotic growth promoter alternative on growth performance, nutrient digestibility, blood profiles, excreta microflora, and carcass quality in broilers. Poult. Sci. 2018, 97(12), 4351−4358. [CrossRef]
- Papatsiros, V.G.; Christodoulopoulos, G.; Filippopoulos, L.C. The use of organic acids in monogastric animals (swine and rabbits). J. Cell. Anim. Biol. 2012, 6(10), 154−159. [CrossRef]
- Habibu, B.; Dzenda, T.; Ayo, J.O.; Yaqub, L.S.; Kawu, M.U. Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci. 2018, 214, 189–201. [Google Scholar] [CrossRef]
- Falcão-e-Cunha, L.; Castro-Solla, L.; Maertens, L.; Marounek, M.; Pinheiro, V.; Freire, J.; Mourão, J.L. Alternatives to antibiotic growth promoters in rabbit feeding: a review. World Rabbit Sci. 2007, 15(3), 127−140. [CrossRef]
- Maertens, L.; Falcao-E-Cunha, L.; Marounek, M. Feed additives to reduce the use of antibiotics. In: Recent advances in rabbit sciences. L. Maertens, P. Coudert (Editors). Melle, Belgium: ILVO; 2006, 259−265.
- Polycarpo, G.V.; Andretta, I.; Kipper, M.; Cruz-Polycarpo, V.C.; Dadalt, J.C.; Rodrigues, P.H.M.; Albuquerque, R. Meta-analytic study of organic acids as an alternative performance enhancing feed additive to antibiotics for broiler chickens. Poult. Sci. 2017, 96(10), 3645–3653. [CrossRef]
- NRC. Nutrient Requirement of Rabbits. 2nd ed. National Academy of Sciences, National Research Council, Washington, USA; 1977.
- Tietz, N.W. Total protein determination. Clinical Guide to Laboratory Tests. 3rd edition. Philadelphia: WB Saunders; 1995, 518−519.
- Naumann, C.; Bassler, R. Methodenbuch, Band III Die chemische Untersuchung von Futtermitteln,VDLUFA-Verlag, Darmstadt; 1993.
- Lentle, R.G.; Stafford; K.J.; Poter, M.A.; Springett, B.P.; Haslett, S. Factors affecting the volume and macrostructure of gastrointestinal compartments in the tammar wallaby (Macropus eugenii Desmarest). Aust. J. Zool. 1998, 46(6), 529−545. [CrossRef]
- Zduńczyk, Z.; Juśkiewicz, J.; Jankowski, J.; Koncicki, A. Performance and caecal adaptation of turkeys to diets without or with antibiotic and with different levels of mannan-oligosaccharide. Arch. Anim. Nutr. 2004, 58(5), 367−378. [CrossRef]
- Král, M.; Angelovičová, M.; Mrázová, L.; Tkáčová, J.; Kliment, M. Probiotic and acetic acid of broiler chickens performance. J. Anim. Sci. Biotechnol. 2011, 44(1),149−152.
- Cardinali, R.; Rebollar, P.; Bosco, A.; Cagiola, M.; Moscati, L.; Forti, K.; Mazzone, P.; Scicutella, N.; Rutili, D.; Mugnai, D.; Castellini, C. Effect of dietary supplementation of organic acids and essential oils on immune function and intestinal characteristics of experimentally infected rabbits. Proceedings of the 9th World Rabbit Congress. Verona, Italy. 2008, 573−578.
- Adil, S.; Banday, T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int. 2010, 10, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Rebollar, P.G.; Dal Bosco, A.; Castellini, C.; Cardinali, R. Dietary effect of short-chain organic acids on growth performance and development of intestinal lymphoid tissues in fattening restricted rabbits. World Rabbit Sci. 2011, 19(3), 133−142. [CrossRef]
- Hassanin, A.; Tony, M.; Sawiress F.A.R.; Abdl-Rahman, M.A.; Saleh, S. Influence of dietary supplementation of coated sodium butyrate and/or symbiotic on growth performances, caecal fermentation, intestinal morphometry and metabolic profile of growing rabbits. J. Agric. Sci. 2015, 7(2), 180−190. [CrossRef]
- Kaczmarek, S.A.; Barri, A.; Hejdysz, M.; Rutkowski, A. Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers. Poult. Sci. 2016, 95(4), 851−859. [CrossRef]
- Dorra, T.M.I.; Ismail, F.S.A.; Sherif, Kh.El..; Rabie Marwa, M.H. Growth performance of fattening rabbits as affected by stocking density and added dietary organic acids. J. Anim. Poult. Prod. 2013, 4(5), 249−262. [CrossRef]
- Kishawy, A.T.Y.; Amer, S.A.; Osman, A.; Elsayed, S.A.M.; Abd El-Hack, M.E.; Swelum, A.A.; Ba-Awadh, H.; Saadeldin, I.M. Impacts of supplementing growing rabbit diets with whey powder and citric acid on growth performance, nutrient digestibility, meat and bone analysis, and gut health. AMB Express 2018, 8(1), 86. [CrossRef]
- Nguyen, D.H.; Kim, I.H. Protected organic acids improved growth performance, nutrient digestibility, and decreased gas emission in broilers. Animals 2020, 10(3), 416. [CrossRef]
- Zeweil, H.S.; Ahmed, M.H.; Basyony, M. Productive performance, carcass traits and some physiological changes in rabbits fed on diets containing acacia desert plants and supplemented with organic acids. Egyptian J. Rabbit Sci. 2010, 20, 101–126. [Google Scholar]
- Mohmed, S.A.R.M.; Elsebai, A.; Elghalid, O.A.; Abd El-Hady, A.M. Productive performance, lipid profile and caecum microbial counts of growing rabbits treated with humic acid. J. Anim. Physiol. Anim. Nutr. 2020, 104(5), 1233−1241. [CrossRef]
- Hrapkiewicz, K.; Medina, L. Clinical laboratory animal medicine: an introduction. Ames Iowa, Blackwell Publishing; 2007.
- Evans, G.O. Animal Clinical Chemistry. A Practical Handbook for Toxicologists and Biomedical Researchers. CRC Press, Boca Raton (FL); 2009.
- Vennen, K.M.; Mitchell, M.A. Rabbits. In: Mitchell M., Tully T. Jr, editors. Manual of Exotic Pet Practice. B. Saunders. St. Louis; 2009.
- Sherif, S.K. Effect of dietary additives on growth performance, carcass traits and some blood constituents of rabbits. J. Agric. Sci. 2018, 10(1), 139−151. [CrossRef]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected blend of organic acids and essential oils improves growth performance, nutrient digestibility, and intestinal health of broiler chickens undergoing an intestinal challenge. Front. Vet. Sci. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Nicodemus, N.; García-Rebollar, P.; García-Ruiz, A.I.; Ibáñez, M.A.; De Blas, J.C. Dietary level of fibre and age at weaning affect the proliferation of Clostridium perfringens in the caecum, the incidence of epizootic rabbit enteropathy and the performance of fattening rabbits. Anim. Feed. Sci. Technol. 2009, 153(1-2), 131−140. [CrossRef]
- Jamroz, D.; Orda, J.; Skorupińska, J.; Wiliczkiewicz, A.; Wertelecki, T.; Żyłka, R.; Klünter, A.M. Reaction of laying hens to low phosphorus diets and addition of different phytase preparations. J. Anim. Feed Sci. 2003, 12(1), 95−110. [CrossRef]
- Uddin, M.J.; Islam, K.M.S.; Reza, A.; Chowdhury, R. Citric acid as feed additive in diet of rabbit – effect on growth performance. J. Bangladesh Agric. Univ. 2014, 12(1), 87−90. [CrossRef]
- Ghazvinian, K.; Seidavi, A.; Laudadio, V.; Ragni, M.; Tufarelli, V. Effects of various levels of organic acids and of virginiamycin on performance, blood parameters, immunoglobulins and microbial population of broiler chicks. S. Afr. J. Anim. Sci. 2018, 48(5), 961−967. [CrossRef]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82(6), 1030−1036. [CrossRef]
- Wang, H.; Guo, Y.; Shih, J.C.H. Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim. Feed Sci. Technol. 2008, 140(3-4), 376−384. [CrossRef]
- Shamoto, K.; Yamauchi, K. Recovery responses of chick intestinal villus morphology to different refeeding procedures. Poult. Sci. 2000, 79(5), 718−723. [CrossRef]
- Yang, X.; Xin, H.; Yang, Ch.; Yang, X. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Anim. Nutr. 2018, 4(4), 388−393. [CrossRef]
- Wang, H.; Liang, S.; Li, X.; Yang, X.; Long, F.; Yang, X. Effects of encapsulated essential oils and organic acids on laying performance, egg quality, intestinal morphology, barrier function, and microflora count of hens during the early laying period. Poult. Sci. 2019, 98(12), 2751−2760. [CrossRef]
- Ribeiro, J.; Gaspar, S.; Pinho, M.; Freire, J.P.B.; Falcão-e-Cunha, L. Sodium butyrate in growing and fattening diets for early-weaned rabbits. World Rabbit Sci. 2012, 20(4), 199−207. [CrossRef]
- Bivolarski, B.L.; Vachkova, E.G. Morphological and functional events associated to weaning in rabbits. J. Anim. Physiol. Anim. Nutr. 2014, 98(1), 9−18. [CrossRef]
| Indicator1 | Value (%) |
|---|---|
| Crude protein | 16.40 |
| Crude fibre | 16.39 |
| Starch | 9.56 |
| Sugar | 4.38 |
| Total lysine | 0.65 |
| Methionine + cysteine | 0.65 |
| Tryptophan | 0.20 |
| Linolenic acid | 1.04 |
| Threonine | 0.61 |
| Total methionine | 0.39 |
| Available phosphorus | 0.37 |
| Calcium | 1.29 |
| Phosphorus | 0.59 |
| Sodium | 0.25 |
| Chlorine | 0.54 |
| Indicator1 | SCD2 | OAM3 | P value4 |
|---|---|---|---|
| Body weight 28 d (g) | 483.33 ± 6.48 | 482.93 ± 3.08 | 0.846 |
| Body weight 77 d (g) | 1296.76 ± 3.46 | 1403.36 ± 6.65 | 0.000* |
| ADG (g) | 16.65 ± 0.66 | 18.80 ± 0.62 | 0.000* |
| DFI (g) | 78.25 ± 0.98 | 82.25 ± 1.34 | 0.000* |
| FCR (kg/kg) | 4.72 ± 0.07 | 4.39 ± 0.07 | 0.000* |
| Growth rate | 1.68 ± 0.04 | 1.90 ± 0.03 | 0.000* |
| Indicator1 | SCD2 | OAM3 | P value4 |
|---|---|---|---|
| Total protein (g/dL) | 5.72 ± 0.04 | 5.89 ± 0.04 | 0.016* |
| Albumin (g/dL) | 3.37 ± 0.08 | 3.59 ± 0.06 | 0.036* |
| Globulin (g/dL) | 2.33 ± 0.12 | 2.41 ± 0.09 | 0.612 |
| Triglycerides (mg/dL) | 65.50 ± 1.04 | 64.34 ± 1.02 | 0.450 |
| Cholesterol (mg/dL) | 73.46 ± 1.20 | 75.64 ± 1.68 | 0.323 |
| AST (U/L) | 62.02 ± 0.87 | 65.74 ± 1.40 | 0.054 |
| ALT (U/L) | 53.80 ± 1.79 | 55.56 ± 2.10 | 0.541 |
| Indicator | Intestine | SCD1 | OAM2 | P value3 |
|---|---|---|---|---|
| pH | Duodenum | 6.93 ± 0.06 | 6.29 ± 0.13 | 0.223 |
| Caecum | 7.13 ± 0.33 | 5.87 ± 0.05 | 0.014* | |
| DM (%) | Duodenum | 16.24 ± 0.33 | 17.07 ± 0.33 | 0.109 |
| Caecum | 20.14 ± 0.21 | 24.45 ± 0.46 | 0.000* | |
| Viscosity (mPA’s) | Caecum | 0.84 ± 0.05 | 2.18 ± 0.29 | 0.002* |
| Weight (g) | Total | 270.33 ± 6.31 | 296.20 ± 8.19 | 0.037* |
| Length (cm) | Total | 499.67 ± 9.02 | 504.12 ± 9.60 | 0.744 |
| Indicator1 | SCD2 | OAM3 | P value4 |
|---|---|---|---|
| SCFA (μmol/g) | |||
| Acetic acid | 38.37 ± 5.46 | 53.04 ± 2.90 | 0.021* |
| Propionic acid | 5.13 ± 0.72 | 6.73 ± 2.21 | 0.001* |
| Butyric acid | 4.15 ± 1.90 | 1.19 ± 0.79 | 0.013* |
| Lactic acid | 2.39 ± 0.90 | 1.83 ± 081 | 0.793 |
| N-NH3 (mg/g) | 1.84 ± 0.10 | 1.63 ± 0.12 | 0.208 |
| Part of caecum1 | Indicator | SCD2 | OAM3 | P value4 |
|---|---|---|---|---|
| PRO | Villus height (µm) | 571.64 ± 15.03 | 658.22 ± 2.97 | 0.023* |
| Crypt depth (µm) | 234.64 ± 17.58 | 246.12 ± 2.43 | 0.005* | |
| V/C ratio | 2.49 ± 0.19 | 2.68 ± 0.03 | 0.013* | |
| MID | Villus height (µm) | 425.11 ± 2.46 | 533.08 ± 3.16 | 0.000* |
| Crypt depth (µm) | 212.48 ± 1.74 | 252.32 ± 1.56 | 0.000* | |
| V/C ratio | 2.00 ± 0.01 | 2.11 ± 0.02 | 0.000* | |
| DISTAL | Villus height (µm) | 378.08 ± 2.98 | 408.90 ± 2.59 | 0.000* |
| Crypt depth (µm) | 128.48 ± 1.39 | 138.14 ± 1.60 | 0.002* | |
| V/C ratio | 2.94 ± 0.05 | 2.96 ± 0.02 | 0.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
