Submitted:
03 May 2024
Posted:
07 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Animals and Design
2.3. Growth Performance
2.4. Carcass Characteristics and Sampling
2.5. Meat Quality
2.6. Serum Biochemical Indicators
2.7. Feed Analysis
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemical Parameters
3.3. Carcass Characteristics and Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeisel, S.H. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. Clin. Chem. Lab. Med. 2013, 51, 467–475. [CrossRef]
- Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006, 3, 321–331. [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007.
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016.
- National Research Council. Nutrient Requirements of Dairy Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2021.
- Robinson B.S.; Snoswell A.M.; Setchell B.P. The enterohepatic recycling of bile choline in sheep. Comp. Biochem. Physiol. 1987, 88A, 283–289. [CrossRef]
- Sharma, B.K.; Erdman, R.A. Effect of high amounts of dietary choline supplementation on duodenal flow and production responses of dairy cows. J. Dairy Sci. 1988, 71, 2670. [CrossRef]
- Kawas, J.R.; Garcia-Mazcorro, J.F.; Fimbres-Durazo, H.; Ortega-Cerrilla, M.E. Effects of rumen-protected choline on growth performance, carcass characteristics and blood lipid metabolites of feedlot lambs. Animals 2020, 10, 1580. [CrossRef]
- Pawar, S.P.; Kewalramani, N.; Thakur, S.S.; Kaur, J. Effect of dietary rumen protected choline supplementation on milk choline content in crossbred cows. Indian J. Anim. Sci. 2015, 32, 30-35.
- Humer, E.; Bruggeman, G.; Zebeli, Q. A meta-analysis on the impact of the supplementation of rumen-protected choline on the metabolic health and performance of dairy cattle. Animals 2019, 9, 566. [CrossRef]
- Pinotti, L.; Paltanin, C.; Campagnoli, A.; Cavassini, P.; Dell’Orto, V. Rumen protected choline supplementation in beef cattle: effect on growth performance. Ital. J. Anim. Sci. 2009, 8(sup2), 322-324. [CrossRef]
- Bryant, T.C.; Rivera, J.D.; Galyean, M.L.; Duff, G.C.; Hallford, D.M.; Montgomery, T.H. Effects of dietary level of ruminally protected choline on performance and carcass characteristics of finishing beef steers and on growth and serum metabolites in lambs. J. Anim. Sci. 1999, 77, 2893-2903. [CrossRef]
- Li, H.; Wang, H.; Yu, L.; Wang, M.; Liu, S.; Sun, L.; Chen, Q. Effects of supplementation of rumen-protected choline on growth performance, meat quality and gene expression in longissimus dorsi muscle of lambs. Arch. Anim. Nutr. 2015, 69, 340-350. [CrossRef]
- Godinez-Cruz, J.; Cifuentes-López, O.; Cayetano, J.; Lee-Rangel, H.; Mendoza, G.; Vázquez, A.; Roque, A. Effect of choline inclusion on lamb performance and meat characteristics. J. Anim. Sci. 2015, 93(Suppl 3), 766.
- Jin, Y.; Li, H.; Wang, H. Dietary rumen-protected choline supplementation regulates blood biochemical profiles and urinary metabolome and improves growth performance of growing lambs. Anim. Biotechnol. 2023, 34, 563-573. [CrossRef]
- Mohsen, M.K.; Gaafar, H.M.A.; Khalafalla, M.M.; Shitta, A.A.; Yousif, A.M. Effect of rumen protected choline supplementation on digestibility, rumen activity and milk yield in lactating Friesian cows. Slovak J. Anim. Sci. 2011, 44, 13-20.
- Habeeb, A.A.M.; Gad, A.E.; Atta, M.A.A.; Abdel-Hafez, M.A.M. Evaluation of rumen-protected choline additive to diet on productive performance of male Zaraibi growing goats during hot summer season in Egypt. Trop. Anim. Health Prod. 2017, 49, 1107-1115. [CrossRef]
- Du, X.E.; Cui, Z.; Zhang, R.; Zhao, K.; Wang, L.; Yao, J.; Liu, S.; Cai, C.; Cao, Y. The effects of rumen-protected choline and rumen-protected nicotinamide on liver transcriptomics in periparturient dairy cows. Metabolites 2023, 13, 594. [CrossRef]
- Caprarulo, V.; Erb, S.J.; Chandler, T.L.; Zenobi, M.G.; Barton, B.A.; Staples, C.R.; White, H.M. The effects of prepartum energy intake and peripartum rumen-protected choline supplementation on hepatic genes involved in glucose and lipid metabolism. J. Dairy Sci. 2020, 103, 11439-11448. [CrossRef]
- Martinez-Aispuro, J.A.; Torres, M.T.S.; Martínez, G.D.M.; Mora, J.L.C.; Velasco, J.L.F.; Monter, M.A.A.; Galván, M.M.C. Addition of calcium propionate to finishing lamb diets. Veterinaria México 2018, 5, 37-46.
- Song, S.Z.; Wu, J.P.; Zhao, S.G.; Casper, D.P.; He, B.; Liu, T.; Lang, X.; Gong, X.Y.; Liu, LS. The effect of energy restriction on fatty acid profiles of longissimus dorsi and tissue adipose depots in sheep. J. Anim. Sci. 2017, 95, 3940-3948.
- Tu, Y.L.; Zhang, K.; Bai, Y.F.; Gao, L.P.; Hong, W. Effects of rumen-protected choline supplied at different dietary energy levels on growth performance and meat quality of fattening goats. J. Anim. Feed. Sci. 2020, 29, 234-240. [CrossRef]
- Ulutas, Z.; Aksoy, Y.; ¸Sirin, E.; Saatci, M. Introducing the Karayaka sheep breed with its traits and influencing factors. Pak. J. Biol. Sci. 2008, 11, 1051–1054.
- Barcena-Gama, J.R.; Martínez-Aispuro, J.A.; Mendoza-Martínez, G.D.; Cordero Mora J.L.; Sánchez-Torres, M.T.; Figueroa Velasco, J.L.; Ayala-Monter, M.A. Evaluation of polyherbal methionine and choline in feedlot rations for lambs. S. Afr. J. Anim. Sci. 2020, 50, 731-737. [CrossRef]
- Grau, R.; Hamm, R. Über das wasserbindungsvermögen des säugetiermuskels. II. Mitteilung. Über die bestimmung der wasserbindung des muskels. Z. Lebensm-Unters Forsch. 1957, 105, 446-460.
- Huo, Q.; Sun, X.; Wu, T.; Li, Z.; Jonker, A.; You, P.; Rongquan, L.; Jianping, L.; Wannian, T.; Changsheng L.; et al. Supplementation of graded levels of rumen-protected choline to a pelleted total mixed ration did not improve the growth and slaughter performance of fattening lambs. Front. Vet. Sci. 2022, 9, 1034895. [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447-457. [CrossRef]
- Papinaho, P.A.; Ruusunen, M.H.; Suuronen, T.; Fletcher, D.L. Relationship between muscle biochemical and meat quality properties of early deboned broiler breasts. J. Appl. Poult. Res. 1996, 5, 126-133. [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995.
- Zhang, R.; Diao, Q.; Tu, Y.; Zhang, N. Effects of different energy levels on nutrient utilization and serum biochemical parameters of early-weaned calves. Sci. Agric. Sin. 2009, 42, 1024-1029. [CrossRef]
- Rios-Rincon, F.G.; Estrada-Angulo, A.; Plascencia, A.; López-Soto, M.A.; Castro-Pérez, B.I.; Portillo-Loera, J.J.; Robles-Estrada, J.C.; Calderón-Cortes, J.F.; Dávila-Ramos, H. Influence of protein and energy level in finishing diets for feedlot hair lambs: growth performance, dietary energetics and carcass characteristics. Asian-Australas J. Anim. Sci. 2014, 27, 55. [CrossRef]
- Jaborek, J.R.; Zerby, H.N.; Moeller, S.J.; Fluharty, F.L. Effect of energy source and level, and sex on growth, performance, and carcass characteristics of long-fed lambs. Small Rumin. Res. 2018, 167, 61-69. [CrossRef]
- Cronje, P.B. Essential role of methyl donors in animal productivity. Anim. Prod. Sci. 2016, 58, 655-665. [CrossRef]
- Wen, Z.G.; Tang, J.; Xie, M.; Yang, P.L.; Hou, S.S. Effects of dietary methionine levels on choline requirements of starter white pekin ducks. Asian-Australas J. Anim. Sci. 2016, 29, 1742. [CrossRef]
- Rodriguez-Guerrero, V.; Lizarazo, A.C.; Ferraro, S.; Miranda, L.A.; Mendoza, G.D.; Suárez, N. Effect of herbal choline and rumen-protected methionine on lamb performance and blood metabolites. S. Afr. J. Anim. Sci. 2018, 48, 427-434. [CrossRef]
- Moretti, A.; Paoletta, M.; Liguori, S.; Bertone, M.; Toro, G.; Iolascon, G. Choline: an essential nutrient for skeletal muscle. Nutrients 2020, 12, 2144. [CrossRef]
- Bollatti, J.M.; Zenobi, M.G.; Barton, B.A.; Staples, C.R.; Santos, J.E.P. Responses to rumen-protected choline in transition cows do not depend on prepartum body condition. J. Dairy Sci. 2020, 103, 2272-2286. [CrossRef]
- Potts, S.B.; Scholte, C.M.; Moyes, K.M.; Erdman, R.A. Production responses to rumen-protected choline and methionine supplemented during the periparturient period differ for primi-and multiparous cows. J. Dairy Sci. 2020, 103, 6070-6086. [CrossRef]
- Arshad, U.; Zenobi, M.G.; Staples, C.R.; Santos, J.E.P. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J. Dairy Sci. 2020, 103, 282-300. [CrossRef]
- Martinez-Aispuro, J.A.; Mendoza, G.D.; Cordero-Mora, J.L.; Ayala-Monter, M.A.; Sánchez-Torres, M.T.; Figueroa-Velasco, J.L.; Vázquez-Silva, G.; Gloria-Trujillo, A. Evaluation of an herbal choline feed plant additive in lamb feedlot rations. Rev. Bras. Zootecn. 2019, 48, e20190020. [CrossRef]
- Vance D.E.; Vance, J.E. Biochemistry of lipids and membranes. Menlo Park (CA): Benjamin/Cummings Publishing Company, 1985.
- Abbasi, I.H.R.; Abbasi, F.; Soomro. R.N. Considering choline as methionine precursor, lipoproteins transporter, hepatic promoter and antioxidant agent in dairy cows. AMB Express. 2017, 7, 214. [CrossRef]
- Toghdory, A; Ghoorchi, T.; Naserian, A.; Ahangari, Y.; Hassani, S. Effects of rumen protected and unprotected choline on energy-related biochemical metabolites of lactating dairy cows. J. Anim. Vet. Adv. 2009, 8, 2181-2185.
- Mendoza-Martínez, G.D.; Orzuna-Orzuna, J.F.; Roque-Jiménez, J.A.; Gloria-Trujillo, A.; Martínez-García, J.A.; Sánchez-López, N.; Hernández-García, P.A; Lee-Rangel, H.A. A polyherbal mixture with nutraceutical properties for ruminants: A meta-analysis and review of biocholine powder. Animal 2024, 14, 667. [CrossRef]
- Leal, K.W.; Alba, D.F.; Cunha, M.G.; Marcon, H.; Oliveira, F.C.; Wagner, R.; Anielen, D.S.; Thalison, F.L.; Loren, S.B.; Mario, Rosa, C.S.; et al. Effects of biocholine powder supplementation in ewe lambs: Growth, rumen fermentation, antioxidant status, and metabolism. Biotechnol. Rep. 2021, 29, e00580. [CrossRef]
- Hall, J.B.; Staigmiller, R.B.; Bellows, R.A.; Short, R.E.; Moseley, W.M.; Bellows, S.E. Body composition and metabolic profiles associated with puberty in beef heifers. J. Anim. Sci. 1995, 73, 3409–3420. [CrossRef]
- Guretzky, N.J.; Carlson, D.B.; Garrett, J.E.; Drackley, J.K. Lipid metabolite profiles and milk production for Holstein and Jersey cows fed rumen-protected choline during the periparturient period. J. Dairy Sci. 2006, 89, 188-200. [CrossRef]
- Nardi, R.D.; Marchesini, G.; Tenti, S.; Contiero, B.; Andrighetto, I.; Segato, S. Lecithin as a supplement for mid-lactating dairy cows. Acta Agric. Slov. 2012, 100(Suppl. 3), 67-70.
- Mu, Y.P.; Ogawa, T.; Kawada, N. Reversibility of fibrosis, inflammation, and endoplasmic reticulum stress in the liver of rats fed a methionine–choline-deficient diet. Laboratory Investigation 2010, 90, 245-256.
- Dufour, D.R.; Lott, J.A.; Nolte, F.S.; Gretch, D.R.; Koff, R.S.; Seeff, L.B. Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin. Chem. 2000, 46, 2027-2049. [CrossRef]
- Waddell, J.; Rickman, N.C.; He, M.; Tang, N.; Bearer, C.F. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr. Res. 2021, 89, 1414-1419. [CrossRef]
- Sun, F.; Cao, Y.; Cai, C.; Li, S.; Yu, C.; Yao, J. Regulation of nutritional metabolism in transition dairy cows: Energy homeostasis and health in response to post-ruminal choline and methionine. PLoS One 2016, 11, e0160659. [CrossRef]
- Kvidera, S.K.; Horst, E.A.; Fernandez, M.S.; Abuajamieh, M.; Ganesan, S.; Gorden, P.J.; Green, H.B.; Schoenberg, K.M.; Trout, W.E.; Keating, A.F.; et al. Characterizing effects of feed restriction and glucagon-like peptide 2 administration on biomarkers of inflammation and intestinal morphology. J. Dairy Sci. 2017, 100, 9402-9417. [CrossRef]
- Zhang, D.; Yuan, C., Guo, T.; Liu, J.; Lu, Z. Effects of different dietary energy levels on development, quality of carcass and meat, and fatty acid profile in male lambs. Animals 2023, 13, 2870. [CrossRef]
- Wang, Q.; Wang, Y.; Hussain, T.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Ji, F.; et al. Effects of dietary energy level on growth performance, blood parameters and meat quality in fattening male Hu lambs. J. Anim. Physiol. Anim. Nutr. 2020, 104, 418-430. [CrossRef]
- Sen, U.; Sirin, E.; Ulutas, Z.; Kuran, M. Fattening performance, slaughter, carcass and meat quality traits of Karayaka lambs. Trop. Anim. Health Prod. 2011, 43, 409-416. [CrossRef]
- Gökdal, Ö.; Atay, O.; Eren, V.; Demircioğlu, S.K. Fattening performance, carcass and meat quality characteristics of Kivircik male lambs. Trop. Anim. Health Prod. 2012, 44, 1491-1496. [CrossRef]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31-48. [CrossRef]
- Jahanian, R.; Ashnagar, M. Effects of dietary supplementation of choline and carnitine on growth performance, meat oxidative stability and carcass composition of broiler chickens fed diets with different metabolisable energy levels. Br. Poult. Sci. 2018, 59, 470–476. [CrossRef]
- Salwani, M.S.; Adeyemi, K.D.; Sarah, S.A.; Vejayan, J.; Zulkifli, I.; Sazili, A.Q. Skeletal muscle proteome and meat quality of broiler chickens subjected to gas stunning prior slaughter or slaughtered without stunning. J. Food. 2016, 14, 375-381. [CrossRef]
- Geletu, U.S.; Usmael, M.A.; Mummed, Y.Y.; Ibrahim, A.M. Quality of cattle meat and its compositional constituents. Vet. Med. Int. 2021, 1-9. [CrossRef]
- Harris, R. Carbohydrate metabolism I: Major metabolic pathways and their control. In Textbook of Biochemistry with Clinical Correlations; John Wiley & Sons: Hoboken, NJ, USA, 1992.
- Van Bibber-Krueger, C.L.; Collins, A.M.; Phelps, K.J.; O’Quinn, T.G.; Houser, T.A.; Turner, K.K.; Gonzalez, J.M. Effects of quality grade and intramuscular location on beef semitendinosus muscle fiber characteristics, NADH content, and color stability. J. Anim. Sci. 2020, 98, skaa078. [CrossRef]
- Ekiz, B.; Yilmaz, A.; Ozcan, M.; Kaptan, C.; Hanoglu, H.; Erdogan, I.; Yalcintan, H. Carcass measurements and meat quality of Turkish Merino, Ramlic, Kivircik, Chios and Imroz lambs raised under an intensive production system. Meat Sci. 2009, 82, 64–70. [CrossRef]
- Xiong, L.; Pei, J.; Wang, X.; Guo, S.; Guo, X.; Yan, P. Effect of lipids in yak muscle under different feeding systems on meat quality based on untargeted lipidomics. Animals 2022, 12, 2814. [CrossRef]
- Khliji, S.; Van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224- 229. [CrossRef]
- Fruet, A.P.B.; Trombetta, F.; Stefanello, F.S.; Speroni, C.S.; Donadel, J.Z.; De Souza, A.N.M.; Rosado Júnior, A.; Tonetto, C.J.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat Sci. 2018, 140, 112-118. [CrossRef]
- Martínez-García, J.A.; Garcia-Lopez, J.C.; Hernández-García, P.A.; Mendoza-Martínez, G.D.; Vázquez-Valladolid, A.; Mejia-Delgadillo, M.A.; Lee-Rangel, H.A. Changes in productive performance, blood metabolites and hematological parameters of growing lambs supplemented with two sources of choline. Indian J. Anim. Res. 2021, 1, 6. [CrossRef]
- Aksoy, Y.; Çiçek, Ü.; ¸Sen, U.; ¸Sirin, E.; U˘gurlu, M.; Önenç, A.; Kuran, M.; Uluta¸s, Z. Meat production characteristics of Turkish native breeds: II. Meat quality, fatty acid, and cholesterol profile of lambs. Arch. Anim. Breed. 2019, 62, 41–48.
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194-204. [CrossRef]
- Trefan, L.; Bünger, L.; Bloom-Hansen, J.; Rooke, J.A.; Salmi, B.; Larzul, C.; Terlouw, C.; Doeschl-Wilson, A. Meta-analysis of the effects of dietary vitamin E supplementation on α-tocopherol concentration and lipid oxidation in pork. Meat Sci. 2011, 87, 305-314. [CrossRef]
- Brand, T.S.; Van Der Merwe, D.A.; Hoffman, L.C., Geldenhuys, G. The effect of dietary energy content on quality characteristics of Boer goat meat. Meat Sci. 2018, 139, 74-81. [CrossRef]
- Schönfeldt, H.C.; Naudé, R.T.; Bok, W.; Van Heerden, S.M.; Smit, R.; Boshoff, E. Flavour-and tenderness-related quality characteristics of goat and sheep meat. Meat Sci. 1993, 34, 363-379. [CrossRef]
- Matthews, J.O.; Southern, L.L.; Bidner, T.D.; Persica, M.A. Effects of betaine, pen space, and slaughter handling method on growth performance, carcass traits, and pork quality of finishing barrows. J. Anim. Sci. 2001, 79, 967-974. [CrossRef]
- Jin, Y.; Jiang, B.; Wang, H. Growth performance, meat quality and lipid metabolism in finishing lambs fed diets containing rumen-unprotected and rumen-protected betaine. Ital. J. Anim. Sci. 2021, 20, 2041-2050. [CrossRef]
| Ingredient, % of DM | Optimum energy | Low energy | Alfalfa hay |
|---|---|---|---|
| Barley | 40.00 | 39.10 | - |
| Corn | 26.47 | 10.00 | - |
| Wheat cracked | 7.45 | 2.00 | - |
| Sunflower meal | 11.02 | 22.08 | - |
| Cottonseed meal | 2.00 | 2.00 | - |
| Soybean meal | 6.96 | - | - |
| Wheat bran | 2.00 | 10.72 | - |
| Wheat bonkalite | - | 6.00 | - |
| Molasses | 2.00 | 6.00 | - |
| Marble powder | 1.50 | 1.50 | - |
| Salt | 0.40 | 0,4 | - |
| Sodium bicarbonate | 0.10 | 0.10 | - |
| Vitamin (Premix) † | 0.10 | 0.10 | - |
| Nutrient composition, % of DM | |||
| Dry matter | 87.62 | 87.24 | 88.00 |
| Crude protein | 16.00 | 16.00 | 16.08 |
| Crude cellulose | 5.96 | 9.42 | 28.84 |
| Ether extract | 3.20 | 2.63 | 1.76 |
| Metabolizable energy (ME)†, kcal/kg | 2750 | 2500 | 1950 |
| Item | Day | -RPC† | +RPC† |
SEM† |
pValue | ||||
|---|---|---|---|---|---|---|---|---|---|
| Optimum ME† | Low ME† |
Optimum ME† | Low ME† |
RPC | ME | RPC × ME | |||
| Body weight (kg) | Initial BW‡, kg | 26.92 | 26.89 | 26.74 | 26.84 | 0.269 | 0.843 | 0.951 | 0.911 |
| d 14 | 30.10 | 30.01 | 30.15 | 29.95 | 0.260 | 0.995 | 0.793 | 0.923 | |
| d 28 | 33.97 | 33.25 | 33.79 | 33.42 | 0.274 | 1.000 | 0.350 | 0.757 | |
| d 42 | 37.63 | 35.99 | 37.62 | 36.28 | 0.297 | 0.797 | 0.012 | 0.797 | |
| d 56 | 41.07 | 39.35 | 41.35 | 39.61 | 0.291 | 0.596 | <0.001 | 0.978 | |
| ADG‡ (g/day) | d 1- 14 | 227.55 | 222.96 | 243.87 | 222.45 | 4.156 | 0.337 | 0.120 | 0.307 |
| d 15-28 | 276.02 | 231.12 | 25.69 | 247.96 | 5.062 | 0.976 | 0.003 | 0.060 | |
| d 29-42 | 261.73 | 195.91 | 273.98 | 204.08 | 8.483 | 0.375 | <0.001 | 0.858 | |
| d 43-56 | 245.40 | 240.30 | 266.32 | 237.75 | 7.866 | 0.572 | 0.304 | 0.472 | |
| Overall | 252.68 | 222.57 | 260.97 | 228.05 | 3.769 | 0.142 | <0.001 | 0.759 | |
| DMI‡ (kg/days) | d 1- 14 | 1.11 | 1.09 | 1.17 | 1.10 | 0.012 | 0.119 | 0.075 | 0.385 |
| d 15-28 | 1.31 | 1.28 | 1.30 | 1.37 | 0.015 | 0.522 | 0.206 | 0.118 | |
| d 29-42 | 1.24 | 1.33 | 1.26 | 1.36 | 0.012 | 0.199 | <0.001 | 0.629 | |
| d 43-56 | 1.25 | 1.37 | 1.32 | 1.40 | 0.020 | 0.239 | 0.011 | 0,539 | |
| Overall | 1.22 | 1.30 | 1.25 | 1.31 | 0.009 | 0.067 | <0.001 | 0.503 | |
| FCR‡ | d 1- 14 | 4.89 | 5.02 | 5.10 | 4.95 | 0.061 | 0.600 | 0.955 | 0.279 |
| d 15-28 | 4.77 | 5.65 | 4.96 | 5.35 | 0.099 | 0.718 | p<0.001 | 0.141 | |
| d 29-42 | 4.73 | 6.78 | 4.60 | 6.66 | 0.221 | 0.544 | p<0.001 | 0.976 | |
| d 43-56 | 5.09 | 5.73 | 4.95 | 5.88 | 0.126 | 0.987 | 0.001 | 0.519 | |
| Overall | 4.70 | 5.84 | 4.78 | 5.74 | 0.128 | 0.953 | p<0.001 | 0.605 | |
| Item | Day | -RPC† | +RPC† | SEM† | p Value | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Optimum ME† | LowME† | Optimum ME† | LowME† | RPC | ME | RPC × ME | ||||
| Energy and lipid metabolism | Glikoz (mg/dL) | 28 d | 67.57 | 69.00 | 67.71 | 66.42 | 0.666 | 0.382 | 0.959 | 0.330 |
| 56 d | 68.10 | 66.00 | 68.49 | 65.69 | 0.380 | 0.943 | <0.001 | 0.542 | ||
| Trigliserit (mg/dL) | 28 d | 13.28 | 13.85 | 12.42 | 12.57 | 0.403 | 0.205 | 0.668 | 0.797 | |
| 56 d | 13.57 | 12.71 | 14.24 | 13.28 | 0.535 | 0.898 | 0.376 | 0.525 | ||
| Kolesterol (mg/dL) | 28 d | 43.11 | 42.25 | 44.31 | 42.21 | 1.079 | 0.801 | 0.518 | 0.788 | |
| 56 d | 43.17 | 41.73 | 42.93 | 42.09 | 0.973 | 0.887 | 0.584 | 0.976 | ||
| HDL‡ (mg/dL) | 28 d | 27.04 | 27.55 | 25.98 | 27.08 | 0.892 | 0.689 | 0.672 | 0.878 | |
| 56 d | 26.60 | 27.47 | 24.44 | 28.75 | 0.783 | 0.272 | 0.104 | 0.779 | ||
| LDL (mg/dL) | 28 d | 10.00 | 9.14 | 9.85 | 10.14 | 0.386 | 0.599 | 0.725 | 0.484 | |
| 56 d | 9.14 | 9.28 | 10.28 | 11.00 | 0.654 | 0.835 | 0.754 | 0.302 | ||
| Protein metabolism | Total protein (g/dL) | 28 d | 6.27 | 6.52 | 6.50 | 6.34 | 0.076 | 0.893 | 0.753 | 0.200 |
| 56 d | 6.47 | 6.50 | 6.35 | 6,.0 | 0.073 | 0.781 | 0.926 | 0.313 | ||
| Albumin (A) (g/dL) | 28 d | 2.98 | 3.25 | 3.25 | 3.21 | 0.045 | 0.215 | 0.215 | 0.093 | |
| 56 d | 3.02 | 3.30 | 2.70 | 2.94 | 0.115 | 0.951 | 0.274 | 0.148 | ||
| Globulin (G) (mg/dL) | 28 d | 3.27 | 3.22 | 3.22 | 3.18 | 0.086 | 0.818 | 0.818 | 1.000 | |
| 56 d | 3.42 | 3.20 | 3.22 | 3.37 | 0.067 | 0.187 | 0.757 | 0.918 | ||
| A/G‡ | 28 d | 0.93 | 1.06 | 1.02 | 1.01 | 0.038 | 0.804 | 0.448 | 0.388 | |
| 56 d | 0.89 | 1.03 | 0.84 | 0.87 | 0.039 | 0.473 | 0.291 | 0.177 | ||
| Serum urea-N (mg/dL) | 28 d | 21.72 | 22.25 | 19.07 | 20.44 | 0.383 | 0.002 | 0.151 | 0.517 | |
| 56 d | 23.82a | 21.32ab | 17.42c | 20.45b | 0.560 | 0.001 | 0.723 | <0.001 | ||
| Creatinine (mg/dL) | 28 d | 0.56 | 0.61 | 0.57 | 0.57 | 0.011 | 0.531 | 0.350 | 0.239 | |
| 56 d | 0.65 | 0.73 | 0.71 | 0.73 | 0.182 | 0.342 | 0.198 | 0.382 | ||
| Liver function | ALT‡ (U/L) | 28 d | 17.14 | 17.71 | 17.28 | 17.28 | 0.345 | 0.846 | 0.698 | 0.698 |
| 56 d | 18.28 | 18.28 | 17.85 | 20.28 | 0.398 | 0.120 | 0.120 | 0.307 | ||
| AST‡ (U/L) | 28 d | 81.14 | 81.71 | 78.71 | 77.25 | 1.740 | 0.353 | 0.907 | 0.785 | |
| 56 d | 81.14 | 80.57 | 78.74 | 84.28 | 1.553 | 0.345 | 0.441 | 0.842 | ||
| ALP‡ (U/L) | 28 d | 178.00 | 176.85 | 191.28 | 191.14 | 6.515 | 0.318 | 0.963 | 0.971 | |
| 56 d | 234.00 | 214.71 | 213.71 | 245.56 | 7.585 | 0.104 | 0.681 | 0.730 | ||
| AST/ALP‡ | 28 d | 0.47 | 0.46 | 0.45 | 0.42 | 0.025 | 0.598 | 0.654 | 0.832 | |
| 56 d | 0.42 | 0.43 | 0.37 | 0.38 | 0.016 | 1.000 | 0.731 | 0.103 | ||
| GGT‡ (U/L) | 28 d | 77.00 | 73.57 | 75.28 | 78.00 | 0.992 | 0.502 | 0.859 | 0.136 | |
| 56 d | 77.00 | 78.00 | 75.28 | 73.57 | 0.992 | 0.502 | 0.859 | 0.136 | ||
| TBIL‡ (mg/dL) | 28 d | 0.30 | 0.27 | 0.32 | 0.28 | 0.014 | 0.490 | 0.254 | 0.817 | |
| 56 d | 0.32 | 0.35 | 0.35 | 0.35 | 0.222 | 0.774 | 0.774 | 0.774 | ||
| -RPC† | +RPC† | SEM† | p Value | |||||
|---|---|---|---|---|---|---|---|---|
| Optimum ME† | Low ME† |
Optimum ME† | Low ME† |
RPC | ME | RPC × ME | ||
| Carcass performance | ||||||||
| Hot carcass weight (kg) | 19.32 | 17.57 | 19.74 | 17.71 | 0.211 | 0.785 | <0.001 | 0.166 |
| Cold carcass weight (kg) | 18.57 | 17.28 | 18.98 | 17.00 | 0.192 | 0.767 | <0.001 | 0.140 |
| Hot dressing percentage (%) | 47.04 | 45.45 | 47.72 | 44.38 | 0.347 | 0.703 | <0.001 | 0.097 |
| Cold dressing percentage (%) | 45.20 | 43.99 | 45.89 | 42.94 | 0.307 | 0.899 | <0.001 | 0.388 |
| LD area (cm2) | 11.96 | 10.70 | 11.66 | 10.64 | 0.222 | 0.592 | 0.008 | 0.719 |
| Fat thickness over LD (mm) | 3.95 | 3.54 | 3.82 | 3.25 | 0.097 | 0.125 | 0.004 | 0.532 |
| Meat quality | ||||||||
| pH24 h | 5.76 | 5.79 | 5.74 | 5.82 | 0.637 | 0.932 | 0.152 | 0.556 |
| Color characteristics for LD24 h | ||||||||
| L* (Lightness) | 43.06 | 45.20 | 44.54 | 45.56 | 0.390 | 0.176 | 0.034 | 0.391 |
| a* (Redness) | 17.95 | 17.44 | 17.47 | 18.30 | 0.368 | 0.824 | 0.851 | 0.446 |
| b* (Yellowness) | 12.62 | 12.88 | 12.20 | 12.89 | 0.206 | 0.655 | 0.310 | 0.634 |
| Water-holding capacity (%) | 38.31 | 38.29 | 39.03 | 38.57 | 0.353 | 0.545 | 0.772 | 0.791 |
| Drip loss (%) | 2.84 | 2.69 | 2.74 | 2.82 | 0.038 | 0.820 | 0.666 | 0.179 |
| Cooking loss (%) | 27.46 | 28.01 | 27.91 | 27.73 | 0.231 | 0.905 | 0.935 | 0.348 |
| Shear force (kg/cm2) | 4.85 | 4.96 | 4.81 | 5.25 | 0.195 | 0.784 | 0.541 | 0.718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
