Submitted:
22 November 2023
Posted:
26 November 2023
You are already at the latest version
Abstract
Keywords:
Article Highlights
1. Introduction
2. The Clean Air Act Background
2.1. Clean Air Act scope
2.2. State Implementation Plans (SIPs)
2.3. Solid waste incineration
2.3.1. Particulate Matter
2.3.2. Volatile organic compounds and ozone
2.3.3. Carbon Monoxide
2.3.4. Hazardous air pollutants
2.3.5. CAA Title V permitting
3. Emissions from burning woody biomass
4. Using pyrolysis to create biochar
4.1. Mobile Biochar Pyrolysis Systems
4.2. Permitting for Mobile Biochar Pyrolysis Systems in the USA
5. Conclusions and perspectives
Availability of data and materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Air Burners Technology. 2022. The principle of air curtain burning. https://airburners.com/wp-content/uploads/2022/06/air_burners_principle_of_operation-1.pdf.
- Anand, A., Gautam, S., and Ram, C.L. 2023. Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications. Journal of Analytical and Applied Pyrolysis, Volume 170, 2023, 105881. [CrossRef]
- Andreae, M. O. 2019. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. Phys., 19, 8523–8546. [CrossRef]
- Antal, M.J., and Grønli, M. 2003. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42 (2003), pp. 1619-1640. [CrossRef]
- Bindar, Y., Budhi, W.Y., Hernowo, P., Wahyu, S., Saquib, S., and Setiadi,T. 2023. 1 - Sustainable technologies for biochar production. Editor(s): Huu Hao Ngo, Wenshan Guo, Ashok Pandey, Sunita Varjani, Daniel C.W. Tsang. Current Developments in Biotechnology and Bioengineering, Elsevier, 2023, Pages 1-40. ISBN 9780323918732. [CrossRef]
- Brook, R.D., Brook, J., Urch, B., Vincent, R., Rajagopalan, S., and Silverman, F. 2002. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults, Circulation, 2002, vol. 105 (pg. 1534-1536). [CrossRef]
- Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, et al. 2010. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation (2010) 121:2331–78. [CrossRef]
- Brown, R., del Campo, B., Boateng, A.A., Garcia-Perez, M., and Mašek, O. 2015. Fundamentals of biochar production. In Biochar for Environmental Management Science, Technology and Implementation. Second Edition, Edited by Johannes Lehmann and Stephen Joseph. Earthscan from Routledge, NY. USA. 976p. [CrossRef]
- California Air Resources Board. 2023. What is carbon monoxide? .https://ww2.arb.ca.gov/resources/carbon-monoxide-and-health#:~:text=CO%20contributes%20indirectly%20to%20climate,weak%20direct%20effect%20on%20climate. (Accessed August 1, 2023).
- Cornelissen, G., Pandit, N.R., Taylor, P., Pandit, B.H., Sparrevik, M. and Schmidt, H.P., 2016. Emissions and char quality of flame-curtain" Kon Tiki" Kilns for Farmer-Scale charcoal/biochar production. PloS one, 11(5), p.e0154617. [CrossRef]
- Domike, J.R., Zacaroli, A.C. (Editors). 2016. The Clean Air Act Handbook. Clean Air Act handbook. 4th ed. American Bar Association, Section of Environment, 820p.
- Estrellan, C.R.; Lino, F. 2010.Toxic emissions from open burning. Chemosphere 2010, 80, 193–207. [CrossRef]
- Federal Register. 1998. Indian Tribes: Air Quality Planning and Management. Environmental Protection Agency 40 CFR Parts 9, 35, 49, 50, and 81. Final Rule. U.S. Government Printing Office/Vol. 63, No. 29/Thursday, February 12, 1998/Rules and Regulations. https://www.govinfo.gov/content/pkg/FR-1998-02-12/pdf/98-3451.pdf.
- Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.2022. Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900. [CrossRef]
- Fry, M. M., Schwarzkopf, M. D., Adelman, Z., Naik, V., Collins, W. J., and West, J. J. 2013: Net radiative forcing and air quality responses to regional CO emission reductions, Atmos. Chem. Phys., 13, 5381–5399. https://acp.copernicus.org/articles/13/5381/2013/acp-13-5381-2013.html.
- Fuchs M, Garcia-Perez M, Small P, Flora G. 2014. Campfire Lessons - breaking down the combustion process to understand biochar production. The Biochar Journal 2014, Arbaz, Switzerland. ISSN 2297-1114. www.biochar-journal.org/en/ct/47, Version of 31th December 2014. (Accessed August 23, 2023).
- Gabhane, J.W., Bhange, V.P., Patil, P.D. et al. 2020. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Appl. Sci.2, 1307 (2020). [CrossRef]
- Garcia-Perez, M., T. Lewis, C.E. Kruger. 2010. Methods for producing biochar and advanced biofuels in Washington State. Part 1: Literature review of pyrolysis reactors. First project report. Department of Biological Systems and the Center for Sustainable Agriculture and Natural Resources. Washington State University, Pullman. WA. 137p. https://apps.ecology.wa.gov/publications/documents/1107017.pdf.
- Greenberg, J. P., Friedli, H., Guenther, A. B., Hanson, D., Harley, P., and Karl, T. 2006. Volatile organic emissions from the distillation and pyrolysis of vegetation, Atmos. Chem. Phys., 6, 81–91. [CrossRef]
- Hamanaka R.B., Mutlu G.M. 2018. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Journal Frontiers in Endocrinology. Volume (9) 2018. [CrossRef]
- Hornung, A., Stenzel, F. & Grunwald, J. 2020. Biochar—just a black matter is not enough. Biomass Conv. Bioref. (2021). [CrossRef]
- https://greenyourhead.typepad.com/files/6_inoue_mogi_yoshizawa.pdf.
- Itoh, T., Fujiwara, N., Iwabuchi, K., Narita, T., Mendbayar, D., Kamide, M., Niwa, S., and Matsumi, Y. 2020. Effects of pyrolysis temperature and feedstock type on particulate matter emission characteristics during biochar combustion. Fuel Processing Technology, Volume 204, 2020, 106408. [CrossRef]
- Khoo, H.H., Tan, R.B.H. and Sagisaka, M. Utilization of woody biomass in Singapore: technological options for carbonization and economic comparison with incineration. Int J Life Cycle Assess 13, 312–318 (2008). [CrossRef]
- Knorr, W., Lehsten, V., Arneth, A. 2012. Determinants and predictability of global wildfire emissions. Atmospheric Chemistry and Physics. 12: 6845-6861. [CrossRef]
- Kim, MJ., Baek, KM., Heo, JB. et al. Concentrations, health risks, and sources of hazardous air pollutants in Seoul-Incheon, a megacity area in Korea. Air Qual Atmos Health 14, 873–893 (2021). [CrossRef]
- Langholtz, M. H., Stokes, B. J., and Eaton, L. M.. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy. United States: N. p., 2016. https://www.energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf.
- Lasko, K., and Vadrevu, K. 2018. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam, Environmental Pollution, Volume 236, 2018. Pages 795-806. [CrossRef]
- Lee E, Han H-S. Air Curtain Burners: A Tool for Disposal of Forest Residues. Forests. 2017; 8(8):296. [CrossRef]
- Leikauf, D.G. 2002. Hazardous Air Pollutants and Asthma. Environmental Health Perspectives. Volume 110, Supplement 4. 505–526. [CrossRef]
- Lemieux, M.P., Lutes, C.C., and Santoianni, A.D. 2004. Emissions of organic air toxics from open burning: a comprehensive review. Progress in Energy and Combustion Science, Volume 30, Issue 1, 2004, Pages 1-32. [CrossRef]
- Louis, G.E. 2004. A historical context of municipal solid waste management in the United States. Waste Management and Research 22: 225-322. [CrossRef]
- McAvoy, D. 2019. Hazardous Fuels Reduction Using Flame Cap Biochar Kilns. Fact sheet 037. https://extension.usu.edu/forestry/publications/utah-forest-facts/037-hazardous-fuels-reduction-using-flame-cap-biochar-kiln.
- Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. 2020. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health. 2020 Feb 20; 8:14. [CrossRef]
- Mareddy. RA. 2017. 5 - Impacts on air environment. Editor(s): Anji Reddy Mareddy. Environmental Impact Assessment, Butterworth-Heinemann, 2017. Pages 171-216. ISBN 9780128111390. [CrossRef]
- Merriam-Webster. 2023. Dictionary. https://www.merriam-webster.com/dictionary/kiln. (accessed August 9, 2023).
- Middlebrook, A.M., Murphy, D.M., Ahmadov, R., Atlas, E.L., Bahreini, R., Blake, D.R., et al., 2012.Air quality implications of the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. U.S.A. 109 (50) ,20280- 20285. [CrossRef]
- Miller MR, Shaw CA, Langrish JP. 2012. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. (2012) 8:577–602. [CrossRef]
- Miranda Santos SDFdO, Piekarski CM, Ugaya CML, Donato DB, Braghini Júnior A, De Francisco AC, Carvalho AMML. Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion. Sustainability. 2017; 9(9):1558. [CrossRef]
- Mishra, K.R., Kumar, P.J.D., Narula, A., Chistie, M.S., and Naik, U.S. 2023. Production and beneficial impact of biochar for environmental application: A review on types of feedstocks, chemical compositions, operating parameters, techno-economic study, and life cycle assessment. Fuel, Volume 343, 2023, 127968. [CrossRef]
- Mohan, D., Pittman Jr., U.C., and Steele H.P. 2006. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels 2006 20 (3), 848-889. [CrossRef]
- Mutziger, A. and Orozco, E. 2021. Air Curtain Incinerators & Carbonizer Use, Benefits, and Permitting. San Luis Obispo County, Air Pollution Control District. Presentation 23 September 2021. https://www.ourair.org/wp-content/uploads/2021-09bcc-4.pdf.
- Nsamba, H., Hale, S., Cornelissen, G. and Bachmann, R. 2015. Sustainable Technologies for Small-Scale Biochar Production—A Review. Journal of Sustainable Bioenergy Systems, 5, 10-31. [CrossRef]
- Newby, E.D. and others, on behalf of ESC Working Group on Thrombosis, European Association for Cardiovascular Prevention and Rehabilitation and ESC Heart Failure Association.2015. Expert position paper on air pollution and cardiovascular disease. European Heart Journal, Volume 36, Issue 2, 7 January 2015, Pages 83–93. [CrossRef]
- Oregon Department of Environmental Quality. 2023. Source Test Report for 2023 Emission Factor Testing Mobile Air Curtain Incinerator Valley Environmental Hillsboro, Oregon. montroseFSTestReport.pdf (oregon.gov).
- Page-Dumroese, D., Coleman, M., Jones, G., Venn, T., Dumroese, R. K., Anderson, N., Chung, W., Loeffler, D., Archuleta, J., Kimsey, M., Badger, P., Shaw, T., and McElligott, K. 2009. Portable in-woods pyrolysis: Using forest biomass to reduce forest fuels, increase soil productivity, and sequester carbon. Paper presented at the North American biochar conference; August 9-12; Boulder, CO. Center for Energy and Environmental Security. 13 p. https://www.fs.usda.gov/research/treesearch/40449.
- Pecha, B.M., and Garcia-Perez, M. 2020. Chapter 29 - Pyrolysis of lignocellulosic biomass: oil, char, and gas, Editor(s): Anju Dahiya, Bioenergy (Second Edition), Academic Press, 2020, Pages 581-619. [CrossRef]
- Pennise, D.M., Smith, K.R., Kithinji, J.P., Rezende, M.E., Raad, T.J., Zhang, J., et al. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil.2001. Journal of Geophysical Research: Atmospheres, 106 (2001), pp. 24143-24155. [CrossRef]
- Plaza, D., Artigas, J., Abrego, J., Gonzalo, A., Sanchez, J.L., Dro, D.A., and Richardson Y. 2019. Design and operation of a small-scale carbonization kiln for cashew nutshell valorization in Burkina Faso. Energy for Sustainable Development 53 (2019) 71- 80. [CrossRef]
- Puettmann, M., Sahoo, K., Wilson, K., and Oneil, E. 2020. Life cycle assessment of biochar produced from forest residues using portable systems. Journal of Cleaner Production, 250, 119564. [CrossRef]
- Raza, A., Bellander, T., Bero-Bedada, G., Dahlquist, M., Hollenberg, J., Jonsson, M., Lind, T., Rosenqvist, M., Svensson, L., Ljungman, PLS. 2014. Short-term effects of air pollution on out-of-hospital cardiac arrest in Stockholm, Eur Heart J, 2014, vol. 35 (pg. 861-868). [CrossRef]
- Ribeiro, N.JL., De Oliveira, M.CJ., Da Silva, C. JP. 2018. Chapter 1 – Introducción. Editor(s): Leonel Jorge Ribeiro Nunes, João Carlos De Oliveira Matias, João Paulo Da Silva Catalão. Torrefaction of Biomass for Energy Applications, Academic Press. 2018, Pages 1-43. [CrossRef]
- Safarian, S. 2023. Performance analysis of sustainable technologies for biochar production: A comprehensive review. Energy Reports 9 (2023) 4574–4593. [CrossRef]
- Schmidt HP, Taylor P. 2014. Kon-Tiki flame cap pyrolysis for the democratization of biochar production, the Biochar-Journal 2014, Arbaz, Switzerland, pp 14 -24, www.biochar-journal.org/en/ct/39.
- Schettini, S.L.B., Jacovine, G.L.A., Torres, E.M.M.C., Carneiro, O. A.de C., Villanova, H.P., da Rocha, S.J.S.S., Rufino, X. M.M.P., Silva, B.L., and Castro, O.V.R. 2022. Furnace-kiln system: How does the use of new technologies in charcoal production affect the carbon balance? Industrial Crops and Products, Volume 187, Part A, 2022, 115330. [CrossRef]
- Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J. 2018. High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18, 9263–9281. [CrossRef]
- Soares Neto, T.G., Carvalho Jr., Veras, J.A.C.A.G., Alvarado, E.C. Gielow, R., Lincoln, E.N., Christian, T.J., Yokelson, R.J., and Santos J.C. 2009. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire Atmos. Environ., 43 (2009), pp. 438-446. [CrossRef]
- Sohi, P.S., Krull, E., Lopez-Capel, E., and Bol, R. 2010. Chapter 2 - A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy, Academic Press, Volume 105, 2010, Pages 47-82. [CrossRef]
- Sørmo, E., Silvani, L., Thune, G., Gerber, H., Schmidt, P.H., Smebye, B.A., and Cornelissen, G. 2020. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality, Science of The Total Environment, Volume 718, 2020, 137335, ISSN 0048-9697. [CrossRef]
- Sparrevik, M., Field, J.L., Martinsen, V., Breedveld, G.D., and Cornelissen, G. 2013. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia. Environmental Science & Technology, 47 (2013), pp. 1206- 1215. [CrossRef]
- Sparrevik, M., Adam, C., Martinsen, V., and Cornelissen, G.J. 2015. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns, Biomass and Bioenergy, Volume 72, 2015, Pages 65-73. [CrossRef]
- Springsteen, B., Christofk, T., Eubanks, S., Mason, T., Clavin, C., and Storey, B. 2011. Emission Reductions from Woody Biomass Waste for Energy as an Alternative to Open Burning, Journal of the Air and Waste Management Association, 61:1, 63-68. [CrossRef]
- Springsteen, B., Yorgey, G.G., Glass, G., and Christoforou, C. 2021. CHAPTER 12: Air Pollutant Emissions and Air Emissions Permitting for Biochar Production Systems. In Biomass to biochar: Maximizing the carbon value. Pullman, WA: Washington State University, Center for Sustaining Agriculture and Natural Resources. 166 p. Online: https://csanr.wsu.edu/biomass2biochar/.
- Stanek, W.L., et al., 2011. Air Pollution Toxicology—A Brief Review of the Role of the Science in Shaping the Current Understanding of Air Pollution Health Risks, Toxicological Sciences, Volume 120, Issue suppl_1, March 2011, Pages S8–S27. [CrossRef]
- Texas Commission on Environmental Quality. 2023. Air Pollution from Carbon Monoxide. Air Pollution from Carbon Monoxide. https://www.tceq.texas.gov/airquality/sip/criteria-pollutants/sip-co (Accessed August 1, 2023).
- Tigercat, 2022. 6050 carbonator. https://www.tigercat.com/wp-content/uploads/2020/01/6050-Carbonator-4pg-1.4-0122-web.pdf.
- U.S. Code. 1971. Title 40. 40 CFR § 60.2970 - What is an air curtain incinerator? Chapter 1, Subchapter C, Part 60, Subpart EEEE. .https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-60/subpart-EEEE/subject-group-ECFR7071f1d8aec7a06/section-60.2970. (Accessed August 28, 2023).
- U.S. Code. 2010. Title 42 - The public health and welfare- Chapter 85 - Air pollution prevention and control. U.S. Government Publishing Office. https://www.govinfo.gov/content/pkg/USCODE-2010-title42/html/USCODE-2010-title42-chap85.htm (Accessed July 7, 2023).
- U.S. Government Publishing Office. 2010. Title 42 - The public health and welfare-Chapter 85 - air pollution prevention and control. https://www.govinfo.gov/content/pkg/USCODE-2010-title42/html/USCODE-2010-title42-chap85.htm (Accessed July 11, 2023).
- U.S. Environmental Protection Agency. 2000. Response to Questions Regarding Volatile Organic Compounds. EPA Region 10. OAQ-107. https://www.epa.gov/sites/default/files/2015-08/documents/20001221.pdf.
- U.S. Environmental Protection Agency. 2007. The Plain English Guide to the Clean Air Act. Office of Air Quality Planning and Standards Publication. No. EPA-456/K-07-001. 27p. https://www.epa.gov/sites/default/files/2015-08/documents/peg.pdf.
- U.S. Environmental Protection Agency.2009. Air Pollution Control Technology Fact Sheet. EPA-452/F-03-022. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100RQ6F.PDF?Dockey=P100RQ6F.PDF.
- U.S. Environmental Protection Agency. 2012. Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter. EPA-452/R-12-005. Office of Air Quality Planning and Standards Health and Environmental Impacts Division. https://www3.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf.
- U.S. Environmental Protection Agency. 2012a. A Citizen’s Guide to Incineration. Office of Solid Waste and Environmental Protection Emergency Response. EPA 542-F-12-010. https://www.epa.gov/sites/default/files/2015-04/documents/a_citizens_guide_to_incineration.pdf.
- U.S. Environmental Protection Agency, 2013. Guidance on Infrastructure State Implementation Plan (SIP) Elements Under Clean Air Act Sections 110(a)(1) and 110(a)(2). https://www3.epa.gov/airquality/urbanair/sipstatus/docs/Guidance_on_Infrastructure_SIP_Elements_Multipollutant_FINAL_Sept_2013.pdf. (Accessed July 17, 2023).
- U.S. Environmental Protection Agency. 2013a. The Clean Air Act in a Nutshell: How It Works. https://www.epa.gov/sites/default/files/2015-05/documents/caa_nutshell.pdf.
- U.S. Environmental Protection Agency, 2015. Guidance on Development and Submission of Infrastructure State Implementation Plans for National Ambient Air Quality Standards. Fact Sheet. https://www.epa.gov/sites/default/files/2015-12/documents/fact_sheet_guidance_on_infrastructure_sip_elements_final_sept_2013.pdf. (Accessed July 17, 2023).
- U.S. Environmental Protection Agency.2020. Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Other Solid Waste Incineration Units Review. EPA-HQ-OAR-2003-0156-0139. https://www.regulations.gov/document/EPA-HQ-OAR-2003-0156-0139.
- U.S. Environmental Protection Agency. 2021. Wildfire smoke: a guide for public health officials. EPA-452/R-21-901. Chapter 1. Health effects of wildfire smoke. https://www.airnow.gov/sites/default/files/2021-09/wildfire-smoke-guide-chapters-1-3.pdf.
- U.S. Environmental Protection Agency. 2021a. Potential Future Regulation Addressing Pyrolysis and Gasification Units. https://www.federalregister.gov/documents/2021/09/08/2021-19390/potential-future-regulation-addressing-pyrolysis-and-gasification-units.
- U.S. Environmental Protection Agency. 2023. 40 CFR Part 60 40 CFR Part 60. https://www.ecfr.gov/current/title-40/part-60 (Accessed July 17, 2023).
- U.S. Environmental Protection Agency. 2023a. Clean Air Act Requirements and History. https://www.epa.gov/clean-air-act-overview/clean-air-act-requirements-and-history. (Accessed July 13, 2023).
- U.S. Environmental protection Agency. 2023b. Criteria Air Pollutants. https://www.epa.gov/criteria-air-pollutants. (Accessed July 14, 2023).
- U.S. Environmental protection Agency. 2023c. Process of reviewing the national ambient air quality standards. https://www.epa.gov/criteria-air-pollutants/process-reviewing-national-ambient-air-quality-standards. (Accessed July 14, 2023).
- U.S. Environmental Protection Agency. 2023d. NAAQS Designations Process. https://www.epa.gov/criteria-air-pollutants/naaqs-designations-process. (Accessed July 14, 2023).
- U.S. Environmental Protection Agency. 2023e. Commercial and Industrial Solid Waste Incineration Units (CISWI): New Source Performance Standards (NSPS) and Emission Guidelines (EG) for Existing Sources. https://www.epa.gov/stationary-sources-air-pollution/commercial-and-industrial-solid-waste-incineration-units-ciswi-new. (Accessed July 18, 2023).
- U.S. Environmental Protection Agency. 2023f. Criteria pollutants. https://www.epa.gov/criteria-air-pollutants. (Accessed July 21. 2023).
- U.S. Environmental Protection Agency. 2023g. What are Hazardous Air Pollutants? https://www.epa.gov/haps/what-are-hazardous-air-pollutants. (Accessed July 24. 2023).
- U.S. Environmental Protection Agency. 2023h. What is CO? https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#What%20is%20CO. (Accessed August 1. 2023).
- U.S. Environmental Protection Agency. 2023i. About Urban Air Toxics. https://www.epa.gov/urban-air-toxics/about-urban-air-toxics (Accessed July 24. 2023).
- U.S. Environmental Protection Agency. 2023j. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#Learn%20why. (Accessed August 30, 2023).
- U.S. Environmental Protection Agency. 2023k. Basic Information of Air Emissions Factors and Quantification. https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification#resources. (Accessed August 30, 2023).
- U.S. Environmental Protection Agency. 2023l. NAAQS Table. https://www.epa.gov/criteria-air-pollutants/naaqs-table. (Accessed August 30, 2023).
- U.S. Environmental Protection Agency.2023m. Withdrawal of Proposed Provision Removing Pyrolysis/Combustion Units From the Other Solid Waste Incineration Standards – Notice. Fact sheet. https://www.epa.gov/system/files/documents/2023-05/Fact%20Sheet_Withdrawal%20Notice_%20May242023.pdf.
- U.S. Environmental Protection Agency. 2023n. Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: Other Solid Waste Incineration Units Review; Withdrawal of Proposed Provision Removing Pyrolysis/Combustion Units. https://www.federalregister.gov/documents/2023/06/05/2023-11476/standards-of-performance-for-new-stationary-sources-and-emission-guidelines-for-existing-sources.
- Vallero, A.D. 2008. 10 - Sources of Air Pollution. Editor(s): DANIEL A. VALLERO, Fundamentals of Air Pollution (Fourth Edition), Academic Press, 2008, Pages 313-355. [CrossRef]
- Vallero, A.D. 2019. Chapter 8 - Air pollution biogeochemistry. Pp 175 -206. In Air Pollution Calculations: Quantifying Pollutant Formation, Transport, Transformation, Fate and Risks. [CrossRef]
- Vallero, A.D. 2019a. Chapter 9 – Thermal reactions. Pp 207 - 218. In Air Pollution Calculations: Quantifying Pollutant Formation, Transport, Transformation, Fate and Risks. [CrossRef]
- Whitehead, W. D. J. (1980) Construction of a Transportable Charcoal Kiln, Tropical Products Institute, U.K. Rural Technology Guide 13. https://iffybooks.net/wpcontent/uploads/Appropriate_Technology_Library/MF20-468%20The%20Construction%20of%20a%20Transportable%20Charcoal%20Kiln.pdf.
- Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J. 2011. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641. [CrossRef]
- Wilson, K. 2021. A Carbon Conservation Corps to Restore Forests with Biochar Using Flame Cap Kilns. 2021 Annual International Meeting ASABE Virtual and On Demand. Paper Number: 2100361. [CrossRef]
- Yaashikaa, P.R., Kumar, P.S., Varjani, S., and Saravanan, A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, Volume 28, 2020, e00570. [CrossRef]
- Yang, Ch., and Lü, X. 2021. Chapter 5 - Composition of plant biomass and its impact on pretreatment, Editor(s): Xin Lü, In Woodhead Publishing Series in Energy, Advances in 2nd Generation of Bioethanol Production, Woodhead Publishing, 2021, Pages 71-85. [CrossRef]
| SIP process | State role | EPA role |
|---|---|---|
| In a period of two years after EPA has set a new NAAQS or an existing standard. | States and Tribes must provide input | EPA based on the newest set of air monitoring or modeling data must designate attainment areas or not nonattainment areas. |
| In a period of three years after EPA has set a new NAAQS or an existing standard. | States must submit SIPs to implement, maintain, and enforce a new or revised national ambient air quality standard as specified in Clean Air Act Code §7410 sections (a)(1) and (a)(2). These SIPs are known as Infrastructure SIPs. | When the State air agency has submitted to the EPA one or more infrastructure SIP submissions, EPA will evaluate the submission(s) for completeness. The EPA's criteria for determining completeness of a SIP submission are codified at 40 CFR part 51 appendix (https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-51/appendix-Appendix%20V%20to%20Part%2051). |
| In a period of 18 to 24 months after EPA designation. | Nonattainment area SIPs are due based on the designation date and vary by pollutant and area classification. A period of 18 months are given for nonattainment areas for sulfur dioxide (SO2), nitrogen dioxide (NO2), coarse particle pollution (PM10), fine particle pollution (PM2.5), and lead (Pb) for sulfur dioxide (SO2), nitrogen dioxide (NO2), coarse particle pollution (PM10), fine particle pollution (PM2.5), and lead (Pb). A period of 24 months is for ozone (O3) and carbon monoxide (CO) nonattainment areas. must outline the strategies and emissions control measures that show how the area will improve air quality and meet the NAAQS. In addition, the Clean Air Act mandates that areas adopt certain specified control requirements | EPA must take final decision within 1 year after the submission is determined to be complete. When the EPA decides an affirmative finding that the SIP submission is complete, the date of the finding establishes the completion date. This decision does not indicate that the submission has been approved. It only indicates that the air agency has provided information sufficient to commence formal EPA review for approvability. When the EPA makes no affirmative completeness finding, then the submission is deemed complete by operation of law on the date 6 months after the State’s submission date. A finding that an infrastructure SIP submission is complete does not necessarily mean that the submission is approvable; the completeness review only addresses whether the air agency has provided information sufficient to commence formal EPA review for approvability. |
| The SIP implementation process may apply under the Tribal Authority Rule in 40 CFR part 49 to an Indian Tribe that has received delegation of federal authority by the EPA to administer CAA programs in the same manner as states, over all air resources within the exterior boundaries of a reservation for such programs (federal Register, 1998). | Tribes when opt to implement their own air permitting programs, should follow up the same process and periods of time to submit their Tribal Implementation Plans. | When the Tribe opts not to implement their own CCA programs the EPA has promulgated regulations establishing permit requirements for major sources in attainment areas, and issued Prevention of Significant Deterioration permits to new or modifying major sources (40 CFR 52.21). Nevertheless, the EPA has not promulgated regulations for a permitting program in Indian country for either minor or major sources of air pollution emissions in nonattainment areas (Federal Register, 1998). |
| SIPs approval or disapproval | SIPs must be developed with public input, and formally adopted into state law, and being submitted to the EPA by the Governor's designee. | EPA reviews the SIP submission and proposes to approve or disapprove all or part of each plan. Then proceeds to have a public consultation. The public has an available period for comments submission on EPA's proposed action. EPA considers public input before taking final action on a state's plan. If EPA approves all or part of a SIP, those control measures are enforceable in federal court. |
| State fails to submit an approvable plan or EPA disapproves a plan. | EPA is required to develop a federal implementation plan (FIP). |
| HAPs posing the greatest potential health threat in urban areas | ||
|---|---|---|
| Acetaldehyde | Dioxin | Mercury compounds |
| Acrolein | Propylene dichloride | Methylene chloride (dichloromethane) |
| Acrylonitrile | 1,3-dichloropropene | Nickel compounds |
| Arsenic compounds | Ethylene dichloride (1,2-dichloroethane) | Polychlorinated biphenyls (PCBs) |
| Benzene | Ethylene oxide | Polycyclic organic matter (POM) |
| Beryllium compounds | Formaldehyde | Quinoline |
| 1,3-butadiene | Hexachlorobenzene | 1,1,2,2-tetrachloroethane |
| Cadmium compounds | Hydrazine | Tetrachloroethylene (perchloroethylene) |
| Chloroform | Lead compounds | Trichloroethylene |
| Chromium compounds | Manganese compounds | Vinyl chloride |
| coke oven emissions* | 1,2-dibromoethane* | carbon tetrachloride* |
| Source of emission | Emission factor | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2 | CO | CH4 | PM10 | NMVOC | NOx | NMHC* | PM2.5 | PM | Dioxins/Furan | SOx | SO | Lead (Pb) | O3 | ||
| Pennise et al (2001) g/kg | |||||||||||||||
| 5 earth mound kilns, beehive-shaped brick kiln, Brazilian round brick (surface), and Brazilian rectangular with tar recovery (metal and brick). | 543 to 3027 | 143- 373 |
32 - 62 | - | - | NO2 0.011-0.30 and NOx 0.0054- 0.13 |
24-124 | - | Total Suspended matter 13-41 |
- | - | - | - | - | |
| Estrellan and Lino (2010) (g/kg) | |||||||||||||||
| Forest fires | 1690 | 63 | 3.4 | - | - | - | 2.6 | 7.5 | - | - | - | - | - | - | |
| Vallero (2008) (g/kg) | |||||||||||||||
| Open burning | - | 50.0 | - | - | Aldehydes and ketones 3.0 |
NO2 2.0 |
Total Hydrocarbons 7.5 |
11 | - | - | SO2 1.5 |
- | - | - | |
| Springsteen et al (2011) (Kg/Ton) | |||||||||||||||
| 10,618 | 362 | 17.37 | - | 28.96 | 17.37 | - | - | 37.65 | - | - | - | - | - | ||
| Sparrevik et al (2013) g/kg it also includes PAHs with 18.6 and VOC with 4.0 | |||||||||||||||
| Open burning | - | 34.7 | 1.2 | 3.7 | - | N2O 0.07 NOx 3.1 |
- | - | - | 0.5 | SO2 2.0 |
- | - | - | |
| Lasko and Vadrevu (2018) (g Kg-2) | |||||||||||||||
| Rice residue burning | - | - | - | - | - | - | - | 16.9 (±6.9) for pile burning | - | - | - | - | - | - | |
| 8.8 (±3.5) for non-pile burning | |||||||||||||||
| Puettmann et al (2020) (kg/kg) | |||||||||||||||
| Slash Pile Burning | 1.69E+00 | 6.53E-02 | 4.54E-03 | 4.40E-03 | 5.55E-03 | 2.50E-03 | - | - | - | - | - | - | - | - | |
| Air Curtain Burner | 7.80E-01 | 2.60E-03 | 2.60E-03 | 1.28E-03 | - | 1.44E-04 | - | - | - | - | - | - | - | - | |
| Oregon Kiln | 7.80E-01 | 2.60E-03 | 2.60E-03 | 1.28E-03 | - | 1.44E-04 | - | - | - | - | - | - | - | - | |
| Biochar Solutions Inc. | 2.19E+00 | 6.98E-04 | 1.52E-04 | 1.38E-03 | - | 1.96E-03 | - | - | - | - | - | - | - | - | |
| Cornelissen et al (2016) (g/kg) | |||||||||||||||
| All steel deep octagonal | 5600 | 38 | 57 | 22 | 6 | 0.3 | - | - | - | - | - | - | - | - | |
| Steel sheet soil pit | 2300 | 23 | 14 | 9 | 5 | 0.3 | - | - | - | - | - | - | - | - | |
| Soil Pit | 3800 | 36 | 32 | 20 | 8 | 0.8 | - | - | - | - | - | ||||
| Shallow steel pyramidal and octagonal | 4700 | 73 | 26 | 5 | 5 | 0.32 | - | - | - | - | - | - | - | - | |
| Susott et al (2017) (lbs/ton) | |||||||||||||||
| Average Pile | 3268 | 179 | 13.9 | - | - | - | 9.9 | 25.5 | - | - | - | - | - | - | |
| Average Understory | 3286 | 180 | 6.6 | - | - | - | 5.4 | 36.0 | - | - | - | - | - | - | |
| Average ACB | 3616 | 2.6 | 1.4. | - | - | - | 1.1 | 1.1 | - | - | - | - | - | - | |
| Estrellan and Lino (2010) (g/kg) | |||||||||||||||
| Incinerator | 1280 | 0.18 | - | - | - | 1.01 | - | - | 0.21 | 6.89– E-08 | 0.12 | - | - | - | |
| Japan Carbonizer | 43.89 | 0.033 | - | - | - | 0.43 | - | - | 0.015 | 0 | 0.65 | - | - | - | |
| Schwartz et al (2020)** (ppm) | |||||||||||||||
| Char Burner PM Filter | 10.6 | - | - | - | - | 16.8 | - | - | 32.6 Mg/m3 |
- | - | 2.3 | - | - | |
| EPA Other Solid Waste Incinerators (OSWI) | 40 | - | - | - | - | 103 | - | - | 30 | - | - | 3.1 | - | - | |
| EPA large Municipal Solid Waste Incinerators (MSWI) | 50 | - | - | - | - | 180 | - | - | 20 | - | - | 30 | - | - | |
| EPA small MSWI | 50 | - | - | - | - | 500 | - | - | 24 | - | - | 30 | - | - | |
| Oregon Department of Environmental Quality (2023) (lbs./ton) | |||||||||||||||
| Air Curtain Incinerator (ACB - Burn Boss T24) | 1248.5 | 14.2 | 0.668 | - | NMHC/NMVOC 1.17 | 1.98 | NMHC/NMVOC 1.17 | - | 4.25 | 2.88E-09 | SO2 0.24 | - | 1.30E-04 | - | |
| U.S. Environmental Protection Agency (2023l) | |||||||||||||||
| EPA National Standard | - | Primary (P) 8 hrs. 9 ppm |
- | P and S 24 hrs. 150 μg/m3 |
- | - | - | P 1 year 12.0 μg/m3 |
- | - | - | SO2 0.14 ppm 24-hour and 0.03 ppm annual |
P and S 3 Months average 0.15 μg/m3 |
P and S 8 hrs. 0.070 ppm |
|
| Secondary (S) 1 hr. 35 ppm |
S 1 year 15.0 μg/m3 |
P 1 hr. 75 ppb |
|||||||||||||
| S 3 hrs. 0.5 ppm |
|||||||||||||||
| P and S 24 hrs. 35 μg/m3 |
|||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
