Submitted:
18 November 2023
Posted:
20 November 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Cyberaggression in Mexico
1.2. Participant Roles in Cyberaggression
1.3. Factors Related to Cyberaggression
1.4. Cyberaggression/Cyberbullying Measurements
1.5. Present study
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Cyberbullying Measure
2.3.2. Cultural adaptation
2.4. Data analysis
3. Results
4. Discussion
Limitations and Recommendations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Paat, Y.-F., & Markham, C. Digital crime, trauma, and abuse: Internet safety and cyber risks for adolescents and emerging adults in the 21 st century. Social Work in Mental Health 2021, 19, 18–40. [CrossRef]
- Machackova, H., Dedkova, L., Sevcikova, A., & Cerna, A. Bystanders’ Supportive and Passive Responses to Cyberaggression. Journal of School Violence 2018, 17, 99–110. [CrossRef]
- Chun, J., Lee, J., Kim, J., & Lee, S. An international systematic review of cyberbullying measurements. Computers in Human Behavior 2020, 113, 106485. [CrossRef]
- Corcoran, L., Guckin, C. M., & Prentice, G. Cyberbullying or Cyber Aggression?: A Review of Existing Definitions of Cyber-Based Peer-to-Peer Aggression. Societies, 2015; 5, 2. [CrossRef]
- Grigg, D. W. W. Cyber-aggression: Definition and concept of cyberbullying. Australian Journal of Guidance and Counselling 2010, 20, 143–156. [CrossRef]
- Pyżalski, J. From cyberbullying to electronic aggression: Typology of the phenomenon. Emotional and Behavioural Difficulties 2012, 17, 305–317. [Google Scholar] [CrossRef]
- González, Ví, Prendes, M. P., & Bernal, C. Investigación sobre adolescentes que son observadores de situaciones de ciberacoso. Revista de Investigación Educativa 2020, 38, 259–273. [CrossRef]
- Cao, X., Khan, A. N., Ali, A., & Khan, N.A. Consequences of Cyberbullying and Social Overload while Using SNSs: A Study of Users’ Discontinuous Usage Behavior in SNSs. Information Systems Frontiers 2020, 22, 1343–1356. [CrossRef]
- Baier, D. Consequences of Bullying on Adolescents’ Mental Health in Germany: Comparing Face-to-Face Bullying and Cyberbullying. Journal of Child and Family Studies 2019, 11. [Google Scholar] [CrossRef]
- Zych, I., Baldry, A. C., Farrington, D. P., & Llorent, V. J. Are children involved in cyberbullying low on empathy? A systematic review and meta-analysis of research on empathy versus different cyberbullying roles. Aggression and Violent Behavior 2019, 45, 83–97. [CrossRef]
- Jawaid, A., Riby, D. M., Owens, J., White, S. W., Tarar, T., & Schulz, P.E. “Too withdrawn” or “too friendly”: Considering social vulnerability in two neuro-developmental disorders. Journal of Intellectual Disability Research: JIDR 2012, 56, 335–350. [CrossRef]
- Elgar, F. J., Napoletano, A., Saul, G., Dirks, M. A., Craig, W., Poteat, V. P., Holt, M., & Koenig, B. W. Cyberbullying Victimization and Mental Health in Adolescents and the Moderating Role of Family Dinners. JAMA Pediatrics 2014, 168, 1015–1022. [CrossRef]
- Vega-Cauich, J. I. Prevalencia del bullying en México: Un meta-análisis del bullying tradicional y cyberbullying. 2019, 15, 18. [Google Scholar]
- Salmivalli, C., Lagerspetz, K., Björkqvist, K., Österman, K., & Kaukiainen, A. Bullying as a group process: Participant roles and their relations to social status within the group. Aggressive Behavior 1996, 22, 1–15. [CrossRef]
- Herrera-López, M., Romera, E. M., Ortega-Ruiz, R., Herrera-López, M., Romera, E. M., & Ortega-Ruiz, R. Bullying y Cyberbullying en Latinoamérica. Un estudio bibliométrico. Revista mexicana de investigación educativa 2018, 23, 125–155.
- Smith, P. K., Görzig, A., & Robinson, S. (2019). Cyberbullying in Schools: Cross-Cultural Issues. In G. W. Giumetti & R. M. Kowalski (Eds.), Cyberbullying in Schools, Workplaces, and Romantic Relationships (1st ed., pp. 49–68. Routledge.
- INEGI. Comunicado de prensa (352/21). INEGI, IFT, SCT. 2021. [Google Scholar]
- INEGI. Módulo sobre Ciberacoso MOCIBA 2020. Principales Resultados. INEGI. 2021. [Google Scholar]
- Frías, S. M., & Finkelhor, D. Victimizations of Mexican youth (12–17 years old): A 2014 national survey. Child Abuse & Neglect 2017, 67, 86–97. [CrossRef]
- Gámez-Guadix, M., Villa-George, F., & Calvete, E. Psychometric Properties of the Cyberbullying Questionnaire (CBQ) Among Mexican Adolescents. Violence and Victims 2014, 29, 232–247. [CrossRef]
- Martínez, R., Pozas, J., Jiménez, K., Morales, T., David A. Miranda, Delgado, M. E., & Cuenca, V. Prevención de la violencia escolar cara a cara y virtual en bachillerato. Psychology, Society & Education 2015, 7, 2. [CrossRef]
- Salmivalli, C. Participant role approach to school bullying: Implications for interventions. Journal of Adolescence 1999, 22, 453–459. [Google Scholar] [CrossRef]
- Austin, S. M., Reynolds, G. P., & Barnes, S. L. School Leadership and Counselors Working Together to Address Bullying. Education 2012, 133, 283–290.
- Salamn Almahasnih, A. F. The Phenomenon of Bullying: A Case Study of Jordanian Schools at Tafila. World Journal of Education 2019, 9, 243. [Google Scholar] [CrossRef]
- Kowalski, R. M., Limber, S. P., & McCord, A. A developmental approach to cyberbullying: Prevalence and protective factors. Aggression and Violent Behavior 2019, 45, 20–32. [CrossRef]
- Lozano-Blasco, R., Cortés-Pascual, A., & Latorre-Martínez, M. P. Being a cybervictim and a cyberbully – The duality of cyberbullying: A meta-analysis. Computers in Human Behavior 2020, 111, 106444. [CrossRef]
- Kowalski, R. M., Giumetti, G. W., & Cox, H. (2019). Differences in Technology Use Among Demographic Groups: Implications for Cyberbullying Research. In R. M. Kowalski & G. W. Giumetti (Eds.), Cyberbullying in Schools, Workplaces, and Romantic Relationships (1st ed., pp. 15–31). Routledge.
- Ansary, N. S. Cyberbullying: Concepts, theories, and correlates informing evidence-based best practices for prevention. Aggression and Violent Behavior 2020, 50, 101343. [Google Scholar] [CrossRef]
- Morgado, F. F. R., Meireles, J. F. F., Neves, C. M., Amaral, A. C. S., & Ferreira, M. E. C. Scale development: Ten main limitations and recommendations to improve future research practices. Psicologia: Reflexão e Crítica 2017, 30, 3. [CrossRef]
- Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures. Spine 2000, 25, 3186–3191. [CrossRef]
- Ortiz-Gutiérrez, S., & Cruz-Avelar, A. Proceso de traducción y adaptación cultural de instrumentos de medición en salud. Actas Dermo-Sifiliográficas 2018, 109, 202–206. [CrossRef]
- Herdman, M., Fox-Rushby, J., & Badia, X. A model of equivalence in the cultural adaptation of HRQoL instruments: The universalist approach. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation 1998, 7, 323–335. [CrossRef]
- Garaigordobil, M. Psychometric Properties of the Cyberbullying Test, a Screening Instrument to Measure Cybervictimization, Cyberaggression, and Cyberobservation. Journal of Interpersonal Violence 2017, 32, 3556–3576. [Google Scholar] [CrossRef]
- American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. Estándares para Pruebas Educativas y Psicológicas. American Educational Research Association. 2018. [Google Scholar] [CrossRef]
- Dodeen, H. M. Effectiveness of Valid Mean Substitution in Treating Missing Data in Attitude Assessment. Assessment & Evaluation in Higher Education 2003, 28, 505–513. [Google Scholar] [CrossRef]
- Sociedad Mexicana de Psicología A., C. Código Ético del Psicólogo, 4a ed.; Trillas, 2007. [Google Scholar]
- Hayton, J. C., Allen, D. G., & Scarpello, V. Factor Retention Decisions in Exploratory Factor Analysis: A Tutorial on Parallel Analysis. Organizational Research Methods 2004, 7, 191–205. [CrossRef]
- Kline, R. B. Principles and practice of structural equation modeling. 2016. [Google Scholar]
- Marsh, H. W., Hau, K.-T., & Wen, Z. In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers in Overgeneralizing Hu and Bentler’s (1999) Findings. Structural Equation Modeling: A Multidisciplinary Journal 2004, 11, 320–341. [CrossRef]
- Linacre, J. M. Winsteps® Rasch measurement computer program User’s Guide. Version 3.61.2. Winsteps.com. 2007. [Google Scholar]
- Fregoso, D., Vera, J. A., Duarte, K. G., Tánori, J., & Cuevas, M. C. (press). Efecto de familia, comunidad y escuela sobre la percepción de violencia según el observador alentador y defensor. Interdisciplinaria.
- Duarte, K. G. Percepción de los estudiantes de secundaria sobre la socialización en las colonias y su relación con la violencia escolar. [Master not published]. Centro de Investigación en Alimentación y Desarrollo A.C. 2018. [Google Scholar]
- Chen, F. F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal 2007, 14, 464–504. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows (26.0) [Computer Program]. IBM Corp, 2019. [Google Scholar]
- Linacre, J. M. Winsteps® (3.65.0) [Computer Program]. Winsteps.com. 2009. [Google Scholar]
- Arbuckle, J. L. Amos (Version 22) [Computer Program]. IBM SPSS, 2013. [Google Scholar]
- Dimitrov, D. M. Testing for Factorial Invariance in the Context of Construct Validation. Measurement and Evaluation in Counseling and Development 2010, 43, 121–149. [Google Scholar] [CrossRef]
- Fisher, R. J., & Katz, J. E. Social-desirability bias and the validity of self-reported values. Psychology & Marketing 2000, 17, 105–120. [CrossRef]
| Actual Eigenvalue | Average Eigenvalues | 95th Percentile Eigenvalue |
|---|---|---|
| 18.712 | 1.301 | 1.328 |
| 3.429 | 1.271 | 1.292 |
| 2.803 | 1.248 | 1.266 |
| 1.217 | 1.229 | 1.247 |
| 1.037 | 1.212 | 1.225 |
| α | Infit | Outfit | Difficulty | ||||
|---|---|---|---|---|---|---|---|
| Min | Max | Min | Max | Min | Max | ||
| Cybervictim | |||||||
| Model 1 a | .93 | 0.67 | 1.46 | 0.49 | 1.48 | -0.63 | 0.35 |
| Model 2 b | .92 | 0.75 | 1.42 | 0.58 | 1.44 | -0.60 | 0.36 |
| Cyberaggressor | |||||||
| Model 1 a | .95 | 0.84 | 1.60 | 0.50 | 1.57 | -0.79 | 0.23 |
| Model 2 b | .95 | 0.86 | 1.26 | 0.60 | 1.33 | -0.25 | 0.19 |
| Cyberbystander | |||||||
| Model 1 a | .94 | 0.83 | 1.41 | 0.67 | 1.51 | -0.33 | 0.39 |
| Model 2 b | .93 | 0.84 | 1.30 | 0.69 | 1.21 | -0.34 | 0.38 |
| Victim of Bullying | Aggressor of bullying | Bystander of Bullying | Attachment to the Neighborhood | |
|---|---|---|---|---|
| Cybervictim | .454** | .436** | .320** | -.016 |
| Cyberaggressor | .324** | .378** | .216** | .014 |
| Cyberbystanders | .327** | .337** | .313** | -.003 |
| χ2 (df) | χ2/df | CFI | RMSEA (IC 90%) |
Contrast | ∆ χ2 p>.05 | ∆CFI ≤0.01 |
∆RMSEA ≤0.015 | |
|---|---|---|---|---|---|---|---|---|
| Model 1. | 4833.124 (1270) | 3.806 | .913 | .041 (.039-.042) | ||||
| Model 2. | 5080.127 (1305) | 3.893 | .908 | .041 (.040-.043) | M2 vs M1 | 247.003* | -.005 | 0 |
| Model 3. | 5256.986 (1343) | 3.914 | .904 | .041 (.040-.043) | M3 vs M2 | 176.858* | -.004 | 0 |
| Model 4. | 11017.737 (1414) | 7.792 | .765 | .063 (.062 .064) | M4 vs M3 | 5760.752* | -.139 | .022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
