Submitted:
25 January 2024
Posted:
26 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Cosmic Water Nanoclusters: Electronic Structure and Terahertz (THz) Vibrations
3. Rydberg Dark Matter
4. Observational Support
4.1. No Cosmic Dust – No Dark Matter
4.2. Cosmic Birefringence
4.3. The Bullet Cluster and Galactic Halos
5. Dark Energy
5.1. The Cosmological Constant Problem
5.2. The Link Between Dark Energy and Vacuum Fluctuations
5.3. Vacuum Fluctuations and Water Nanoclusters
5.4. Rydberg Matter as a Quintessence Scalar Field and the Dynamical Casimir Effect
5.5. Cancellation of the Vacuum Energy Catastrophe
6. The Cosmic Microwave Background
6.1. The CMB Spectrum
6.2. The CIRB Spectrum
6.3. CMB Polarization: E- and B-Modes
7. Cosmic Water Nanoclusters and Early Star Formation
8. Hubble Tension
9. Cosmic Water Nanoclusters and a Cyclic Universe
10. Astrobiology
11. The RNA World
12. The Genesis of RNA-Based Protocells
13. Fundamental Frequency Findings
14. Discussion
References
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Martinez, R.; Agnihotri, A.N.; Boduch, Ph.; et al. Production of hydronium ion (H3O)+ and protonated water clusters (H2O)21H+ after energetic ion bombardment of water ice in astrophysical environments. J. Phys. Chem. A 2019, 123, 8001–8008. [Google Scholar] [CrossRef]
- Badiei, S.; Holmlid, L. Rydberg matter in space: low-density condensed dark matter. Mon. Not. R. Astron. Soc. 2002, 333, 360–364. [Google Scholar] [CrossRef]
- Beck, C.; Mackey, M.C. Could dark energy be measured in the lab? Phys. Lett. B 2005, 605, 295–300; Measurability of vacuum fluctuations and dark energy. Physica A 2007, 379, 101–110. [Google Scholar] [CrossRef]
- Souza, R.D.; Impens, F.; Neto, P.A.M. Microscopic dynamical Casimir effect. Phys. Rev. A 2018, 97, 032514–032523. [Google Scholar] [CrossRef]
- Johnson, K. Terahertz vibrational properties of water nanoclusters relevant to biology. J. Biol. Phys. 2012, 38, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W. The RNA world. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Bergin, E.A.; van Dishoeck, E.F. Water in star- and planet-forming regions. Phil. Trans. R. Soc.A 2012, 370, 2778–2802. [Google Scholar] [CrossRef]
- Glanz, J.A. Water generator in the Orion nebula. Science 1998, 280, 378–382. [Google Scholar] [CrossRef]
- Bradford, C.M.; Bolatto, A.D.; Maloney, P.R.; et al. The water vapor spectrum of APM 08279+5255: x-ray heating and infrared pumping over hundreds of parsecs. ApJ 2011, 741, L37–L43. [Google Scholar] [CrossRef]
- Bialy, S.; Sternberg, A.; Loeb, A. Water formation during the epoch of first metal enrichment. ApJ 2015, 804, L29–L34. [Google Scholar] [CrossRef]
- Aplin, K.L.; McPheat, R.A. Absorption of infra-red radiation by atmospheric molecular cluster-ions. J. Atmos. Solar Terrest. Phys. 2005, 67, 775–783. [Google Scholar] [CrossRef]
- Matsuura, M.; De Buizer, J.M.; Arendt, R.G.; et al. SOFIA mid-infrared observations of supernova 1987A in 2016 – forward shocks and possible dust re-formation in the post-shocked region. Mon. Not. R. Astron. Soc. 2019, 482, 1715–1723. [Google Scholar] [CrossRef]
- Duley, W.W. Molecular clusters in interstellar clouds. ApJ 1996, 471, L57–L60. [Google Scholar] [CrossRef]
- Johnson, K.H.; Gallagher, M.P.; Mamer, O.; et al. Water vapor: an extraordinary terahertz wave source under optical excitation. Phys. Lett. A 2008, 371, 6037–6040. [Google Scholar] [CrossRef]
- Lis, D.C.; Schilke, P.; Bergin, E.A.; et al. Widespread rotationally hot hydronium ion in the galactic interstellar medium. ApJ 2014, 785, 135–144. [Google Scholar] [CrossRef]
- Slater, J.C.; Johnson, K.H. Self-consistent-field Xα cluster method for polyatomic molecules and solids. Phys. Rev. B 1972, 5, 844–853; Quantum chemistry and catalysis. Physics Today 1974, 27, 34–41. [CrossRef]
- Brudermann, J.; Lohbrandt, P.; Buck, U. Surface vibrations of large water clusters by He atom scattering. Phys. Rev. Lett. 1998, 80, 2821–2824. [Google Scholar] [CrossRef]
- Jordan, K.D. A fresh look at electron hydration. Science 2004, 306, 618–619. [Google Scholar] [CrossRef]
- Badiei, S.; Holmlid, L. Rydberg matter in space: low-density condensed dark matter. Mon. Not. R. Astron. Soc. 2002, 333, 360–364. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Danieli, S.; Cohen, Y.; et al. A galaxy lacking dark matter. Nature 2018, 555, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Minami, Y.; Komatsu, E. New extraction of the cosmic birefringence from the Planck 2018 polarization data. Phys. Rev. Lett. 2020, 125, 221301–221317. [Google Scholar] [CrossRef]
- Diego-Palazuelos, P.; Eskilt, J.R.; Minami, Y.; et al. Cosmic birefringence from Planck data release 4. Phys Rev Lett. 2022, 128, 091302–091309. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, Y.; Zhang, L.; et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light Sci. Appl. 2020, 9, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Clowe, D.; Gonzalez, A.; Markevich, A. Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: direct evidence for the existence of dark matter. ApJ 2004, 604, 596–604. [Google Scholar] [CrossRef]
- Munoz, J.B.; Loeb, A. A small amount of mini-charged dark matter could cool the baryons in the early universe. Nature 2018, 557, 684–686. [Google Scholar] [CrossRef]
- Sharma, G.; Salucci, P.; van de Ven, G. ; Observational evidence of evolving dark matter profiles at z ≤ 1. A&A 2022, 659, A40. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 1987, 59, 2607–2610. [Google Scholar] [CrossRef]
- Steinhardt, P.J. A quintessential introduction to dark energy. Phil. Trans. R. Soc. Lond. A 2003, 361, 2497–2513. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356; Eternal inflation and its implications. J. Phys. A 2007, 30, 6811–6826. [CrossRef]
- Layzer, D.; Hively, R. Origin of the microwave background. ApJ 1973, 179, 361–370. [Google Scholar] [CrossRef]
- Wright, E.L. Thermalization of starlight by elongated grains – could the microwave background have been produced by stars. ApJ 1982, 255, 401–407. [Google Scholar] [CrossRef]
- Lehnert, M.; Nesvadba, N.; Cuby, JG.; et al. Spectroscopic confirmation of a galaxy at redshift z = 8.6. Nature 2010, 467, 940–942. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Postman, M.; Zitrin, A.; et al. A magnified young galaxy from about 500 million years after the big bang. Nature 2012, 489, 406–408. [Google Scholar] [CrossRef] [PubMed]
- Oesch, P.A.; Brammer, G.; van Dokkum, P.G.; et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble space telescope Grism spectroscopy. ApJ 2016, 819, 129–140. [Google Scholar] [CrossRef]
- Witze, A. Four revelations from the Webb telescope about distant galaxies. Nature 2022, 608, 18–19. [Google Scholar] [CrossRef]
- Vacher, L.; Aumont, J.; Boulanger, F.; et al. Frequency dependence of the thermal dust E/B ratio and EB correlation: insights from the spin-moment expansion. A&A 2023, 672, A146, 1-13. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Ahmed, Z.; et al. Joint analysis of BICEP2/Keck array and Planck data. Phys. Rev. Lett. 2015, 114, 101301–101306. [Google Scholar] [CrossRef]
- Banandos, E.; Rauch, M.; Decarli, R.; et al. A metal-poor damped Lyα system at redshift 6.4. ApJ 2019, 885, 59–74. [Google Scholar] [CrossRef]
- Carlon, H.R. Infrared absorption by molecular clusters in water vapor. J. Appl. Phys. 1981, 52, 3111–3115. [Google Scholar] [CrossRef]
- Laporte, N.; Ellis, R.S.; Boone, F.; et al. Dust in the reionization era: ALMA observations of a z = 8.38 gravitationally lensed galaxy. ApJL 837, L21, 1–6. [CrossRef]
- Penrose, R. Before the big bang: an outrageous new perspective and its implications for particle physics. In: Proceedings of EPAC 2006, Edinburgh, Scotland. pp. 2759–2762.
- Ijjas, A.; Steinhardt, P.J. A new kind of cyclic universe. Phys. Lett. B 2019, 795, 666–672. [Google Scholar] [CrossRef]
- Cleeves, L.I.; Bergin, E.A.; Alexander, C.M. O’D; et al. The ancient heritage of water ice in the solar system. Science 2014, 345, 1590–1593. [Google Scholar] [CrossRef] [PubMed]
- Kvenvolden, K.; Lawless, J.; Pering, K.; et al. Amino acids in the Murchison meteorite. Nature 1970, 228, 923–926. [Google Scholar] [CrossRef]
- Lacy, J.H.; Carr, J.S.; Evans, N.J.; et al. Discovery of interstellar methane – observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. ApJ. 1991, 376, 556–560. [Google Scholar] [CrossRef]
- Iglesias-Groth, S.; Manchado, A.; Rebolo, R.A. Search for interstellar anthracene towards the Perseus anomalous microwave emission region. Mon. Not. R. Astron. Soc. 2010, 407, 2157–2165. [Google Scholar] [CrossRef]
- Cotton, F.A.; Norman, J.G.; Johnson, K.H. Biochemical importance of the binding of phosphate by arginyl groups. Model compounds containing methylguanidinium ion. JACS 1973, 95, 2367–2369. [Google Scholar] [CrossRef]
- Yang, C.Y.; Johnson, K.H.; Holm, R.H.; Norman, J.G. Theoretical model for the 4-Fe active sites in oxidized ferredoxin and reduced high-potential proteins. Electronic structure of the analog [FeS*4(SCH3)4]4-. JACS 1975, 97, 6596–6598. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Huynh, B.H.; Karplus, M. Binding of oxygen and carbon monoxide to hemoglobin. An analysis of the ground and excited states. JACS 1979, 101, 4433–4453. [Google Scholar] [CrossRef]
- Joyce, G.F.; Orgel, L.E. Prospects for understanding the origin of the RNA world. In: Gesteland, R.F., Atkins, J.F., editors. The RNA World, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1993, pp. 1–22. C: Harbor Laboratory Press, 1993.
- Costanzo, G.; Pino, S.; Cicinello, F.; et al. Generation of long RNA chains in water. J. Biol. Chem. 2009, 284, 33206–33216. [Google Scholar] [CrossRef]
- Cafferty, B.J.; Hud, N.V. Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology. Current Opinions in Chemical Biology 2014, 22, 146–157. [Google Scholar] [CrossRef]
- Harker, H.A.; Viant, M.R.; Keutsch, F.N.; et al. Water pentamer: characterization of the torsional-puckering manifold by terahertz VRT spectroscopy. J. Phys. Chem. A 2005, 109, 6483–6497. [Google Scholar] [CrossRef]
- Teeter, M.M. Water Structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin, Proc. Natl. Acad. Sci. 1984, 81, 6014–6018. [Google Scholar] [CrossRef]
- Nandi, P.K.; Burnham, C.J.; Futera, Z.; et al. Ice-amorphization of supercooled water nanodroplets in no man’s land. ACS Earth and Space Chemistry 2017, 1, 187–186. [Google Scholar] [CrossRef]
- Yokoyama, H.; Kannami, M.; Kanno, H. Intermediate range O-O correlations in supercooled water. Chem. Phys. Lett. 2008, 463, 99–102. [Google Scholar] [CrossRef]
- Sahle, C.J.; Sternemann, C.; Schmidt, C.; et al. Microscopic structure of water at elevated pressures and temperatures. ProNatl. Acad. Sci. 2013, 110, 6301–6306. [Google Scholar] [CrossRef]
- Bersuker, I.B.; Polinger, V.Z. Vibronic Interactions in Molecules and Crystals; Springer-Verlag: Berlin, 1989. [Google Scholar]
- Meierhenrich, U.J.; Filippi, J.J.; Meinert, C.; et al. On the origin of primitive cells: from nutrient intake to elongation of encapsulated nucleotides. Angew. Chem. Int. Ed. 2010, 49, 3738–3750. [Google Scholar] [CrossRef]
- Dworkin, J.P.; Deamer, D.W.; Sandford, S.A.; et al. Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. PNAS 2001, 98, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.-G.; Huang, T.-M.; Hung, H.-C. Reverse micelles as life-mimicking systems. Proc. Nat. Sci. Counc. ROC(B) 2000, 24, 89–100. [Google Scholar]
- Hanczyc, M.M.; Szostak, J.W. Replicating vesicles as models of primitive cell growth and division. Current Opinions in Chemical Biology 2004, 8, 660–664. [Google Scholar] [CrossRef]
- Milshteyn, D.; Milshteyn, D.; Damer, B.; et al. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 2018, 8, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Moelling, K.; Broecker, F. Viruses and evolution – viruses first? A personal perspective. Frontiers in Microbiology 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Blum, J.; Thanh Le, T. The mRNA vaccine development landscape for infectious diseases 2022, 21, 333–334. [CrossRef]
- Haynes, K. What is dark matter? Even the best theories are crumbling. Discover Magazine 2018, September 21.
- Heymans, C.; Van Waerbeke, L.; Miller, L.; et al. CFHTLenS: the Canada-France-Hawaii telescope lensing survey. Mon. Not. R. Astron. Soc. 2012, 427, 146–166. [Google Scholar] [CrossRef]
- Lockman, F.J.; Free, N.L.; Shields, J.C. The neutral hydrogen bridge between M31 and M33. Astron. J. 2012, 144, 52–59. [Google Scholar] [CrossRef]
- Cami, J.; Bernard-Salas, J.; Els Peeters, J.; et al. Detection of C60 and C70 in a young planetary nebula. Science 2010, 329, 1180–1182. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.J.; Wellbrock, A.; Jones, G.H.; et al. Photoelectrons in the Enceladus plume. J. Geophys. Res. Space Phys. 2013, 118, 5099–5108. [Google Scholar] [CrossRef]














Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).