Submitted:
19 October 2023
Posted:
19 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction:
2. Experimental
2.1. Chemicals and reagents
2.2. Synthesis of Zn/Fe LDH/ PANI
2.3. Carbon paste electrodes preparation
2.4. Preparation of Zn/Mg/Fe LDH
2.5. Equipments and instruments
2.6. Electrochemical examinations
2.7. Adsorption studies
2.8. Cell culture
2.9. MTT assay
3. Results and data analysis
3.1. Investigation of Zn/Fe LDH/PANI
3.2. Characterization of the Zn/ Mg/Fe LDH.
3.3. Electrochemical characterization for the obtained Zn/Fe LDH/PANI/CPE
3.4. Calibration curve
3.5. Adsorption optimization parameters
3.5.1. The effect of medium pH on the elimination of Pb2+ metal ions
3.5.2. Effect of starting adsorbent dose
3.5.3. Adsorption isotherm study
3.5.4. Time effect on lead ions removal and kinetic study
3.5.5. Effect of the Zn/Fe LDH-PANI on A549 and WI-38 Cell Viability
4. Conclusion
Acknowledgment
Abbreviations
| Heavy metals | HMs |
| Carbon paste electrode | CPE |
| Layered double hydroxide | LDH |
| Polyaniline | PANI |
| Fourier-transform infrared | FTIR |
| X-ray diffraction | XRD |
| Scanning electron microscopy | SEM |
| Cyclic voltammetry | CV |
| Differential pulse voltammetry | DPV |
| Limit of detection | LOD |
| Limit of quantification | LOQ |
| Atomic absorption spectrophotometer | AAS |
| Adsorption capacity | |
| Double distilled water | DDW |
References
- A. Azmeri, A. Yulianur, U. Zahrati and I. Faudli. Effects of irrigation performance on water balance: Krueng Baro Irrigation Scheme (Aceh-Indonesia) as a case study 2019, 42, 12–20.
- M. Shafiq, A. A. Alazba and M. T. Amin. Sains Malaysiana 2018, 47, 35–49.
- Y. L. Xie, S. Q. Zhao, H. L. Ye. Graphene/CeO2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II). J. Electroanal. Chem. 2015, 757, 235–242. [Google Scholar]
- J. Hur, J. Shin, J. Yoo and Y. S. Seo, Competitive adsorption of metals onto magnetic graphene oxide: Comparison with other carbonaceous adsorbents, Sci. World J. [CrossRef]
- T. A. Kurniawan, G. Y. S. Chan, W. H. Lo and S. Babel. Physico-chemical treatment techniques for wastewater laden with heavy metals 2006, 118, 83–98.
- P. N. Omo-Okoro, A. P. Daso and J. O. Okonkwo. Environ. Technol. Innov. 2018, 9, 100–114. [CrossRef]
- Q. Ding, C. Li, H. Wang. Electrochemical detection of heavy metal ions in water. Chem. Commun. 2021, 57, 7215–7231. [Google Scholar] [CrossRef]
- Zirlianngura, D. Tiwari, J. H. Ha and S. M. Lee, Efficient use of porous hybrid materials in a selective detection of lead(II) from aqueous solutions: An electrochemical study, Metals (Basel). [CrossRef]
- G. Elinder, L. Friberg, T. Kjellström, G. Nordberg, G. Oberdoerster and W. H. O. O. of G. and I. E. Health, 1994, 78.
- Z. W. Zhang, S. Shimbo, N. Ochi. Determination of lead and cadmium in food and blood by inductively coupled plasma mass spectrometry: A comparison with graphite furnace atomic absorption spectrometry. Sci. Total Environ. 1997, 205, 179–187. [Google Scholar] [CrossRef]
- Beltrán, L. O. Leal, L. Ferrer and V. Cerdà. Determination of lead by atomic fluorescence spectrometry using an automated extraction/pre-concentration flow system. J. Anal. At. Spectrom. 2015, 30, 1072–1079. [Google Scholar] [CrossRef]
- Depeursinge, D. Racoceanu, J. Iavindrasana. Fusing Visual and Clinical Information for Lung Tissue Classification in HRCT Data. Artif. Intell. Med. 2010, 229, ARTMED1118. [Google Scholar]
- G. A. El-Fatah, H. S. Magar, R. Y. A. Hassan. A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb2+, Cd2+ and Hg2+ ions in real water samples. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Afkhami, H. Ghaedi, T. Madrakian and M. Rezaeivala. Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II) and Cd(II) using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base. Electrochim. Acta 2013, 89, 377–386. [Google Scholar] [CrossRef]
- K. Tonlé, S. Letaief, E. Ngameni. Square wave voltammetric determination of lead(II) ions using a carbon paste electrode modified by a thiol-functionalized kaolinite. Electroanalysis 2011, 23, 245–252. [Google Scholar] [CrossRef]
- F. Tahernejad-Javazmi, M. Shabani-Nooshabadi and H. Karimi-Maleh. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos. Part B Eng. 2019, 172, 666–670. [Google Scholar] [CrossRef]
- H. Karimi-Maleh, M. Shafieizadeh, M. A. Taher. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq. 2020, 298, 112040. [Google Scholar] [CrossRef]
- F. E. Salih, A. Ouarzane and M. El Rhazi. Electrochemical detection of lead (II) at bismuth/Poly(1,8-diaminonaphthalene) modified carbon paste electrode. Arab. J. Chem. 2017, 10, 596–603. [Google Scholar] [CrossRef]
- S. Muralikrishna, D. H. Nagaraju, R. G. Balakrishna. Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions. Anal. Chim. Acta 2017, 990, 67–77. [Google Scholar] [CrossRef]
- R. Rojas, M. R. Perez, E. M. Erro. EDTA modified LDHs as Cu2+ scavengers: Removal kinetics and sorbent stability. J. Colloid Interface Sci. 2009, 331, 425–431. [Google Scholar] [CrossRef]
- M. A., Barakat. Arab. J. Chem., 2011, 4, 361–377.
- Mohammed and I., S. Samaka, Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater, Environ. Technol. Innov., 2018, 10, 162–174. [Google Scholar]
- N., E. A. T., W. D. and D. E. D. Synthesis and Application of Layered Double Hydroxide for the removal of Copper in Wastewater. Int. J. Chem. 2015, 7, 122. [Google Scholar] [CrossRef]
- P. Taylor, Y. Yasin, M. Mohamad, A. Saad, A. Sanusi and F. H. Ahmad, Desalination and Water Treatment Removal of lead ions from aqueous solutions using intercalated tartrate-Mg – Al layered double hydroxides, 37–41.
- M. S. Mostafa, A. A. Bakr, A. M. A. El Naggar and E. A. Sultan. Journal of Colloid and Interface Science Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material : Co + 2 Mo + 6 LDH. J. Colloid Interface Sci. 2016, 461, 261–272. [Google Scholar] [CrossRef]
- H. M. Abdul-Hameed and M. F. Al, Juboury. MgFe-doubled layers hydroxide intercalated with low cost local adsorbent using for removal of lead from aqueous solution. J. Water L. Dev. 2020, 45, 10–18. [Google Scholar] [CrossRef]
- W. Chen, J. Xing, Z. Lu. Environ. Chem. Lett. 2018, 16, 561–567. [CrossRef]
- F. Lyu, H. Yu, T. Hou. Efficient and fast removal of Pb 2+ and Cd 2+ from an aqueous solution using a chitosan/Mg-Al-layered double hydroxide nanocomposite. J. Colloid Interface Sci., 2019, 539, 184–193. [Google Scholar] [CrossRef]
- Sun, Y. Chen, H Yu. Removal of Cu2+, Cd2+ and Pb2+ from aqueous solutions by magnetic alginate microsphere based on Fe3O4/MgAl-layered double hydroxide. J. Colloid Interface Sci. 2018, 532, 474–484. [Google Scholar] [CrossRef]
- G. Huang, D. Wang, S. Ma. A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). J. Colloid Interface Sci. 2015, 445, 294–302. [Google Scholar] [CrossRef]
- N. K. Gupta, M. Saifuddin, S. Kim and K. S. Kim, Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide, J. Mol. Liq. [CrossRef]
- H. Faisal, S. F. A. Al-wakel, H. A. Assi. Journal of Water Process Engineering Waterworks sludge- fi lter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater. J. Water Process Eng. 2020, 33, 101112. [Google Scholar] [CrossRef]
- S. Hashim, P. Kot, S. L. Zubaidi. Energy e ffi cient electrocoagulation using ba ffl e-plates electrodes for e ffi cient Escherichia coli removal from wastewater. 2020, 33, 1–7. [Google Scholar]
- S. Hashim, R. Al Khaddar, N. Jasim. Electrocoagulation as a green technology for phosphate removal from river water. Sep. Purif. Technol. 2019, 210, 135–144. [Google Scholar] [CrossRef]
- R. K. Mahmoud, A. A. Kotp, A. G. El-Deen, A. A. Farghali and F. I. Abo El-Ela, Novel and Effective Zn-Al-GA LDH Anchored on Nanofibers for High-Performance Heavy Metal Removal and Organic Decontamination: Bioremediation Approach, Water. Air. Soil Pollut. [CrossRef]
- U. Holzwarth and N., Gibson. The Scherrer equation versus the ‘ Debye – Scherrer equation ’. 2011, 6, 21027. [Google Scholar]
- Alkan, B. Kalay, M. Doǧan and Ö. Demirbaş. J. Hazard. Mater. 2008, 153, 867–876. [CrossRef]
- G. Hussein, K. Abdou, W. A. Moselhy and R. Mahmoud. Applied Clay Science high-efficiency removal of copper metal ions. The experimental, possible mechanism, sustainable use of waste, and safety study. Appl. Clay Sci. 2023, 231, 106724. [Google Scholar]
- H. A. Younes, R. Khaled, H. M. Mahmoud. Computational and experimental studies on the efficient removal of diclofenac from water using ZnFe-layered double hydroxide as an environmentally benign absorbent. J. Taiwan Inst. Chem. Eng., 2019, 102, 297–311. [Google Scholar]
- M. W. P. K. Amarasinghe and R. A., Williams. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 2007, 132, 299–309. [Google Scholar]
- J. Barnabas, S. Parambadath, A. Mathew. Highly efficient and selective adsorption of In3+ on pristine Zn/Al layered double hydroxide (Zn/Al-LDH) from aqueous solutions. J. Solid State Chem., 2016, 233, 133–142. [Google Scholar] [CrossRef]
- M. C. Alexandrica, M. Silion, D. Hritcu and M. I. Popa. Layered Double Hydroxides As Adsorbents for Anionic Dye Removal From Aqueous Solutions. Environ. Eng. Manag. J. 2018, 14, 381–388. [Google Scholar]
- Saranya, J., et al. “Microwave thermally assisted porous structured cerium oxide/zinc oxide design: fabrication, electrochemical activity towards Pb Ions, anticancer assessment in HeLa and VERO cell lines.” Journal of Inorganic and Organometallic Polymers and Materials 31 (2021): 1279-1292.






| Adsorbent | Qmax (mg/g) | pH | Conc. (mg/l) | Ref. | |
|---|---|---|---|---|---|
| Mg/Al LDH | 3.20 | 2-4 | 40 | Yamin Yasin et al. 2013 [24] | |
| Co/Mo LDH | 73.40 | 5.5 | 370 | Mohsen S.Mostafa 2016 [25] | |
| Mg/Fe intercalated with local adsorbent | 26.24 | 5.0 | 500 | Abdul Hameed et al. 2020 [26] | |
| Citrate modified Mg/Al | 298.50 | 6.0 | Weigiangchen et al. 2017 [27] | ||
| chitosan/Mg-Al LDH | 333.30 | 5.0-7.0 | 300 | Feiyanlyu 2018 [28] | |
| magnetic alginate microsphere based on Fe3O4 /MgAl LDH | 266.60 | 5.0-6.0 | 400 | Junhao Sun 2018 [29] | |
| Mg2Al–LS–LDH (Sulfonated lignin) | 123.00 | 5.7 -5.8 | 200 | Gailing Huang [30] | |
| Zn/Mg/Fe LDH | 700.00 | 5.0 | 50 | current study |
| pH | Zeta potential (mv) | Particle size (nm) | Removal efficiency (%) |
|---|---|---|---|
| 3 | 26 | 301 | 50 |
| 4 | -10.20 | 293 | 99.7 |
| 5 | -13.20 | 267 | 99.9 |
| 6 | -17.00 | 306 | 99.6 |
| Isotherm model | parameter | value | Isotherm model | parameter | Value |
| Langmuir | qmax | 700 | Dubinin-Radushkevich | qmax | 522.49 |
| KL | 0.082 | kad | 0.0009 | ||
| R2 | 0.92 | R2 | 0.97 | ||
| Freundlish | Kf | 64.44 | Sips | qmax | 378.58 |
| 1/nf | 0.68 | Ks | 0.044 | ||
| R2 | 0.88 | 1/n | 2.44 |
| Kinetics model | parameter | value | R2 |
| Pseudo-first order | qe | 18.05 | 0.998 |
| k1 | 1.86*105 | ||
| Pseudo-second order | qe | 19.00 | 0.992 |
| k2 | 1.03*106 | ||
| Avarmi | qe | 18.38 | 0.999 |
| kav | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
