Submitted:
30 August 2023
Posted:
31 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and methods
2.1. Diet and treatments
2.2. In vitro trial and gas production
2.3. In vitro methane (CH4) measurements
2.4. In vitro degradability
2.5. Fermentative parameters
2.6. Statistical analysis
3. Results
3.1. Total phenolics and total tannins
3.2. In vitro fermentation kinetics
3.3. In vitro gas production (IVGP)
3.4. In vitro degradability
3.5. In vitro CH4 production
3.6. In vitro short-chain fatty acid (SCFA) concentration
3.7. Ammonia nitrogen, partitioning factor (PF), and microbial biomass (MB)
4. Discussion
4.1. In vitro fermentation kinetics
4.2. Presence of tannins in the diets
4.3. IVGP, degradability, and CH4 production
4.4. Microbial protein synthesis
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science (1979) 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock - A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, 2013; ISBN 9789251079201. [Google Scholar]
- IPCC Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Diemen, R. van, Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., Kissick, K., Belkacem, M., Malley, J., Eds.; 2019; ISBN 9789291691548.
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse Gas Mitigation Potentials in the Livestock Sector. Nat Clim Chang 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, H.; Shi, H.; Pan, S.; Chang, J.; Dangal, S.R.S.; Qin, X.; Wang, S.; Tubiello, F.N.; Canadell, J.G.; et al. A 130-year Global Inventory of Methane Emissions from Livestock: Trends, Patterns, and Drivers. Glob Chang Biol 2022, 28, 5142–5158. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H. Recent Advances in the in Vitro Gas Method for Evaluation of Nutritional Quality of Feed Resoures. Assessing quality and safety of animal feeds 2004, 55–88. [Google Scholar]
- Maurício, R.; Ribeiro, R.S.; Silveira, S.R.; Silva, P.L.; Calsavara, L.; Pereira, L.G.R.; Paciullo, D.S. Tithonia Diversifolia for Ruminant Nutrition. Tropical Grasslands - Forrajes Tropicales 2014, 2. [Google Scholar] [CrossRef]
- Calsavara, L.H.F.; Ribeiro, R.S.; Silveira, S.R.; Delarota, G.; Freitas, D.S.; Sacramento, J.P.; Paciullo, D.S.C.; Maurício, R.M. Potencial Forrageiro Da Tithonia Diversifolia Para Alimentação de Ruminantes. Livestock Research for Rural Development 2016, 28, 1–9. [Google Scholar]
- Rodríguez García, I. Potencialidades de Tithonia Diversifolia (Hemsl.) Gray En La Alimentación Animal. Livestock Research for Rural Development 2017, 29, 1–11. [Google Scholar]
- Mahecha, L.; Rosales, M. Valor Nutricional Del Follaje de Botón de Oro (Tithonia Diversifolia [Hemsl]. Gray), En La Producción Animal En El Trópico. Livestock Research For Rural Development 2005, 17. [Google Scholar]
- Sao, N. van; Mui, N.T.; Binh, D. van Biomass Production of Tithonia Diversifolia (Wild Sunflower), Soil Improvement on Sloping Land and Use as High Protein Foliage for Feeding Goats. Livestock Research for Rural Development 2010, 22. [Google Scholar]
- Verdecia, D.M.; Ramirez, J.L.; Leonard, I.; Alvarez, Y.; Bazán, Y.; Bodas, R.; Andrés, S.; Alvarez, J.; Giraldez, F.; Lopez, S. Nutritive Value of the Tithonia Diversifolia in a Location of Valle Del Cauto. Revista Electronica de Veterinaria 2011, 12. [Google Scholar]
- Porsavatdy, P.; Preston, T.R.; Leng, R.A. Effect on Feed Intake, Digestibility, N Retention and Methane Emissions in Goats of Supplementing Foliages of Cassava (Manihot Esculenta Crantz) and Tithonia Diversifolia with Water Spinach (Ipomoea Aquatica). livestock Research for Rural Development 2016, 28. [Google Scholar]
- Cardona Iglesias, J.L.; Mahecha Ledesma, L.; Angulo Arizala, J.; Cardona, J.L.; Mahecha, L.; Angulo, J.; Cardona Iglesias, J.L.; Mahecha Ledesma, L.; Angulo Arizala, J. Efecto Sobre La Fermentación in Vitro de Mezclas de Tithonia Diversifolia, Cenchrus Clandestinum y Grasas Poliinsaturadas. Agronomía Mesoamericana 2017, 28, 405. [Google Scholar] [CrossRef]
- Rutunga, V.; Karanja, N.K.; Gachene, C.K.K.; Palm, C. Biomass Production and Nutrient Accumulation by Tephrosia Vogelii ( Hemsley ) A. Gray and Tithonia Diversifolia Hook F. Fallows during the Six-Month Growth Period at Maseno, Western Kenya. Biotechnology Agronomy Social and Environment 1999, 3, 237–246. [Google Scholar]
- Guatusmal-Gelpud, C.; Escobar-Pachajoa, L.D.; Meneses-Buitrago, D.H.; Cardona-Iglesias, J.L.; Castro-Rincón, E. Producción y Calidad de Tithonia Diversifolia y Sambucus Nigra En Trópico Altoandino Colombiano. Agronomía Mesoamericana, 2020; 193–208. [Google Scholar] [CrossRef]
- Mahecha, L.; Escobar, J.P.; Suarez, J.F.; Restrepo, L.F. Evaluación Del Uso de Tithonia Diversifolia (Hemsl.) A. Gray ASTERACEAE, Como Suplemento Forrajero de Vacas Cruzadas. In Ganadería del futuro: Investigación para el desarrollo; Murgueitio, E., Cuartas, C.A., Naranjo, J.F., Eds.; CIPAV: Cali, Colombia, 2008; p. 490. ISBN 978-958-9386-55-2. [Google Scholar]
- Rivera, J.E.; Cuartas, C.A.; Naranjo, J.F.; Tafur, O.; Hurtado, E.A.; A, A.F.; Chará, J.; Murgueitio, E. Efecto de La Oferta y El Consumo de Tithonia Diversifolia En Un Sistema Silvopastoril Intensivo (SSPi), En La Calidad y Productividad de Leche Bovina En El Piedemonte Amazónico Colombiano. Livestock Research for Rural Development 2015, 27. [Google Scholar]
- Terry, S.A.; Ribeiro, R.S.; Freitas, D.S.; Delarota, G.D.; Pereira, L.G.R.R.; Tomich, T.R.; Maurício, R.M.; Chaves, A. v. Effects of Tithonia Diversifolia on in Vitro Methane Production and Ruminal Fermentation Characteristics. Anim Prod Sci 2016, 56, 437–441. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Terry, S.A.; Sacramento, J.P.; Silveira, S.R.E.; Bento, C.B.P.; da Silva, E.F.; Mantovani, H.C.; da Gama, M.A.S.; Pereira, L.G.R.; Tomich, T.R.; et al. Tithonia Diversifolia as a Supplementary Feed for Dairy Cows. PLoS One 2016, 11, e0165751. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In Vitro Gas Production: A Technique Revisited. J Anim Physiol Anim Nutr (Berl) 1997, 77, 24–34. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of AOAC International. W. Horwitz & G. W. Latimer (Eds.), 18th ed.; Gaithersburg, MD: Association of Official Analytical Chemists, 2011; ISBN 093558482X 9780935584820. [Google Scholar]
- van Soest, P.J.J.; Robertson, J.B.B.; Lewis, B.A.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R.; Allen, M.; Carmany, J.; Clegg, J.; Davidowicz, A.; Drouches, M.; Frank, K.; Gambin, D.; Garkie, M.; Gildemeister, B.; et al. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J AOAC Int 2002, 85, 1217–1240, https://pubmed.ncbi.nlm.nih.gov/12477183/.
- Makkar, H. Measurement of Total Phenolics and Tannins Using Folin-Ciocalteu Method. In Quantification of Tannins in Tree and Shrub Foliage; Springer Netherlands: Dordrecht, 2003; pp. 49–51. [Google Scholar]
- Lima, P.M.T.; Moreira, G.D.; Sakita, G.Z.; Natel, A.S.; Mattos, W.T.; Gimenes, F.M.A.; Gerdes, L.; McManus, C.; Abdalla, A.L.; Louvandini, H. Nutritional Evaluation of the Legume Macrotyloma Axillare Using in Vitro and in Vivo Bioassays in Sheep. J Anim Physiol Anim Nutr (Berl) 2018, 102, e669–e676. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. In Vitro Gas Production Tecnique Descripion of Solutions Required for the Gas Technique Analysis and in Vitro Gas Production Using Rumen Fluid. Animal research and development 1988, 6–7. [Google Scholar]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A Semi-Automated in Vitro Gas Production Technique for Ruminant Feedstuff Evaluation. Anim Feed Sci Technol 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Bueno, I.C.S.; Cabral Filho, S.L.S.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.S.S.; Abdalla, A.L. Influence of Inoculum Source in a Gas Production Method. Anim Feed Sci Technol, 2005; 123-124 Pa, 95–105. [Google Scholar] [CrossRef]
- Longo, C.; Bueno, I.C.S.; Nozella, E.F.; Goddoy, P.B.; Cabral Filho, S.L.S.; Abdalla, A.L. The Influence of Head-Space and Inoculum Dilution on in Vitro Ruminal Methane Measurements. Int Congr Ser 2006, 1293, 62–65. [Google Scholar] [CrossRef]
- Wang, M.; Tang, S.X.; Tan, Z.L. Modeling in Vitro Gas Production Kinetics: Derivation of Logistic-Exponential (LE) Equations and Comparison of Models. Anim Feed Sci Technol 2011, 165, 137–150. [Google Scholar] [CrossRef]
- Goering, H.K.; van Soest, P.J. Forage Fiber Analyses. U.S. Department of Agriculture 1975, 387–598. [Google Scholar]
- R Core Team R: A Language and Enviroment for Statistical Computing 2021.
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R. v Emmeans: Estimated Marginal Means, Aka Least-Squares Means 2021.
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biometrical Journal 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix 2021.
- Wickham, H. Ggplot2; Springer International Publishing: Cham, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Getachew, G.; Blümmel, M.; Makkar, H.P.S.; Becker, K. In Vitro Gas Measuring Techniques for Assessment of Nutritional Quality of Feeds: A Review. Anim Feed Sci Technol 1998, 72, 261–281. [Google Scholar] [CrossRef]
- France, J.; Lopez, S.; Kebreab, E.; Bannink, A.; Dhanoa, M.S.; Dijkstra, J. A General Compartmental Model for Interpreting Gas Production Profiles. Anim Feed Sci Technol, 2005; 123-124 Pa, 473–485. [Google Scholar] [CrossRef]
- Adesogan, A.T. What Are Feeds Worth? In : A Critical Evaluation of Selected Nutritive Value Methods. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium; Gainesville; 2002; pp. 33–47. [Google Scholar]
- Firsoni, F.; Sasongko, W.T.; Wahyono, T. Nutritive Value and Fermentation Characteristics of Tithonia Diversifolia and Moringa Oleifera Evaluated by Gas Production Technique in Vitro. In Proceedings of the Proceedings of the International Conference on Improving Tropical Animal Production for Food Security (ITAPS 2021) Atlantis Press; 2022. [Google Scholar]
- Rivera, J.; Chará, J.; Arango, J.; Barahona, R. Effect of Different Genotypes of Tithonia Diversifolia on Fermentation of Feed Mixtures with Urochloa Brizantha Cv. Marandú. Crop Pasture Sci 2021, 72, 850. [Google Scholar] [CrossRef]
- Makkar, H. Effects and Fate of Tannins in Ruminant Animals, Adaptation to Tannins, and Strategies to Overcome Detrimental Effects of Feeding Tannin-Rich Feeds. Small Ruminant Research 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The Role of Condensed Tannins in Ruminant Animal Production: Advances, Limitations and Future Directions. Revista Brasileira de Zootecnia 2017, 46, 929–949. [Google Scholar] [CrossRef]
- Frutos, P.; Hervás, G.; Ramos, G.; Giráldez, F.J.; Mantecón, A.R. Condensed Tannin Content of Several Shrub Species from a Mountain Area in Northern Spain, and Its Relationship to Various Indicators of Nutritive Value. Anim Feed Sci Technol 2002, 95, 215–226. [Google Scholar] [CrossRef]
- Siwaporn, P.; Anan, P.; Rayudika Aprilia Patindra, P.; Pramote, P. Protein-Binding Affinity of Various Condensed Tannin Molecular Weights from Tropical Leaf Peel. J Appl Pharm Sci 2021. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the Conundrum of Tannins in Animal Nutrition and Health. J Sci Food Agric 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Ban, C.; Paengkoum, S.; Yang, S.; Tian, X.; Thongpea, S.; Purba, R.A.P.; Paengkoum, P. Feeding Meat Goats Mangosteen (Garcinia Mangostana L.) Peel Rich in Condensed Tannins, Flavonoids, and Cinnamic Acid Improves Growth Performance and Plasma Antioxidant Activity under Tropical Conditions. J Appl Anim Res 2022, 50, 307–315. [Google Scholar] [CrossRef]
- Getachew, G.; Makkar, H.P.S. ; Becker,K Tropical Browses : Contents of Phenolic Compounds, in Vitro Gas Production and Stoichiometric Relationship between Short Chain Fatty Acid and in Vitro Gas Production. Journal of Agricultural Science 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Delgado, D.C.; Galindo, J.; González, R.; González, N.; Scull, I.; Dihigo, L.; Cairo, J.; Aldama, A.I.; Moreira, O. Feeding of Tropical Trees and Shrub Foliages as a Strategy to Reduce Ruminal Methanogenesis: Studies Conducted in Cuba. Trop Anim Health Prod 2012, 44, 1097–1104. [Google Scholar] [CrossRef]
- Galindo, J.; Gonzales, N.; Marrero, Y.; Sosa, A.; Ruiz, T.; Febles, G.; Torres, V.; Aldana, A.I.; Achang, G.; Moreira, O.; et al. Effect of Tropical Plant Foliage on the Control of Methane Production and in Vitro Ruminal Protozoa Population; 2014; Vol. 48;
- Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial Mechanisms to Overcome Inhibitory Effects of Dietary Tannins. Microb Ecol 2005, 50, 197–205. [Google Scholar] [CrossRef]
- Asres, K.; Bucar, F.; Knauder, E.; Yardley, V.; Kendrick, H.; Croft, S.L. In Vitro Antiprotozoal Activity of Extract and Compounds from the Stem Bark of Combretum Molle. Phytotherapy Research 2001, 15, 613–617. [Google Scholar] [CrossRef]
- Makkar, H. Treatment of Plant Material, Extraction of Tannins, and an Overview of Tannin Assays Presented in the Manual. In Quantification of Tannins in Tree and Shrub Foliage; Springer Netherlands: Dordrecht, 2003; pp. 43–48. [Google Scholar]
- Hill, J.; McSweeney, C.; Wright, A.D.G.; Bishop-Hurley, G.; Kalantar-zadeh, K. Measuring Methane Production from Ruminants. Trends Biotechnol 2016, 34, 26–35. [Google Scholar] [CrossRef]
- Greening, C.; Geier, R.; Wang, C.; Woods, L.C.; Morales, S.E.; McDonald, M.J.; Rushton-Green, R.; Morgan, X.C.; Koike, S.; Leahy, S.C.; et al. Diverse Hydrogen Production and Consumption Pathways Influence Methane Production in Ruminants. ISME Journal 2019, 13, 2617–2632. [Google Scholar] [CrossRef] [PubMed]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial Ecosystem and Methanogenesis in Ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J. Production and Absorption of Volatile Fatty Acids in the Rumen. Livest Prod Sci 1994, 39, 61–69. [Google Scholar] [CrossRef]
- Pazla, R.; Jamarun, N.; Zain, M. ; Arief Microbial Protein Synthesis and in Vitro Fermentability of Fermented Oil Palm Fronds by Phanerochaete Chrysosporium in Combination with Tithonia (Tithonia Diversifolia) and Elephant Grass (Pennisetum Purpureum). Pakistan Journal of Nutrition 2018, 17, 462–470. [Google Scholar] [CrossRef]
- Jamarun, N.; Pazla, R.; Zain, M. ; Arief Comparison of in Vitro Digestibility and Rumen Fluid Characteristics between the Tithonia (Tithonia Diversifolia) with Elephant Grass (Pennisetum Purpureum). IOP Conf Ser Earth Environ Sci 2019, 287, 0–5. [Google Scholar] [CrossRef]
- Rivera, J.E.; Naranjo, J.F.; Cuartas, C.A.; Arenas, F.A. Fermentación in Vitro y Composición Química de Algunos Forrajes y Dietas Ofrecidas Bajo Un Sistema Silvopastoril En El Trópico de Altura. Livestock Research for Rural Development 2013, 25. [Google Scholar]
- Andries, J.I.; Buysse, F.X.; de Brabander, D.L.; Cottyn, B.G. Isoacids in Ruminant Nutrition: Their Role in Ruminal and Intermediary Metabolism and Possible Influences on Performances — A Review. Anim Feed Sci Technol 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Huang, Y.X.; Dong, K.H.; Yang, W.Z.; Zhang, S.L.; Wang, H. Effects of Isovalerate on Ruminal Fermentation, Urinary Excretion of Purine Derivatives and Digestibility in Steers. J Anim Physiol Anim Nutr (Berl) 2009, 93, 716–725. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Yang, W.Z.; Zhang, B.; Yang, X.M.; He, D.C.; Zhang, P.; Dong, K.H.; Huang, Y.X. Effects of Isobutyrate on Rumen Fermentation, Lactation Performance and Plasma Characteristics in Dairy Cows. Anim Feed Sci Technol 2009, 154, 58–67. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Pei, C.X.; Li, H.Y.; Wang, Y.X.; Zhang, S.L.; Zhang, Y.L.; He, J.P.; Wang, H.; Yang, W.Z.; et al. Effects of Isovalerate Supplementation on Microbial Status and Rumen Enzyme Profile in Steers Fed on Corn Stover Based Diet. Livest Sci 2014, 161, 60–68. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Huang, Y.; Dong, K.; Wang, H.; Yang, W. Effects of Isobutyrate on Rumen Fermentation, Urinary Excretion of Purine Derivatives and Digestibility in Steers. Arch Anim Nutr 2008, 62, 377–388. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Wang, Y.X.; Zhang, Z.W.; Yang, W.Z.; Wang, H.; Guo, G.; et al. Effects of Isovalerate Supplementation on Growth Performance and Ruminal Fermentation in Pre- and Post-Weaning Dairy Calves. J Agric Sci 2016, 154, 1499–1508. [Google Scholar] [CrossRef]
- Roman-Garcia, Y.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Park, T.; Wenner, B.A.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. III: Relation with Solid Passage Rate and PH on Prokaryotic Fatty Acid Profile and Community in Continuous Culture. J Dairy Sci 2021, 104, 9868–9885. [Google Scholar] [CrossRef] [PubMed]
- Roman-Garcia, Y.; Mitchell, K.E.; Denton, B.L.; Lee, C.; Socha, M.T.; Wenner, B.A.; Firkins, J.L. Conditions Stimulating Neutral Detergent Fiber Degradation by Dosing Branched-Chain Volatile Fatty Acids. II: Relation with Solid Passage Rate and PH on Neutral Detergent Fiber Degradation and Microbial Function in Continuous Culture. J Dairy Sci 2021, 104, 9853–9867. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, Q.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Wang, Y.X.; Yang, W.Z.; Bai, Y.S.; Shi, Z.G.; Liu, X.N. Effects of Isobutyrate Supplementation on Ruminal Microflora, Rumen Enzyme Activities and Methane Emissions in Simmental Steers. J Anim Physiol Anim Nutr (Berl) 2015, 99, 123–131. [Google Scholar] [CrossRef]
- Oluwasola, T.A.; Dairo, F.A.S. Proximate Composition, Amino Acid Profile and Some Anti-Nutrients of Tithonia Diversifolia Cut at Two Different Times. Afr J Agric Res 2016, 11, 3659–3663. [Google Scholar] [CrossRef]
- Fasuyi, O.A.; Ibitayo, F.J. Preliminary Analyses and Amino Acid Profile of Wild Sunflower (Tithonia Diversifolia) Leaves. Int J Biol Chem Sci 2011, 5, 164–170. [Google Scholar] [CrossRef]
- Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates. Animals 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: I. Ruminal Fermentation. J Anim Sci 1992, 70, 3551–3561. [Google Scholar] [CrossRef] [PubMed]
- Slyter, L.L.; Satter, L.D.; Dinius, D.A. Effect of Ruminal Ammonia Concentration on Nitrogen Utilization by Steers. J Anim Sci 1979, 48, 906–912. [Google Scholar] [CrossRef]
- Hristov, A.N.; Ropp, J.K. Effect of Dietary Carbohydrate Composition and Availability on Utilization of Ruminal Ammonia Nitrogen for Milk Protein Synthesis in Dairy Cows. J Dairy Sci 2003, 86, 2416–2427. [Google Scholar] [CrossRef] [PubMed]
- Galindo, J.; Gonzales, N.; Sosa, A.; Ruiz, T.; Torres, V.; Aldana, A.I.; Diaz, H.; Moreira, O.; Sarduy, L.; Noda, A.C. Efecto de Tithonia Diversifolia (Hemsl.) A. Gray (Botón de Oro) En La Poblacion de Protozoos y Metanogénos Ruminales En Condiciones in Vitro. Revista Cubana de Ciencia Agrícola 2011, 45. [Google Scholar]
- Galindo, J.; González, N.; Scull, I.; Marrero, Y.; Sosa, A.; Aldana, A.I.; Moreira, O.; Delgado, D.; Ruiz, T.; Febles, G.; et al. Efecto de Samanea Saman (Jacq.) Merr., Albizia Lebbeck (L.) Benth y Tithonia Diversifolia (Hemsl.) Gray (Material Vegetal 23) En La Población de Metanógenos y En La Ecología Microbiana Ruminal. Revista Cubana de Ciencia Agricola 2012, 46, 273–278. [Google Scholar]



| TD0 | TD9 | TD27 | TD45 | SE | P-value | Regression | |||
|---|---|---|---|---|---|---|---|---|---|
| L | Q | R2 | |||||||
| Ingredients (g kg -1) | |||||||||
| Tithonia diversifolia | 0.00 | 9.00 | 27.00 | 45.00 | |||||
| Tifton 85 | 60.00 | 51.00 | 33.00 | 15.00 | |||||
| Corn grain | 26.30 | 25.47 | 24.62 | 23.49 | |||||
| Soybean meal | 13.70 | 14.26 | 15.38 | 16.51 | |||||
| Chemical composition (g kg-1 DM) | |||||||||
| Dry matter (g kg-1) | 910.6 | 906.9 | 906.4 | 905.7 | 4.31 | 0.8557 | 0.652 | 0.883 | |
| Organic matter | 938.5 | 928.0 | 929.6 | 920.5 | 1.23 | <0.001 | <0.001 | <0.001 | 0.90 |
| Crude protein | 163.0 | 158.6 | 156.5 | 156.3 | 7.02 | 0.0655 | 0.747 | 0.456 | - |
| Neutral detergent fiber a | 409.0 | 396.6 | 393.3 | 392.7 | 24.48 | 0.0593 | 0.226 | 0.118 | |
| Acid detergent fiber b | 299.2 | 300.3 | 312.7 | 345.8* | 14.51 | 0.0107 | 0.034 | 0.080 | 0.34 |
| Lignin b | 75.6 | 83.92 | 98.48* | 129.0* | 5.75 | 0.0032 | <0.001 | <0.001 | 0.71 |
| Gross energy (kcal g-1 DM) | 3748 | 3713 | 3715 | 3697 | 51.2 | 0.3520 | 0.664 | 0.907 | |
| Ether extract | 23.7 | 18.0 | 17.6 | 17.5 | 2.62 | 0.0450 | 0.070 | 0.065 | |
| Non-fibrous carbohydrates | 342.7 | 366.1 | 367.0 | 353.8 | 16.48 | 0.0723 | 0.350 | 0.088 | |
| Total phenolic compounds c | 7.67 | 6.73* | 5.79* | 4.81* | 0.24 | <0.001 | <0.001 | 0.74 | |
| Total tannins c | 4.30 | 3.66 | 3.02* | 2.33* | 0.29 | <0.001 | <0.001 | 0.80 | |
| Nutrient Content | Soybean meal | Corn grain | Tifton 85 hay | T. diversifolia hay |
|---|---|---|---|---|
| Dry matter | 897.89 | 887.00 | 903.04 | 887.07 |
| Neutral detergent fiber a | 150.00 | 111.48 | 735.81 | 677.71 |
| Acid detergent fiber b | 110.96 | 34.20 | 360.23 | 566.62 |
| Crude protein | 479.23 | 127.14 | 140.45 | 78.84 |
| Total digestible nutrients | 832.25 | 830.32 | 550.15 | 630.21 |
| Ash | 69.19 | 12.79 | 98.96 | 111.35 |
| Total phenolic compounds c | - | - | 7.14 | 3.94 |
| Total tannins c | - | - | 3.84 | 1.92 |
| Condensed tannins d | - | - | 0.18 | 0.19 |
| Parameter | TD0 | TD9 | TD27 | TD45 | SE | P-value | Regression | |
|---|---|---|---|---|---|---|---|---|
| L | R2 | |||||||
| Vf (mL g-1 OM) | 168.8 | 167.7 | 169.3 | 167.8 | 6.18 | 0.9074 | 0.9754 | <0.01 |
| k (h-1) | 0.032 | 0.033 | 0.036 | 0.038 | 0.0017 | 0.0532 | 0.0958 | 0.19 |
| L (h) | 0.41 | 0.32 | 0.42 | 0.44 | 0.041 | 0.1843 | 0.7652 | <0.01 |
| T0.5 (h) | 21.7 | 21.7 | 21.1 | 20.8 | 0.49 | 0.2483 | 0.1824 | 0.12 |
| V0.5 (mL g-1 OM) | 84.4 | 83.8 | 84.6 | 83.9 | 3.09 | 0.9074 | 0.9754 | <0.01 |
| μ0.5 (h-1) | 0.032 | 0.032 | 0.034 | 0.035* | 0.0007 | 0.0366 | 0.1110 | 0.17 |
| V96 (mL g-1 OM) | 161.3 | 160.2 | 163.0 | 162.5 | 6.01 | 0.8465 | 0.8603 | <0.01 |
| Incubation Time (h) | TD0 | TD9 | TD27 | TD45 | SE | P-value | Regression | ||
|---|---|---|---|---|---|---|---|---|---|
| L | Q | R2; | |||||||
| in vitrogas production (mL g -1 DOM) | |||||||||
| 2 | 2.19 | 2.41 | 1.64 | 1.83 | 2.823 | 0.1537 | 0.133 | 0.290 | - |
| 6 | 9.24 | 9.51 | 10.54 | 10.80 | 0.1819 | 0.006 | 0.123 | 0.19 | |
| 10 | 20.79 | 17.94 | 18.49 | 18.53 | 0.1136 | 0.165 | 0.198 | - | |
| 24 | 48.33 | 41.71 | 43.81 | 44.18 | 0.5125 | 0.555 | 0.468 | - | |
| 96 | 104.46 | 101.05 | 106.93 | 91.52 | 0.1054 | 0.459 | 0.525 | - | |
| in vitrodegradability of organic matter (g kg -1) | |||||||||
| 2 | 332.34 | 323.08 | 329.00 | 368.49 | 16.412 | 0.0749 | 0.028 | 0.139 | 0.16 |
| 6 | 370.20 | 380.89 | 398.13 | 426.49* | 0.0140 | 0.009 | 0.084 | 0.20 | |
| 10 | 448.67 | 417.56 | 437.03 | 470.25 | 0.1068 | 0.077 | 0.033 | 0.21 | |
| 24 | 529.39 | 508.12 | 516.16 | 547.76 | 0.2501 | 0.327 | 0.146 | - | |
| 96 | 686.77 | 687.56 | 703.20 | 669.55 | 0.3344 | 0.452 | 0.218 | - | |
| in vitromethane production (mL g -1 DOM) | |||||||||
| 2 | 0.054 | 0.029 | 0.056 | 0.049 | 0.3155 | 0.9385 | 0.571 | 0.768 | - |
| 6 | 0.387 | 0.297 | 0.335 | 0.363 | 0.7855 | 0.983 | 0.767 | - | |
| 10 | 1.572 | 0.942 | 1.273 | 1.251 | 0.0928 | 0.662 | 0.435 | - | |
| 24 | 4.162 | 2.980* | 3.649 | 3.575 | 0.0096 | 0.683 | 0.429 | - | |
| 96 | 5.549 | 4.670* | 4.958 | 4.837 | 0.0317 | 0.340 | 0.428 | - | |
| Incubation Time (h) | TD0 | TD9 | TD27 | TD45 | SE | P-value | Regression | ||
|---|---|---|---|---|---|---|---|---|---|
| L | Q | R2; | |||||||
| Total SCFA (μmol mL-1) | |||||||||
| 2 | 73,69 | 75,20 | 71,90 | 67,92* | 4.321 | 0.0087 | 0.049 | 0.111 | 0.12 |
| 6 | 85,99 | 85,69 | 84,78 | 77,72* | 0.0015 | 0.068 | 0.128 | - | |
| 10 | 100,09 | 98,53 | 95,06 | 89,50* | 0.0003 | 0.008 | 0.031 | 0.21 | |
| 24 | 125,53 | 125,38 | 122,42 | 114,75* | 0.0030 | 0.047 | 0.112 | 0.13 | |
| 96 | 169,64 | 171,59 | 167,91 | 162,67 | 0.1919 | 0.098 | 0.198 | - | |
| Acetate (mol 100 mol-1) | |||||||||
| 2 | 69.06 | 68.21 | 68.17 | 68.03* | 0.373 | 0.0370 | 0.321 | 0.525 | - |
| 6 | 64.88 | 63.85 | 63.31* | 64.23 | 0.0127 | 0.509 | 0.215 | - | |
| 10 | 60.21 | 59.47 | 59.82 | 60.50 | 0.2197 | 0.570 | 0.556 | - | |
| 24 | 54.46 | 53.96 | 53.95 | 54.24 | 0.4635 | 0.894 | 0.859 | - | |
| 96 | 49.67 | 49.57 | 49.84 | 50.87 | 0.1052 | 0.165 | 0.299 | - | |
| Propionate (mol 100 mol-1) | |||||||||
| 2 | 16.00 | 16.47 | 15.97 | 15.12 | 0.74 | 0.209 | 0.159 | 0.241 | - |
| 6 | 18.47 | 19.00 | 18.98 | 17.41 | 0.167 | 0.125 | 0.052 | 0.18 | |
| 10 | 21.62 | 22.11 | 21.31 | 19.91 | 0.054 | 0.006 | 0.008 | 0.29 | |
| 24 | 24.84 | 25.81 | 25.01 | 23.64 | 0.168 | 0.027 | 0.013 | 0.26 | |
| 96 | 26.44 | 27.40 | 26.57 | 25.06 | 0.129 | 0.023 | 0.013 | 0.26 | |
| Butyrate (mol 100 mol-1) | |||||||||
| 2 | 11.53 | 11.57 | 11.77 | 11.91 | 0.494 | 0.532 | 0.434 | 0.741 | - |
| 6 | 12.91 | 12.96 | 13.31 | 13.04 | 0.486 | 0.723 | 0.813 | - | |
| 10 | 14.09 | 13.87 | 14.28 | 14.06 | 0.656 | 0.823 | 0.957 | - | |
| 24 | 15.75 | 14.96 | 15.72 | 16.37 | 0.153 | 0.133 | 0.165 | - | |
| 96 | 16.00 | 15.06 | 16.05 | 16.15 | 0.090 | 0.268 | 0.400 | - | |
| A:P | |||||||||
| 2 | 4.34 | 4.20 | 4.32 | 4.52 | 0.133 | 0.241 | 0.365 | 0.503 | - |
| 6 | 3.52 | 3.4 | 3.36 | 3.69 | 0.257 | 0.318 | 0.116 | - | |
| 10 | 2.78 | 2.72 | 2.81 | 3.04 | 0.100 | 0.022 | 0.031 | 0.21 | |
| 24 | 2.19 | 2.09 | 2.17 | 2.30 | 0.454 | 0.131 | 0.124 | - | |
| 96 | 1.88 | 1.81 | 1.87 | 1.97 | 0.509 | 0.024 | 0.018 | 0.24 | |
| Valerate (mol 100 mol-1) | |||||||||
| 2 | 0.88 | 0.92 | 0.94 | 1.06* | 0.083 | 0.007 | 0.004 | 0.014 | 0.24 |
| 6 | 1.23 | 1.26 | 1.26 | 1.34 | 0.111 | 0.102 | 0.230 | - | |
| 10 | 1.46 | 1.51 | 1.44 | 1.49 | 0.497 | 0.875 | 0.961 | - | |
| 24 | 1.92 | 1.94 | 1.86 | 1.87 | 0.461 | 0.446 | 0.747 | - | |
| 96 | 3.25 | 3.01 | 2.85* | 2.74* | 0.014 | 0.007 | 0.019 | 0.22 | |
| Iso-valerate (mol 100 mol-1) | |||||||||
| 2 | 2.12 | 2.29 | 2.43 | 2.76* | 0.231 | 0.019 | <0.001 | <0.001 | 0.43 |
| 6 | 2.22 | 2.45 | 2.50 | 2.95* | 0.016 | <0.001 | <0.001 | 0.45 | |
| 10 | 2.26 | 2.54 | 2.52 | 3.08* | 0.012 | <0.001 | <0.001 | 0.38 | |
| 24 | 2.65 | 2.92 | 2.94 | 3.19 | 0.075 | <0.001 | 0.004 | 0.32 | |
| 96 | 3.81 | 4.03 | 3.90 | 4.03 | 0.561 | 0.273 | 0.542 | - | |
| Iso-butyrate (mol 100 mol-1) | |||||||||
| 2 | 0.42 | 0.54 | 0.71 | 1.80* | 0.430 | 0.016 | <0.001 | <0.001 | 0.52 |
| 6 | 0.29 | 0.48 | 0.64* | 1.62* | 0.029 | <0.001 | <0.001 | 0.56 | |
| 10 | 0.38 | 0.50 | 0.62 | 1.34* | 0.014 | 0.002 | 0.006 | 0.29 | |
| 24 | 0.37 | 0.42 | 0.52 | 1.02* | 0.034 | <0.001 | 0.005 | 0.30 | |
| 96 | 0.81 | 0.93 | 0.80 | 1.81 | 0.241 | 0.047 | 0.057 | 0.12 | |
| pH | |||||||||
| 2 | 6.8 | 6.8 | 6.9* | 7.0* | 0.04 | 0.005 | <0.001 | <0.001 | 0.39 |
| 6 | 6.7 | 6.8 | 6.9* | 7.0* | 0.005 | <0.001 | <0.001 | 0.53 | |
| 10 | 6.7 | 6.8 | 6.7 | 6.9* | 0.008 | <0.001 | 0.007 | 0.26 | |
| 24 | 6.3 | 6.4 | 6.4 | 6.5 | 0.064 | 0.345 | 0.345 | - | |
| 96 | 6.3 | 6.4 | 6.4 | 6.5* | 0.008 | 0.004 | 0.018 | 0.21 | |
| Incubation time (h) | TD0 | TD9 | TD27 | TD45 | SE | P-value | Regression | ||
|---|---|---|---|---|---|---|---|---|---|
| L | Q | R2; | |||||||
| Ammonia nitrogen (mg dL-1) | |||||||||
| 2 | 21.61 | 22.14 | 22.57 | 19.02 | 2.045 | 0.252 | 0.285 | 0.284 | - |
| 6 | 23.27 | 23.94 | 23.50 | 22.73 | 0.753 | 0.590 | 0.739 | - | |
| 10 | 29.24 | 28.61 | 25.06 | 23.55* | 0.032 | <0.001 | <0.001 | 0.45 | |
| 24 | 34.80 | 36.99 | 31.67 | 31.81 | 0.093 | 0.014 | 0.053 | 0.18 | |
| 96 | 54.70 | 54.98 | 53.88 | 50.11 | 0.065 | 0.018 | 0.022 | 0.23 | |
| Partitioning factor | |||||||||
| 2 | 11.84 | 12.28 | 13.32 | 16.90* | 0.441 | <0.001 | <0.001 | <0.001 | 0.50 |
| 6 | 5.69 | 6.06 | 6.16 | 7.58* | 0.001 | <0.001 | <0.001 | 0.39 | |
| 10 | 4.57 | 4.59 | 4.82 | 5.68* | 0.043 | <0.001 | <0.001 | 0.41 | |
| 24 | 3.21 | 3.68 | 3.45 | 3.89* | 0.008 | 0.006 | 0.021 | 0.23 | |
| 96 | 2.78 | 2.73 | 2.81 | 2.84 | 0.671 | 0.570 | 0.842 | - | |
| Microbial biomass (mg) | |||||||||
| 2 | 134.03 | 132.26 | 133.26 | 180.02* | 15.195 | 0.023 | 0.003 | 0.001 | 0.37 |
| 6 | 151.82 | 171.15 | 179.38 | 234.45* | 0.001 | <0.001 | <0.001 | 0.55 | |
| 10 | 207.12 | 188.17 | 205.19 | 247.35* | 0.038 | 0.002 | <0.001 | 0.42 | |
| 24 | 236.87 | 226.96 | 245.92 | 279.62* | 0.038 | <0.001 | <0.001 | 0.40 | |
| 96 | 349.24 | 317.01 | 334.85 | 319.26 | 0.078 | 0.271 | 0.510 | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
