Submitted:
28 August 2023
Posted:
29 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. DNA Extraction and Genotyping
2.2. Statistical Analysis
3. Results
3.2.2. Association of Single Nucleotide Polymorphisms of TEP1 (rs1760904, rs1713418) and TERC (rs12696304, rs35073794) Genes with Multiple Sclerosis Regarding Age of the Subjects
3.3. Haplotype Analysis of TEP1 (rs1760904, rs1713418) and TERC (rs12696304, rs35073794)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamout, B.I.; Alroughani, R. Multiple sclerosis. Semin. Neurol. 2018, 38, 212–225. [Google Scholar]
- The Multiple Sclerosis International Federation. Atlas of MS 3rd edition 2020.
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017, 19, 1–10. [Google Scholar]
- Leffler, J.; Trend, S.; Gorman, S.; Hart, P.H. Sex-Specific Environmental Impacts on Initiation and Progression of Multiple Sclerosis. Front. Neurol. 2022, 13, e835162. [Google Scholar] [CrossRef]
- Hecker, M.; Fitzner, B.; Jäger, K.; Bühring, J.; Schwartz, M.; Hartmann, A.; Walter, M.; Zettl, U.K. Leukocyte Telomere Length in Patients with Multiple Sclerosis and Its Association with Clinical Phenotypes. Mol. Neurobiol. 2021, 58, 2886–2896. [Google Scholar] [CrossRef]
- Baecher-Allan, C.; Kaskow, B.J.; Weiner, H.L. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018, 97, 742–768. [Google Scholar] [CrossRef] [PubMed]
- Suraweera, N.; Mouradov, D.; Li, S.; Jorissen, R.N.; Hampson, D.; Ghosh, A.; Sengupta, N.; Thaha, M.; Ahmed, S.; Kirwan, M.; et al. Relative telomere lengths in tumor and normal mucosa are related to disease progression and chromosome instability profiles in colorectal cancer. Oncotarget 2016, 7, 36474–36488. [Google Scholar] [CrossRef] [PubMed]
- Razgonova, M.P.; Zakharenko, A.M.; Golokhvast, K.S.; Thanasoula, M.; Sarandi, E.; Nikolouzakis, K.; Fragkiadaki, P.; Tsoukalas, D.; Spandidos, D.A.; Tsatsakis, A. Telomerase and telomeres in aging theory and chronographic aging theory. Mol. Med. Rep. 2020, 22, 1679–1694. [Google Scholar] [CrossRef] [PubMed]
- Melicher, D.; Buzas, E.I.; Falus, A. Genetic and epigenetic trends in telomere research: A novel way in immunogenetics. Cell Mol. Life Sci. 2015, 72, 4095–4109. [Google Scholar] [CrossRef] [PubMed]
- Giardini, M.A.; Segatto, M.; da Silva, M.S.; Nunes, V.S.; Cano, M.I.N. Telomere and Telomerase Biology. Prog. Mol. Biol. Transl. Sci. 2014, 125, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Huang, J.; Wang, G. Mitochondria, Telomeres and Telomerase Subunits. Front. Cell Dev. Biol. 2019, 7, 274. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, Y.; Ge, Y.; Liu, J.; Zhao, Y. TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Res. 2019, 47, 8084–8095. [Google Scholar] [CrossRef]
- Gomez-Delgado, F.; Delgado-Lista, J.; Lopez-Moreno, J.; Rangel-Zuniga, O.A.; Alcala-Diaz, J.F.; Leon-Acuna, A.; et al. Telomerase RNA component genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, J.; Cheng, G.; Dai, M.; Liu, J.; Qi, Z.; Zhao, J.; Li, W.; Kong, F.; Liu, G.; et al. The telomerase gene polymorphisms, but not telomere length, increase susceptibility to primary glomerulonephritis/end stage renal diseases in females. J. Transl. Med. 2020, 18, 184. [Google Scholar] [CrossRef] [PubMed]
- Gala, K.; Khattar, E. Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett. 2021, 502, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wen, X.; Li, L.; Li, Y.; Li, C.; Li, B.; et al. NAF1 rs4691896 is significantly associated with coal workers' pneumoconiosis in a Chinese Han population. Med. Sci. Monit. 2020, 26, e918709. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-Y.; Nemes, A.; Zhou, Q.-G. The Emerging Roles for Telomerase in the Central Nervous System. Front. Mol. Neurosci. 2018, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Scarabino, D.; Broggio, E.; Gambina, G.; Pelliccia, F.; Corbo, R. Common variants of human TERT and TERC genes and susceptibility to sporadic Alzheimers disease. Exp. Gerontol. 2017, 88, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Beggs, A.D.; Carvajal-Carmona, L.; Farrington, S.; Tenesa, A.; Walker, M.; et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 2012, 61, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, G.; Zeng, J.; Song, W.; Wang, K.; Wang, X.; Guo, P.; He, D. Genetic variations in TERC and TERT genes are associated with renal cell carcinoma risk in a Chinese Han population. Oncotarget 2017, 8, 76832–76842. [Google Scholar] [CrossRef]
- Sawhney, V.; Brouilette, S.; Campbell, N.; Coppen, S.; Baker, V.; Hunter, R.; Dhinoja, M.; Johnston, A.; Earley, M.; Sporton, S.; et al. Association of genetic variation in telomere-related SNP and telomerase with ventricular arrhythmias in ischemic cardiomyopathy. Pacing Clin. Electrophysiol. 2018, 41, 261–266. [Google Scholar] [CrossRef]
- Morrish, T.A. Telomerase and Non-Telomerase Mechanisms of Telomere Maintenance; IntechOpen: London, UK, 2020. [Google Scholar]
- Duan, X.; Wang, H.; Yang, Y.; Wang, P.; Zhang, H.; Liu, B.; Wei, W.; Yao, W.; Zhou, X.; Zhao, J.; et al. Genetic variants in telomerase-associated protein 1 are associated with telomere damage in PAH-exposed workers. Ecotoxicol. Environ. Saf. 2021, 223, e112558. [Google Scholar] [CrossRef]
- Li, H.; Zhao, L.; Yang, Z.; Funder, J.W.; Liu, J.P. Telomerase is controlled by protein kinase calpha in human breast cancer cells. J. Biol. Chem. 1998, 273, 33436–33442. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Pellegrini, M.V. Biochemistry, telomere and telomerase. StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Gu, C.; Li, Q.; Zhu, Y.; Qu, Y.; Zhang, G.; Wang, M.; Yang, Y.; Wang, J.; Jin, L.; Wei, Q.; et al. Genetic variants in the TEP1 gene are associated with prostate cancer risk and recurrence. Prostate Cancer Prostatic Dis. 2015, 18, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.-H.; Kim, S.; Kim, D.-H.; Park, J. Two genetic variants in telomerase-associated protein 1 are associated with stomach cancer risk. J. Hum. Genet. 2016, 61, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Data about TEP1 Gene from NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/7011 (accessed on 27 April 2022).
- Ren, H.Y.; Wang, Q.; Lei, W.; Zhang, C.C.; Li, Y.F.; Li, X.J.; Li, M.L.; Deng, W.; Huang, C.H.; Du, F.; et al. The common variants implicated in microstructural abnormality of first episode and drug-naive patients with schizophrenia. Sci. Rep. 2017, 7, e11750. [Google Scholar] [CrossRef] [PubMed]
- Sebate, B.; Cuttler, K.; Cloete, R.; Britz, M.; Christoffels, A.; Williams, M.; Carr, J.; Bardien, S. Prioritization of candidate genes for a South African family with Parkinson’s disease using in-silico tools. PLoS ONE 2021, 16, e0249324. [Google Scholar] [CrossRef] [PubMed]
- Farsani, Z.S.; Dehghanzad, R.; Moghadam, S.P. Prediction of single-nucleotide polymorphisms within microRNAs binding sites of neuronal genes related to multiple sclerosis. Adv. Biomed. Res. 2021, 10, 8. [Google Scholar] [CrossRef]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.T.-C.; Chen, Y.-L.; Yang, H.-T.; Chen, C.-Y.; Cheng, A.-J. Differential regulation of telomerase activity by six telomerase subunits. Eur. J. Biochem. 2002, 269, 3442–3450. [Google Scholar] [CrossRef] [PubMed]
- Sipos, F.; Galamb, O.; Herszényi, L.; Molnár, B.; Solymosi, N.; Zágoni, T.; Berczi, L.; Tulassay, Z. Elevated insulin-like growth factor 1 receptor, hepatocyte growth factor receptor and telomerase protein expression in mild ulcerative colitis. Scand. J. Gastroenterol. 2008, 43, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tao, W.; Huang, M.; Wu, X.; Gu, J. Genetic variants in telomere-maintenance genes are associated with ovarian cancer risk and outcome. J. Cell. Mol. Med. 2017, 21, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Lei, L.; Chen, L.; Xie, T.; Li, X. Inflammatory microenvironment in the initiation and progression of bladder cancer. Oncotarget 2017, 8, 93279–93294. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Dinney, C.P.; Huang, M.; Wu, X.; Gu, J. Genetic Variants in Telomere-Maintenance Genes and Bladder Cancer Risk. PLoS ONE 2012, 7, e30665. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.; Aleagha, M.S.E.; Ghasemi-Kasman, M.; Allameh, A. Cross-talks between the kidneys and the central nervous system in multiple sclerosis. Casp. J. Intern. Med. 2018, 9, 206–210. [Google Scholar] [CrossRef]
- Al Khaldi, R.; Mojiminiyi, O.; AlMulla, F.; Abdella, N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of type 2 diabetes mellitus. PLoS ONE 2015, 10, e0145721. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ning, Z.; Lee, Y.; Hambly, B.D.; McLachlan, C.S. Shortened leukocyte telomere length in type 2 diabetes mellitus: Genetic polymorphisms in mitochondrial uncoupling proteins and telomeric pathways. Clin. Transl. Med. 2016, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Maubaret, C.G.; Salpea, K.D.; Romanoski, C.E.; Folkersen, L.; Cooper, J.A.; Stephanou, C.; Li, K.W.; Palmen, J.; Hamsten, A.; Neil, A.; et al. Association of TERC and OBFC1 Haplotypes with Mean Leukocyte Telomere Length and Risk for Coronary Heart Disease. PLoS ONE 2013, 8, e83122. [Google Scholar] [CrossRef]
| Characteristics | Group | p-value | ||
|---|---|---|---|---|
| MS group | Control group | |||
| Gender | Males, N (%) | 102 (51) | 97 (42.2) | 0.067 |
| Females, N (%) | 98 (49) | 133 (57.8) | ||
| Age, Median (IQR) | 38 (15) | 43.5 (28) | 0.117 | |
| Gene, SNP | Genotype and allele | Distribution | ||
|---|---|---|---|---|
| MS group, N (%) | Control group, N (%) | p-value | ||
| TEP1 rs1760904 | Genotype AA AG GG |
44 (22.00) 96 (48.00) 60 (30.00) |
56 (24.30) 122 (53.00) 52 (22.60) |
0.219 |
| Allele A G |
184 (46.00) 216 (54.00) |
234 (50.87) 226 (49.13) |
0.154 | |
| TEP1 rs1713418 | Genotype AA AG GG |
72 (36.00) 86 (43.00) 42 (21.00) |
81 (35.20) 114 (49.60) 35 (15.20) |
0.222 |
| Allele A G |
230 (57.50) 170 (42.50) |
276 (60.00) 184 (40.00) |
0.457 | |
| TERC rs12696304 | Genotype CC CG GG |
124 (62.00) 70 (35.00) 6 (3.00) |
123 (53.50) 92 (40.00) 15 (6.50) |
0.092 |
| Allele C G |
318 (79.50) 82 (20.50) |
338 (73.48) 122 (26.52) |
0.038 | |
| TERC rs35073794 | Genotype GG AG AA |
108 (54.00)1 91 (45.50)2 1 (0.50) |
75 (32.60)1 155 (67.40)2 0 (0.00) |
<0.001 |
| Allele G A |
307 (76.75) 93 (23.25) |
305 (66.30) 155 (33.70) |
<0.001 | |
| Model | Genotype/Allele | OR (95% CI) | p-value | AIC |
|---|---|---|---|---|
| TEP1 rs1760904 | ||||
| Codominant | AG vs. AA GG vs. AA |
1.001 (0.622 - 1.613) 1.469 (0.854 - 2.525) |
0.995 0.165 |
594.983 |
| Dominant | AG + GG vs. AA | 1.141 (0.727 - 1.790) | 0.566 | 595.681 |
| Recessive | GG vs. AG + AA | 1.467 (0.952 - 2.260) | 0.082 | 592.983 |
| Overdominant | AG vs. AA+GG | 0.817 (0.559 - 1.194) | 0.297 | 594.923 |
| Additive | G | 1.220 (0.930 - 1.600) | 0.152 | 593.947 |
| TEP1 rs1713418 | ||||
| Codominant | AG vs. AA GG vs. AA |
0.849 (0.556 - 1.296) 1.350 (0.779 - 2.339) |
0.447 0.284 |
595.007 |
| Dominant | AG + GG vs. AA | 0.966 (0.651 - 1.436) | 0.866 | 595.983 |
| Recessive | GG vs. AG+AA | 1.481 (0.903 - 2.430) | 0.120 | 593.584 |
| Overdominant | AG vs. AA+GG | 0.768 (0.524 - 1.124) | 0.174 | 594.156 |
| Additive | G | 1.104 (0.845 - 1.443) | 0.466 | 595.481 |
| TERC rs12696304 | ||||
| Codominant | CG vs. CC GG vs. CC |
0.755 (0.507 - 1.124) 0.397 (0.149 - 1.056) |
0.166 0.064 |
593.121 |
| Dominant | CG+GG vs. CC | 0.705 (0.479 - 1.036) | 0.075 | 592.826 |
| Recessive | GG vs. CG+CC | 0.443 (0.169 - 1.165) | 0.099 | 593.043 |
| Overdominant | CG vs. CC+GG | 0.808 (0.546 - 1.196) | 0.286 | 594.871 |
| Additive | G | 0.703 (0.506 - 0.976) | 0.035 | 591.502 |
| TERC rs35073794 | ||||
| Codominant | AG vs. GG AA vs. GG |
0.408 (0.275 - 0.603) - |
<0.001 - |
575.893 |
| Dominant | AG + AA vs. GG | 0.412 (0.279 - 0.610) | <0.001 | 575.875 |
| Recessive | AA vs. AG+GG | - | - | - |
| Overdominant | AG vs. AA+GG | 0.404 (0.273 - 0.598) | <0.001 | 574.944 |
| Additive | A | 0.427 (0.289 - 0.629 | <0.001 | 577.123 |
| Genotype and Allele. | Males | p-value | Females | p-value | ||
|---|---|---|---|---|---|---|
| MS group, N (%) | Control group, N (%) | MS group, N (%) | Control group, N (%) | |||
| TEP1 rs1760904 | ||||||
| Genotype AA AG GG |
25 (24.50) 50 (49.00) 27 (26.50) |
28 (28.90) 51 (52.60) 18 (18.60) |
0.395 | 19 (19.40) 46 (46.90) 33 (33.70) |
28 (21.10) 71 (53.40) 34 (25.60) |
0.403 |
| Allele A G |
100 (49.02) 104 (50.98) |
107 (55.15) 87 (44.85) |
0.221 | 84 (42.86) 112 (57.14) |
127 (47.74) 139 (52.26) |
0.297 |
| TEP1 rs1713418 | ||||||
| Genotype AA AG GG |
40 (39.20) 46 (45.10) 16 (15.70) |
32 (33.00) 52 (53.60) 13 (13.40) |
0.486 | 32 (32.70) 40 (40.80) 26 (26.50) |
49 (36.80) 62 (46.60) 22 (16.50) |
0.181 |
| Allele A G |
126 (61.76) 78 (38.24) |
116 (59.79) 78 (40.21) |
0.687 | 104 (53.06) 92 (46.94) |
160 (60.15) 106 (39.85) |
0.128 |
| TERC rs12696304 | ||||||
| Genotype CC CG GG |
70 (68.60)1 30 (29.40) 2 (2.00)2 |
51 (52.60)1 38 (39.20) 8 (8.20)2 |
0.025 |
54 (55.10) 40 (40.80) 4 (4.10) |
72 (54.10) 54 (40.60) 7 (5.30) |
0.916 |
| Allele C G |
170 (83.33) 34 (16.67) |
140 (72.16) 54 (27.84) |
0.007 | 148 (75.51) 48 (24.49) |
198 (74.44) 68 (25.56) |
0.792 |
| TERC rs35073794 | ||||||
| Genotype GG AG AA |
61 (59.80)3 40 (39.20)4 1 (1.00) |
25 (25.80)3 72 (74.20)4 0 (0.00) |
<0.001 | 47 (48.00) 51 (52.00) |
50 (37.60) 83 (62.40) |
0.115 |
| Allele G A |
162 (79.41) 42 (20.59) |
122 (62.89) 72 (37.11) |
<0.001 | 145 (73.98) 51 (26.02) |
183 (68.80) 83 (31.20) |
0.225 |
| Model | Genotype/Allele | OR (95% CI) | p-value | AIC |
|---|---|---|---|---|
| Males | ||||
| TEP1 rs1760904 | ||||
| Codominant | AG vs. AA GG vs. AA |
1.098 (0.564 - 2.136) 1.680 (0.752 - 3.754) |
0.783 0.206 |
277.881 |
| Dominant | AG + GG vs. AA | 1.250 (0.666 - 2.346) | 0.488 | 277.264 |
| Recessive | GG vs. AG + AA | 1.580 (0.805 - 3.103) | 0.184 | 275.956 |
| Overdominant | AG vs. AA+GG | 0.867 (0.497 - 1.513) | 0.616 | 277.495 |
| Additive | G | 1.286 (0.862 - 1.918) | 0.218 | 276.218 |
| TEP1 rs1713418 | ||||
| Codominant | AG vs. AA GG vs. AA |
0.708 (0.384 - 1.304) 0.985 (0.414 - 2.343) |
0.267 0.972 |
278.303 |
| Dominant | AG + GG vs. AA | 0.763 (0.427 - 1.364) | 0.361 | 276.911 |
| Recessive | GG vs. AG+AA | 1.202 (0.545 - 2.652) | 0.648 | 277.538 |
| Overdominant | AG vs. AA+GG | 0.711 (0.407 - 1.242) | 0.231 | 276.305 |
| Additive | G | 0.918 (0.609 - 1.383) | 0.682 | 277.579 |
| TERC rs12696304 | ||||
| Codominant | CG vs. CC GG vs. CC |
0.575 (0.316 - 1.047) 0.182 (0.037 - 0.894) |
0.071 0.036 |
272.078 |
| Dominant | CG+GG vs. CC | 0.507 (0.284 - 0.903) | 0.021 | 272.350 |
| Recessive | GG vs. CG+CC | 0.223 (0.046 - 1.075) | 0.062 | 273.377 |
| Overdominant | CG vs. CC+GG | 0.647 (0.359 - 1.167) | 0.148 | 275.637 |
| Additive | G | 0.515 (0.314 - 0.845) | 0.009 | 270.497 |
| TERC rs35073794 | ||||
| Codominant | AG vs. GG AA vs. GG |
0.228 (0.124 - 0.417) - |
<0.001 - |
253.671 |
| Dominant | AG + AA vs. GG | 0.233 (0.128 - 0.427) | <0.001 | 253.714 |
| Recessive | AA vs. AG+GG | - | - | - |
| Overdominant | AG vs. AA+GG | 0.224 (0.122 - 0.410) | <0.001 | 252.353 |
| Additive | A | 0.256 (0.141 - 0.462) | <0.001 | 255.882 |
| Females | ||||
| TEP1 rs1760904 | ||||
| Codominant | AG vs. AA GG vs. AA |
0.955 (0.479 - 1.905) 1.430 (0.673 - 3.041) |
0.896 0.352 |
317.102 |
| Dominant | AG + GG vs. AA | 1.109 (0.578 - 2.127) | 0.756 | 316.814 |
| Recessive | GG vs. AG + AA | 1.478 (0.834 - 2.619) | 0.181 | 315.119 |
| Overdominant | AG vs. AA+GG | 0.772 (0.458 - 1.303) | 0.333 | 315.972 |
| Additive | G | 1.224 (0.840 - 1.784) | 0.293 | 315.798 |
| TEP1 rs1713418 | ||||
| Codominant | AG vs. AA GG vs. AA |
0.988 (0.544 - 1.795) 1.810 (0.879 - 3.724) |
0.968 0.107 |
315.523 |
| Dominant | AG + GG vs. AA | 1.203 (0.694 - 2.085) | 0.510 | 316.474 |
| Recessive | GG vs. AG+AA | 1.822 (0.960 - 3.457) | 0.066 | 313.525 |
| Overdominant | AG vs. AA+GG | 0.790 (0.466 - 1.339) | 0.381 | 316.139 |
| Additive | G | 1.302 (0.911 - 1.862) | 0.148 | 314.801 |
| TERC rs12696304 | ||||
| Codominant | CG vs. CC GG vs. CC |
0.988 (0.576 - 1.695) 0.762 (0.212 - 2.735) |
0.964 0.677 |
318.732 |
| Dominant | CG+GG vs. CC | 0.962 (0.569 - 1.624) | 0.884 | 316.889 |
| Recessive | GG vs. CG+CC | 0.766 (0.218 - 2.693) | 0.678 | 316.734 |
| Overdominant | CG vs. CC+GG | 1.009 (0.593 - 1.716) | 0.974 | 316.909 |
| Additive | G | 0.940 (0.602 - 1.466) | 0.784 | 316.835 |
| TERC rs35073794 | ||||
| Codominant | AG vs. GG AA vs. GG |
- - |
- - |
- |
| Dominant | AG + AA vs. GG | 0.654 (0.385 - 1.110) | 0.115 | 314.425 |
| Recessive | AA vs. AG+GG | - | - | - |
| Overdominant | AG vs. AA+GG | 0.654 (0.385 - 1.110) | 0.115 | 314.425 |
| Additive | A | 0.654 (0.385 - 1.110) | 0.115 | 314.425 |
| Genotype and Allele | <44 | p-value |
44 |
p-value | ||
|---|---|---|---|---|---|---|
| MS group, N (%) | Control group, N (%) | MS group, N (%) | Control group, N (%) | |||
| TEP1 rs1760904 | ||||||
| Genotype AA AG GG |
28 (20.70) 64 (47.40) 43 (31.90) |
27 (23.50) 59 (51.30) 29 (25.20) |
0.509 | 16 (24.60) 32 (49.20) 17 (26.20) |
29 (25.20) 63 (54.80) 23 (20.00) |
0.620 |
| Allele A G |
120 (44.44) 150 (55.56) |
113 (49.13) 117 (50.87) |
0.295 | 64 (49.23) 66 (50.77) |
121 (52.61) 109 (47.39) |
0.538 |
| TEP1 rs1713418 | ||||||
| Genotype AA AG GG |
54 (40.00) 56 (41.50) 25 (18.50) |
41 (35.70) 55 (47.80) 19 (16.50) |
0.603 | 18 (27.70) 30 (46.20) 17 (26.20) |
40 (34.80) 59 (51.30) 16 (13.90) |
0.119 |
| Allele A G |
164 (60.74) 106 (39.26) |
137 (59.57) 93 (40.43) |
0.789 | 66 (50.77) 64 (49.23) |
139 (60.43) 91 (39.57) |
0.075 |
| TERC rs12696304 | ||||||
| Genotype CC CG GG |
87 (64.40) 45 (33.30) 3 (2.20) |
63 (54.80) 47 (40.90) 5 (4.30) |
0.246 | 37 (56.90) 25 (38.50) 3 (4.60) |
60 (52.20) 45 (39.10) 10 (8.70) |
0.567 |
| Allele C G |
219 (81.11) 51 (18.89) |
173 (75.22) 57 (24.78) |
0.110 | 99 (76.15) 31 (23.85) |
165 (71.74) 65 (28.26) |
0.363 |
| TERC rs35073794 | ||||||
| Genotype AA AG GG |
60 (44.40) 75 (55.60) |
84 (73.00) 31 (27.00) |
<0.001 | 1 (1.50) 31 (47.70) 33 (50.80) |
0 (0.00) 71 (61.70) 44 (38.30) |
0.094 |
| Allele A G |
60 (22.22) 210 (77.78) |
84 (36.52) 146 (63.48) |
<0.001 | 33 (25.39) 97 (74.61) |
71 (30.87) 159 (69.13) |
0.270 |
| Model | Genotype/Allele | OR (95% CI) | p-Value | AIC |
|---|---|---|---|---|
| <44 | ||||
| TEP1 rs1760904 | ||||
| Codominant | AG vs. AA GG vs. AA |
1.046 (0.554 - 1.976) 1.430 (0.704 - 2.902) |
0.890 0.322 |
347.612 |
| Dominant | AG + GG vs. AA | 1.172 (0.644 - 2.135) | 0.603 | 346.701 |
| Recessive | GG vs. AG + AA | 1.386 (0.796 - 2.415) | 0.249 | 345.632 |
| Overdominant | AG vs. AA+GG | 0.856 (0.520 - 1.408) | 0.539 | 346.594 |
| Additive | G | 1.205 (0.848 - 1.713) | 0.299 | 345.887 |
| TEP1 rs1713418 | ||||
| Codominant | AG vs. AA GG vs. AA |
0.773 (0.446 - 1.341) 0.999 (0.486 - 2.056) |
0.360 0.998 |
347.959 |
| Dominant | AG + GG vs. AA | 0.831 (0.497 - 1.390) | 0.480 | 346.473 |
| Recessive | GG vs. AG+AA | 1.148 (0.596 - 2.214) | 0.680 | 346.801 |
| Overdominant | AG vs. AA+GG | 0.773 (0.469 - 1.276) | 0.315 | 345.959 |
| Additive | G | 0.955 (0.675 - 1.351) | 0.796 | 346.905 |
| TERC rs12696304 | ||||
| Codominant | CG vs. CC GG vs. CC |
0.693 (0.411 - 1.168) 0.434 (0.100 - 1.885) |
0.169 0.266 |
346.168 |
| Dominant | CG+GG vs. CC | 0.668 (0.402 - 1.112) | 0.121 | 344.557 |
| Recessive | GG vs. CG+CC | 0.500 (0.117 - 2.139) | 0.350 | 346.065 |
| Overdominant | CG vs. CC+GG | 0.723 (0.432 - 1.212) | 0.219 | 345.457 |
| Additive | G | 0.682 (0.435 - 1.071) | 0.097 | 344.182 |
| TERC rs35073794 | ||||
| Codominant | AG vs. GG AA vs. GG |
- - |
- - |
- |
| Dominant | AG + AA vs. GG | 0.295 (0.173 - 0.503) | <0.001 | 325.726 |
| Recessive | AA vs. AG+GG | - | - | - |
| Overdominant | AG vs. AA+GG | 0.295 (0.173 - 0.503) | <0.001 | 325.726 |
| Additive | A | 0.295 (0.173 - 0.503) | <0.001 | 325.726 |
44 | ||||
| TEP1 rs1760904 | ||||
| Codominant | AG vs. AA GG vs. AA |
0.921 (0.437 - 1.937) 1.340 (0.558 - 3.214) |
0.828 0.512 |
238.517 |
| Dominant | AG + GG vs. AA | 1.033 (0.511 - 2.088) | 0.929 | 237.452 |
| Recessive | GG vs. AG + AA | 1.417 (0.691 - 2.903) | 0.341 | 236.564 |
| Overdominant | AG vs. AA+GG | 0.800 (0.435 - 1.472) | 0.474 | 236.946 |
| Additive | G | 1.154 (0.741 - 1.799) | 0.526 | 237.057 |
| TEP1 rs1713418 | ||||
| Codominant | AG vs. AA GG vs. AA |
1.130 (0.556 - 2.296) 2.361 (0.979 - 5.696) |
0.736 0.056 |
235.321 |
| Dominant | AG + GG vs. AA | 1.393 (0.716 - 2.708) | 0.329 | 236.492 |
| Recessive | GG vs. AG+AA | 2.191 (1.020 - 4.708) | 0.044 | 233.436 |
| Overdominant | AG vs. AA+GG | 0.814 (0.442 - 1.497) | 0.507 | 237.019 |
| Additive | G | 1.492 (0.959 - 2.320) | 0.076 | 234.263 |
| TERC rs12696304 | ||||
| Codominant | CG vs. CC GG vs. CC |
0.901 (0.476 - 1.705) 0.486 (0.126 - 1.884) |
0.748 0.297 |
238.256 |
| Dominant | CG+GG vs. CC | 0.826 (0.448 - 1.523) | 0.539 | 237.082 |
| Recessive | GG vs. CG+CC | 0.508 (0.135 - 1.917) | 0.318 | 236.359 |
| Overdominant | CG vs. CC+GG | 0.972 (0.521 - 1.815) | 0.930 | 237.452 |
| Additive | G | 0.795 (0.485 - 1.305) | 0.365 | 236.627 |
| TERC rs35073794 | ||||
| Codominant | AG vs. GG AA vs. GG |
0.582 (0.314 - 1.080) - |
0.086 - |
234.455 |
| Dominant | AG + AA vs. GG | 0.601 (0.325 - 1.111) | 0.104 | 234.814 |
| Recessive | AA vs. AG+GG | - | - | - |
| Overdominant | AG vs. AA+GG | 0.565 (0.305 - 1.045) | 0.069 | 234.132 |
| Additive | A | 0.650 (0.356 - 1.190) | 0.163 | 235.502 |
| SNP | MS group vs. Control group | ||
|---|---|---|---|
| D' | r2 | p-value | |
| rs1760904 - rs1713418 | 0.471 | 0.146 | 0.000 |
| Haplotype | TEP1rs1760904 | TEP1rs1713418 | Frequency, % | OR (95% CI) | p-value | |
|---|---|---|---|---|---|---|
| Control | MS | |||||
| 1 | A | A | 42.81 | 32.53 | 1.000 | - |
| 2 | G | G | 31.94 | 29.03 | 1.140 (0.820 - 1.600) | 0.430 |
| 3 | G | A | 17.19 | 24.97 | 1.740 (1.180 - 2.560) | 0.006 |
| 4 | A | G | 8.06 | 13.47 | 1.920 (1.140 - 3.240) | 0.014 |
| SNP | MS group vs. Control group | ||
|---|---|---|---|
| D' | r2 | p-value | |
| rs12696304 - rs35073794 | 0.019 | <0.001 | 0.631 |
| Haplotype | TERC rs12696304 | TERCrs35073794 | Frequency, % | OR (95% CI) | p-value | |
|---|---|---|---|---|---|---|
| Control | MS | |||||
| 1 | C | G | 50.48 | 59.55 | 1.000 | - |
| 2 | C | A | 22.99 | 19.95 | 0.510 (0.320 - 0.840) | 0.008 |
| 3 | G | G | 15.82 | 17.20 | 0.870 (0.540 - 1.390) | 0.550 |
| 4 | G | A | 10.70 | 3.30 | 0.190 (0.080 - 0.490) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).


