Submitted:
13 May 2025
Posted:
13 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Origin and Role of Steroids in Brain
1.1. Multiple Sclerosis and Steroids
1.1.1. Δ5 Steroids
1.1.2. Corticoids
1.1.3. GABAergic Steroids
2. Results
2.1. Correlations Between Steroids in Serum and Cerebrospinal Fluid
2.2. Alterations in Steroid Levels
2.2.1. Δ5 and Δ4 Steroids
2.2.2. 11β-Hydroxy-Androstanes (C19 Δ4 and 5α/β Steroids)
2.2.3. GABAergic Steroids
2.2.4. 17-Oxo- and 17 β-Hydroxy-Androstanes
2.3. Correlation Between Indices of MS Severity and Steroids
2.3.1. Expanded Disability Status Scale (EDSS)
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES | Pregnenolone | 1.35 | 4.77 | ** | -0.304 | -4.50 | -0.640 | ** | -2.64 | * | |
| 17-Hydroxypregnenolone | 1.075 | 2.16 | * | -0.310 | -3.29 | -0.654 | ** | -2.09 | * | ||
| 7α-Hydroxy-DHEA | 0.667 | 2.43 | * | -0.379 | -8.87 | -0.798 | ** | -1.78 | |||
| 5-Androstene-3β,7α,17β-triol | 0.79 | 3.18 | ** | -0.380 | -6.39 | -0.800 | ** | -1.88 | |||
| 5-Androstene-3β,7β,17β-triol | 0.93 | 2.91 | * | -0.366 | -8.15 | -0.772 | ** | -1.67 | |||
| 17,20α-Dihydroxy-4-pregnene-3-one | 0.889 | 2.04 | * | -0.316 | -7.71 | -0.667 | ** | -1.69 | |||
| Androstenedione | 1.317 | 4.40 | ** | -0.371 | -7.08 | -0.783 | ** | -5.34 | ** | ||
| 5β-Pregnane-3α,17,20α-triol | 0.73 | 3.70 | ** | -0.334 | -7.22 | -0.703 | ** | -1.92 | * | ||
| Androsterone | 1.093 | 1.94 | * | -0.210 | -3.15 | -0.443 | ** | -1.60 | |||
| 11β-Hydroxyandrostenedione | 0.915 | 3.13 | ** | -0.308 | -13.16 | -0.649 | ** | -2.95 | * | ||
| EXPLAINED VARIABLE |
Expanded Disability Status Scale | 1.000 | 2.52 | 0.388 | * | ||||||
| Follicular phase | Explained variability = 15.1% (8.4% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01 | |||||||||||
| Variable |
OPLS, predictive component |
Multiple regression |
||||||||
| Variable importance | t-statistic | Component loading | t-statistic | R | t-statistic | |||||
| EXPLAINING VARIABLES | Dehydroepiandrosterone | 0.645 | 2.24 | * | 0.145 | 1.06 | 0.180 | 1.58 | ||
| 5α,20α-Tetrahydroprogesterone | 0.816 | 2.26 | * | 0.458 | 2.83 | 0.566 | * | 1.38 | ||
| 5β-Pregnane-3α,20α-diol | 1.053 | 3.91 | ** | 0.455 | 3.41 | 0.562 | ** | 1.93 | * | |
| 5β-Androstane-3α,17β-diol | 1.092 | 2.73 | * | -0.574 | -2.33 | -0.709 | * | -1.98 | * | |
| 11β-Hydroxyandrostenedione | 1.271 | 3.33 | ** | -0.521 | -1.87 | -0.644 | -2.35 | * | ||
| EXPLAINED VARIABLE |
Expanded Disability Status Scale | 1.000 | 5.09 | 0.710 | ** | |||||
| Luteal phase | Explained variability = 50.3% (24.4% after cross-validation) | |||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01 | ||||||||||
2.3.2. Timed 25-Foot Walk (T25-FW)
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES | Age | 0.915 | 2.27 | * | 0.146 | 1.71 | 0.342 | 1.99 | * | ||
| Pregnenolone | 0.671 | 2.62 | * | -0.100 | -0.96 | -0.233 | -2.22 | * | |||
| 17-Hydroxypregnenolone | 0.873 | 2.98 | * | -0.214 | -4.58 | -0.502 | ** | -2.39 | * | ||
| 16α-Hydroxypregnenolone | 1.171 | 3.83 | ** | -0.200 | -3.66 | -0.469 | ** | -2.57 | * | ||
| Dehydroepiandrosterone | 0.67 | 2.71 | * | -0.167 | -2.59 | -0.390 | * | -1.94 | * | ||
| 16α-Hydroxyprogesterone | 0.615 | 2.11 | * | -0.148 | -1.59 | -0.345 | -2.19 | * | |||
| Allopregnanolone, C | 1.517 | 4.96 | ** | 0.310 | 5.45 | 0.726 | ** | 4.75 | ** | ||
| Isopregnanolone, C | 1.587 | 5.08 | ** | 0.321 | 4.86 | 0.751 | ** | 3.57 | ** | ||
| Pregnanolone, C | 1.241 | 6.39 | ** | 0.339 | 8.33 | 0.793 | ** | 4.93 | ** | ||
| 5β-Pregnane-3α,20α-diol, C | 0.682 | 2.63 | * | 0.225 | 1.96 | 0.528 | * | 2.91 | * | ||
| Androsterone, C | 0.825 | 3.24 | ** | 0.273 | 4.16 | 0.638 | ** | 3.87 | ** | ||
| Epiandrosterone, C | 1.167 | 4.22 | ** | 0.278 | 6.34 | 0.651 | ** | 2.78 | * | ||
| Etiocholanolone, C | 0.804 | 2.42 | * | 0.278 | 5.23 | 0.650 | ** | 3.17 | ** | ||
| Epietiocholanolone, C | 1.047 | 3.28 | ** | 0.339 | 5.91 | 0.793 | ** | 3.45 | ** | ||
| 5α-Androstane-3β,17β-diol, C | 0.956 | 5.92 | ** | 0.287 | 9.13 | 0.671 | ** | 5.36 | ** | ||
| 11β-Hydroxyandrosterone | 0.674 | 2.68 | * | 0.125 | 1.81 | 0.294 | 1.90 | * | |||
| 11β-Hydroxyandrosterone, C | 1.057 | 5.26 | ** | 0.242 | 6.55 | 0.566 | ** | 3.00 | ** | ||
| 11β-Hydroxyepiandrosterone | 0.812 | 2.29 | * | 0.150 | 1.81 | 0.351 | 1.92 | * | |||
| EXPLAINEDVARIABLE | Timed 25-Foot Walk | 1.000 | 11.44 | 0.726 | ** | ||||||
| Follicular phase | Explained variability = 52.7% (45.6% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01, C=conjugated steroid | |||||||||||
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES |
Age | 1.162 | 1.98 | * | -0.233 | -0.80 | -0.391 | -1.69 | |||
| Androstenediol | 1.117 | 3.35 | ** | -0.362 | -2.31 | -0.609 | * | -2.98 | * | ||
| 5-Androstene-3β,7α,17β-triol | 0.899 | 2.83 | * | -0.412 | -1.90 | -0.693 | * | -4.13 | ** | ||
| 5-Androstene-3β,7β,17β-triol | 0.828 | 2.08 | * | -0.374 | -1.49 | -0.629 | -3.08 | ** | |||
| 16α-Hydroxyprogesterone | 0.932 | 6.41 | ** | -0.388 | -3.14 | -0.652 | ** | -2.74 | * | ||
| Androstenedione | 1.021 | 1.95 | * | -0.401 | -3.63 | -0.675 | ** | -1.66 | |||
| 5α,20α-Tetrahydroprogesterone | 0.955 | 2.48 | * | -0.237 | -1.27 | -0.398 | -1.90 | * | |||
| 11β-Hydroxyandrostenedione | 1.096 | 3.86 | ** | -0.349 | -3.87 | -0.586 | ** | -2.93 | * | ||
| 11β-Hydroxyandrosterone | 0.941 | 2.97 | * | -0.282 | -1.13 | -0.475 | -2.06 | * | |||
| EXPLAINED VARIABLE |
Timed 25-Foot Walk | 1.000 | 8.57 | 0.783 | ** | ||||||
| Luteal phase | Explained variability = 61.3% (49.8% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01 | |||||||||||
2.3.3. 9-Hole Peg Test (9-HPT) for MS, Right Hand
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES | Pregnenolone | 1.115 | 5.77 | ** | -0.496 | -5.14 | -0.697 | ** | -2.76 | * | |
| 16α-Hydroxypregnenolone | 1.130 | 4.70 | ** | -0.581 | -10.20 | -0.817 | ** | -3.55 | ** | ||
| Dehydroepiandrosterone | 0.948 | 2.61 | * | -0.507 | -7.70 | -0.713 | ** | -2.67 | * | ||
| Androsterone | 0.763 | 3.21 | ** | -0.407 | -4.22 | -0.572 | ** | -3.62 | ** | ||
| EXPLAINED VARIABLE |
9-Hole Peg Test, right hand | 1.000 | 2.01 | 0.517 | * | ||||||
| Follicular phase | Explained variability = 26.7% (21.2% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01 | |||||||||||
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES | 17-Hydroxypregnenolone, C | 0.944 | 3.78 | ** | -0.265 | -4.36 | -0.426 | ** | -0.58 | ||
| 16α-Hydroxypregnenolone | 0.474 | 2.07 | * | -0.102 | -0.98 | -0.164 | 1.91 | * | |||
| Dehydroepiandrosterone | 0.648 | 2.00 | * | -0.198 | -1.46 | -0.318 | 0.35 | ||||
| Dehydroepiandrosterone, C | 1.029 | 5.95 | ** | -0.290 | -4.28 | -0.466 | ** | -2.04 | * | ||
| 5-Androstene-3β,16α,17β-triol, C | 0.963 | 3.22 | ** | -0.269 | -2.30 | -0.432 | * | -1.63 | |||
| Androstenedione | 0.741 | 2.06 | * | 0.241 | 1.91 | 0.387 | * | 2.62 | * | ||
| 5α,20α-Tetrahydroprogesterone | 1.26 | 2.49 | * | 0.380 | 2.47 | 0.611 | * | 1.41 | |||
| Androsterone, C | 0.933 | 2.82 | * | -0.288 | -3.70 | -0.463 | ** | -0.62 | |||
| Etiocholanolone, C | 0.855 | 3.97 | ** | -0.233 | -4.46 | -0.374 | ** | -0.80 | |||
| Epietiocholanolone, C | 0.734 | 2.24 | * | -0.271 | -1.87 | -0.435 | 0.19 | ||||
| 5α-Androstane-3β,17β-diol, C | 1.206 | 5.99 | ** | -0.361 | -2.84 | -0.579 | * | -1.81 | |||
| 11β-Hydroxyandrosterone, C | 1.657 | 12.51 | ** | -0.435 | -5.35 | -0.698 | ** | -1.99 | * | ||
| EXPLAINED VARIABLE |
9-Hole Peg Test, right hand | 1.000 | 3.78 | 0.825 | ** | ||||||
| Luteal phase | Explained variability = 68.1% (34.8% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01, C=conjugated steroid | |||||||||||
2.3.4. 9-Hole Peg Test (9-HPT) for MS, Left Hand
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES |
Pregnenolone | 1.267 | 2.99 | * | -0.547 | -3.23 | -0.733 | ** | -2.14 | * | |
| 5-Androstene-3β,16α,17β-triol, C | 1.158 | 2.49 | * | 0.469 | 2.45 | 0.629 | * | 2.30 | * | ||
| 5α,20α-Tetrahydroprogesterone | 0.774 | 2.02 | * | -0.320 | -1.52 | -0.429 | -1.05 | ||||
| 5α-Pregnane-3α,20α-diol, C | 0.65 | 2.01 | * | -0.219 | -1.76 | -0.293 | -1.00 | ||||
| Androsterone, C | 1.067 | 3.18 | ** | -0.390 | -2.68 | -0.523 | * | -1.32 | |||
| 5α-Androstane-3α,17β-diol, C | 0.946 | 2.66 | * | -0.431 | -2.87 | -0.578 | * | -0.89 | |||
| EXPLAINED VARIABLE |
9-Hole Peg Test, left hand | 1.000 | 2.86 | 0.608 | * | ||||||
| Follicular phase | Explained variability = 37% (23.3% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01, C=conjugated steroid | |||||||||||
| Variable |
OPLS, predictive component |
Multiple regression |
|||||||||
| Variable importance |
t-statistic | Component loading | t-statistic | R | t-statistic | ||||||
| EXPLAINING VARIABLES | 5-Androstene-3β,16α,17β-triol, C | 1.024 | 3.22 | ** | -0.595 | -2.27 | -0.712 | * | -3.29 | ** | |
| 11β-Hydroxyandrostenedione | 0.64 | 1.95 | * | -0.412 | -1.67 | -0.493 | -1.94 | * | |||
| 11β-Hydroxyandrosterone, C | 1.19 | 3.28 | ** | -0.466 | -1.22 | -0.557 | -3.45 | ** | |||
| 11β-Hydroxyepiandrosterone | 1.061 | 2.57 | * | -0.540 | -1.69 | -0.646 | -2.40 | * | |||
| EXPLAINED VARIABLE |
9-Hole Peg Test, left hand | 1.000 | 4.86 | 0.824 | ** | ||||||
| Luteal phase | Explained variability = 67.9% (63.7% after cross-validation) | ||||||||||
| R=Component loading expressed as a correlation coefficient with predictive component, *p<0.05, **p<0.01, C=conjugated steroid | |||||||||||
3. Discussion
3.1. Correlations Between Steroids in Serum and Cerebrospinal Fluid
3.2. Alterations in Steroid Levels
3.2.1. Δ5 and Δ4 Steroids
3.2.2. 11β-Hydroxy-Androstanes (C19 Δ4 and 5α/β Steroids)
3.2.3. GABAergic Steroids
3.2.4. 17-Oxo- and 17 β-Hydroxy-Androstanes
3.3. Correlation Between Indices of MS Severity and Steroids
4. Potential Clinical Implications of the Findings
5. Future Directions
6. Limitations and Strengths of the Study
7. Materials and Methods
7.1. Subjects
7.2. Steroid Analysis
7.3. Statistical Analysis
8. Conclusions
- 1)
- Both unconjugated and conjugated steroids exhibited a strong correlation between the circulation and CSF, suggesting steroid transfer from the bloodstream to the CNS and underscoring the significance of peripheral steroidogenesis.
- 2)
- The noticeable decrease in unconjugated steroid levels implies diminished steroidogenesis in MS patients compared to controls. In contrast, the absence of significant changes in conjugated steroids could indicate heightened activity of sulfotransferase (SULT2A1) in these patients.
- 3)
- Reduced activity of adrenal 11β-hydroxylase (CYP11B1), essential for the final step of cortisol synthesis, has been observed in MS patients. Additionally, impaired cortisol metabolism, involving decreased CYP17A1 and CYP11B1 activity, was associated with more severe MS.
- 4)
- Reduced levels of 5α/β-steroids and protective GABAergic 3α-hydroxy-5α/β-steroids in MS patients might be linked to the pathophysiology of MS.
- 5)
- The steroidomic data indicates that higher AKR1C3 activity in MS patients might cause inflammation, as this enzyme is involved in the production of both steroids and prostaglandins.
- 6)
- Reduced pregnenolone levels in MS patients could weaken protection against demyelination, whereas elevated pregnenolone sulfate levels in this group might help safeguard against cognitive deficits.
- 7)
- MS severity was inversely associated with neuroprotective pregnenolone, its sulfate, DHEA, its sulfate, and immunomodulatory steroids such as androstenediol and its hydroxy-metabolites, highlighting their potentially protective role in MS.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ysrraelit, M.C.; Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019, 156, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, M.; Bonavita, S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocr. 2020, 60, 100889. [Google Scholar] [CrossRef] [PubMed]
- Ubuka, T. , Trudeau, V. L., & Parhar, I. (2020). Editorial: Steroids and the Brain. Frontiers in endocrinology, 11, 366. [CrossRef]
- Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 2011, 8, 3–3. [Google Scholar] [CrossRef]
- Porcu, P.; Barron, A.M.; Frye, C.A.; Walf, A.A.; Yang, S.; He, X.; Morrow, A.L.; Panzica, G.C.; Melcangi, R.C. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J. Neuroendocr. 2015, 28, 12351. [Google Scholar] [CrossRef]
- Duque Ede, A.; Munhoz, C. D. , The Pro-inflammatory Effects of Glucocorticoids in the Brain. Front Endocrinol (Lausanne) 2016, 7, 78. [Google Scholar] [CrossRef]
- Borowicz, K.K.; Piskorska, B.; Banach, M.; Czuczwar, S.J. Neuroprotective Actions of Neurosteroids. Front. Endocrinol. 2011, 2, 50. [Google Scholar] [CrossRef] [PubMed]
- Giatti, S., Boraso, M., Melcangi, R. C., & Viviani, B. (2012). Neuroactive steroids, their metabolites, and neuroinflammation. Journal of molecular endocrinology, 49(3), R125–R134. [CrossRef]
- Melcangi, R.C.; Giatti, S.; Pesaresi, M.; Calabrese, D.; Mitro, N.; Caruso, D.; Garcia-Segura, L.M. Role of Neuroactive Steroids in the Peripheral Nervous System. Front. Endocrinol. 2011, 2, 12840. [Google Scholar] [CrossRef] [PubMed]
- De Alcubierre, D.; Ferrari, D.; Mauro, G.; Isidori, A.M.; Tomlinson, J.W.; Pofi, R. Glucocorticoids and cognitive function: a walkthrough in endogenous and exogenous alterations. J. Endocrinol. Investig. 2023, 46, 1961–1982. [Google Scholar] [CrossRef]
- Gundamraj, S.; Hasbun, R. The Use of Adjunctive Steroids in Central Nervous Infections. Front. Cell. Infect. Microbiol. 2020, 10. [Google Scholar] [CrossRef]
- Ngo, S.T.; Steyn, F.J.; McCombe, P.A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 2014, 35, 347–369. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Studd, J. W. , A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J R Soc Med 1992, 85, (10), 612–3. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Makris, N. Multiple Sclerosis and Reproductive Risks in Women. Reprod. Sci. 2008, 15, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Begemann, M.J.; Dekker, C.F.; van Lunenburg, M.; Sommer, I.E. Estrogen augmentation in schizophrenia: A quantitative review of current evidence. Schizophr. Res. 2012, 141, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, M.Z.; Dolman, D.E.M.; Begley, D.J.; Abbott, N.J.; Cazacu-Davidescu, M.; Corol, D.I.; Fry, J.P. Uptake and metabolism of sulphated steroids by the blood–brain barrier in the adult male rat. J. Neurochem. 2017, 142, 672–685. [Google Scholar] [CrossRef]
- Powrie, Y.S.L.; Smith, C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J. Neuroinflammation 2018, 15, 289. [Google Scholar] [CrossRef]
- Honců, P.; Hill, M.; Bičíková, M.; Jandová, D.; Velíková, M.; Kajzar, J.; Kolátorová, L.; Bešťák, J.; Máčová, L.; Kancheva, R.; et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019, 20, 3687. [Google Scholar] [CrossRef]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef]
- Noorbakhsh, F.; Baker, G.B.; Power, C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front. Cell. Neurosci. 2014, 8, 134. [Google Scholar] [CrossRef]
- Balan, I.; Beattie, M. C.; O’Buckley, T. K.; Aurelian, L.; Morrow, A. L. , Endogenous Neurosteroid (3alpha,5alpha)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci Rep 2019, 9, (1), 1220. [Google Scholar] [CrossRef]
- Kancheva, R.; Hill, M.; Novák, Z.; Chrastina, J.; Velíková, M.; Kancheva, L.; Říha, I.; Stárka, L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2009, 119, 35–44. [Google Scholar] [CrossRef]
- Bottasso, O.; Bay, M.L.; Besedovsky, H.; Del Rey, A. The Immuno-endocrine Component in the Pathogenesis of Tuberculosis. Scand. J. Immunol. 2007, 66, 166–175. [Google Scholar] [CrossRef]
- Du, C.; Khalil, M.W.; Sriram, S. Administration of Dehydroepiandrosterone Suppresses Experimental Allergic Encephalomyelitis in SJL/J Mice. J. Immunol. 2001, 167, 7094–7101. [Google Scholar] [CrossRef] [PubMed]
- Thoss, K.; Petrow, P.K.; Henzgen, S.; Röntzsch, A.; Bräuer, R. Amelioration of murine antigen-induced arthritis by dehydroepiandrosterone (DHEA). Inflamm. Res. 2004, 53, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-D.; Dou, Y.-C.; Shi, C.-W.; Duan, R.-S.; Sun, R.-P. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 2009, 207, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Cui, Y.; Koh, Y.-A.; Lee, H.-C.; Cho, Y.-B.; Won, Y.-H. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J. Intern. Med. 2008, 23, 176–81. [Google Scholar] [CrossRef]
- Sudo, N.; Yu, X.-N.; Kubo, C. Dehydroepiandrosterone attenuates the spontaneous elevation of serum IgE level in NC/Nga mice. Immunol. Lett. 2001, 79, 177–179. [Google Scholar] [CrossRef]
- Romagnani, S.; Kapsenberg, M.; Radbruch, A.; Adorini, L. , Th1 and Th2 cells. Res Immunol 1998, 149, (9), 871–3. [Google Scholar] [CrossRef]
- Pratschke, S.; von Dossow-Hanfstingl, V.; Dietz, J.; Schneider, C.P.; Tufman, A.; Albertsmeier, M.; Winter, H.; Angele, M.K. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J. Surg. Res. 2014, 189, 117–125. [Google Scholar] [CrossRef]
- Šterzl, I.; Hampl, R.; Šterzl, J.; Votruba, J.; Stárka, L. 7β-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J. Steroid Biochem. Mol. Biol. 1999, 71, 133–137. [Google Scholar] [CrossRef]
- Kancheva, R.; Hill, M.; Velíková, M.; Kancheva, L.; Včelák, J.; Ampapa, R.; Židó, M.; Štětkářová, I.; Libertínová, J.; Vosátková, M.; et al. Altered Steroidome in Women with Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 12033. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Hornsby, P.J.; Casson, P.; Morimoto, R.; Satoh, F.; Xing, Y.; Kennedy, M.R.; Sasano, H.; Rainey, W.E. Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) Contributes to Testosterone Production in the Adrenal Reticularis. J. Clin. Endocrinol. Metab. 2009, 94, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Luu-The, V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013, 137, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Murgia, F.; Giagnoni, F.; Lorefice, L.; Caria, P.; Dettori, T.; D’alterio, M.N.; Angioni, S.; Hendren, A.J.; Caboni, P.; Pibiri, M.; et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines 2022, 10, 3107. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.; You, X.; Leimert, K.; Popowycz, K.; Fang, X.; Wood, S.L.; Slater, D.M.; Sun, Q.; Gu, H.; et al. PGF2αmodulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol. Hum. Reprod. 2015, 21, 603–614. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, R.; Mazumder, A.; Salahuddin; Mazumder, R. ; Abdullah, M.M. Insights into Interactions of Human Cytochrome P450 17A1: A Review. Curr. Drug Metab. 2022, 23, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Hill, M.; Hana jr., V.; Velikova, M.; Parizek, A.; Kolatorova, L.; Vitku, J.; Skodova, T.; Simkova, M.; Simjak, P.; Kancheva, R.; Koucky, M.; Kokrdova, Z.; Adamcova, K.; Cerny, A.; Hajek, Z.; Duskova, M.; Bulant, J.; Starka, L. , A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol Res 2019, 68, 179–207. [Google Scholar] [CrossRef]
| Steroid | r | p-value | Steroid | r | p-value |
| Pregnenolone | 0.303 | 0.002 | 5α,20α-Tetrahydroprogesterone | 0.499 | <0.001 |
| Pregnenolone sulphate | 0.315 | <0.001 | Conjugated 5α-pregnane-3α,20α-diol | 0.492 | <0.001 |
| 17-Hydroxypregnenolone | 0.641 | <0.001 | Conjugated 5α-pregnane-3β,20α-diol | 0.727 | <0.001 |
| 16α-Hydroxypregnenolone | 0.632 | <0.001 | Conjugated 5β-pregnane-3α,20α-diol | 0.428 | <0.001 |
| 20α-Dihydropregnenolone sulphate | 0.473 | <0.001 | Conjugated 5β-pregnane-3β,20α-diol | 0.61 | <0.001 |
| Dehydroepiandrosterone (DHEA) | 0.479 | <0.001 | 5α-Pregnane-3α,17,20α-triol | 0.499 | <0.001 |
| DHEA sulphate | 0.692 | <0.001 | 5β-Pregnane-3α,17,20α-triol | 0.723 | <0.001 |
| 7α-Hydroxy-DHEA | 0.63 | <0.001 | Androsterone | 0.477 | <0.001 |
| 7β-Hydroxy-DHEA | 0.749 | <0.001 | Androsterone sulphate | 0.488 | <0.001 |
| Androstenediol | 0.28 | 0.003 | Epiandrosterone sulphate | 0.38 | <0.001 |
| Androstenediol sulphate | 0.561 | <0.001 | Etiocholanolone sulphate | 0.453 | <0.001 |
| 5-Androstene-3β,7α,17β-triol | 0.662 | <0.001 | Epietiocholanolone sulphate | 0.5 | <0.001 |
| 5-Androstene-3β,7β,17β-triol | 0.567 | <0.001 | Conjugated 5α-androstane-3α,17β-diol | 0.512 | <0.001 |
| 5-Androstene-3β,16α,17β-triol sulphate | 0.644 | <0.001 | Conjugated 5α-androstane-3β,17β-diol | 0.698 | <0.001 |
| 17,20α-Dihydroxy-4-pregnene-3-one | 0.418 | <0.001 | Conjugated 5β-androstane-3α,17β-diol | 0.33 | <0.001 |
| 16α-Hydroxyprogesterone | 0.801 | <0.001 | 11β-Hydroxyandrostenedione | 0.205 | 0.058 |
| Androstenedione | 0.412 | <0.001 | 11β-Hydroxyandrosterone | 0.771 | <0.001 |
| Conjugated pregnanolone | 0.688 | <0.001 | 11β-Hydroxyetiocholanolone sulphate | 0.878 | <0.001 |
| ANOVA, p-values | Trend MS+, (p<0.05) | ||||||||||||||
| Steroid | Follicular, MS− | Follicular, MS+ | Luteal, MS− | Luteal, MS+ | MS | PMC | MS×PMC | Age | Factor MS | MC, FP | OPLS, FP | MC, LP | OPLS, LP | Trend | |
| Pregnenolone [pM] | 32.9 (26, 41.7) | 19.4 (16.7, 22.5) | 17.5 (13.1, 23.4) | 15.7 (12, 20.5) | 0.066 | 0.016 | 0.224 | 0.380 | ↓ | ↓ | |||||
| Pregnenolone sulphate [pM] | 94.3 (74, 121) | 108 (91.1, 128) | 80.6 (60.6, 108) | 220 (154, 321) | 0.004 | 0.177 | 0.029 | 0.009 | ↑ | ↑ | ↑ | ||||
| 17-Hydroxypregnenolone [pM] | 31 (23.1, 41.7) | 42.2 (34.7, 51.3) | 41.6 (29.2, 59.4) | 27.3 (19.6, 37.9) | 0.787 | 0.741 | 0.091 | 0.401 | |||||||
| 16α-Hydroxypregnenolone [pM] | 6.41 (4.81, 8.55) | 3.1 (2.61, 3.68) | 4.07 (2.98, 5.57) | 2.3 (1.69, 3.11) | 0.001 | 0.057 | 0.693 | 0.193 | ↓ | ↓ | ↓ | ↓ | ↓ | ||
| 20α-Dihydropregnenolone sulphate [pM] | 320 (259, 395) | 350 (304, 402) | 402 (308, 525) | 450 (348, 583) | 0.533 | 0.137 | 0.941 | 0.658 | |||||||
| Dehydroepiandrosterone (DHEA) [pM] | 143 (111, 184) | 117 (98.7, 138) | 111 (81.5, 151) | 108 (80, 146) | 0.539 | 0.383 | 0.642 | 0.154 | |||||||
| DHEA sulphate [nM] | 0.571 (0.454, 0.715) | 0.634 (0.545, 0.736) | 0.82 (0.624, 1.08) | 1.25 (0.93, 1.69) | 0.130 | 0.003 | 0.351 | 0.829 | |||||||
| 7α-Hydroxy-DHEA [nM] | 0.328 (0.269, 0.396) | 0.841 (0.766, 0.922) | 0.474 (0.386, 0.577) | 0.897 (0.747, 1.07) | 0.000 | 0.092 | 0.263 | 0.009 | ↑ | ↑ | ↑ | ↑ | |||
| 7β-Hydroxy-DHEA [pM] | 86.8 (66.8, 111) | 81.9 (69.1, 96.3) | 63.3 (45.5, 85.5) | 45.6 (31.7, 63.3) | 0.342 | 0.023 | 0.529 | 0.236 | |||||||
| Androstenediol [pM] | 12.2 (9.71, 15.1) | 10.3 (8.76, 12.1) | 12.1 (9.03, 15.8) | 16.1 (12.8, 20) | 0.672 | 0.175 | 0.162 | 0.849 | ↓ | ↓ | |||||
| Androstenediol sulphate [nM] | 1.23 (1.03, 1.47) | 1.39 (1.23, 1.56) | 1 (0.801, 1.25) | 2.56 (2.06, 3.18) | 0.000 | 0.114 | 0.003 | 0.052 | ↑ | ↑ | ↑ | ||||
| 5-Androstene-3β,7α,17β-triol [pM] | 110 (83.5, 143) | 111 (93, 131) | 82.3 (58.5, 114) | 129 (94.5, 175) | 0.249 | 0.741 | 0.267 | 0.428 | |||||||
| 5-Androstene-3β,7β,17β-triol [pM] | 35.5 (27.9, 45.2) | 32.1 (27.3, 37.8) | 32.4 (24, 43.7) | 34.5 (25.8, 46) | 0.920 | 0.955 | 0.657 | 0.060 | |||||||
| 5-Androstene-3β,16α,17β-triol sulphate [pM] | 72.1 (57.3, 90.4) | 31.4 (26.8, 36.6) | 45.4 (33.7, 60.6) | 23 (16.8, 31) | 0.000 | 0.032 | 0.604 | 0.007 | ↓ | ↓ | ↓ | ↓ | |||
| 17,20α-Dihydroxy-4-pregnene-3-one [pM] | 11.8 (9.52, 14.6) | 15.2 (13.2, 17.6) | 41.6 (32.7, 52.7) | 16.6 (12.7, 21.4) | 0.024 | 0.000 | 0.000 | 0.048 | ↓ | ↓ | ↓ | ↓ | |||
| 16α-Hydroxyprogesterone [pM] | 9.45 (6.83, 12.9) | 15.3 (12.6, 18.5) | 60.1 (43.8, 82.1) | 48.9 (35.5, 66.9) | 0.575 | 0.000 | 0.111 | 0.017 | ↓ | ↓ | |||||
| Androstenedione [pM] | 75.5 (65, 87.4) | 73.4 (67.1, 80.2) | 83 (70.9, 96.7) | 111 (94.8, 129) | 0.182 | 0.012 | 0.109 | 0.000 | ↓ | ↓ | |||||
| Conjugated pregnanolone [pM] | 63.5 (52.4, 76.2) | 68.5 (59.9, 78) | 143 (118, 171) | 137 (112, 167) | 0.930 | 0.000 | 0.661 | 0.238 | |||||||
| 5α,20α-Tetrahydroprogesterone [pM] | 3.62 (2.76, 4.77) | 2.73 (2.33, 3.21) | 9.08 (6.59, 12.7) | 6.56 (4.87, 8.95) | 0.118 | 0.000 | 0.974 | 0.047 | ↓ | ↓ | |||||
| Conjugated 5α-pregnane-3α,20α-diol [pM] | 162 (133, 198) | 96.1 (84.7, 109) | 393 (296, 525) | 330 (260, 422) | 0.025 | 0.000 | 0.236 | 0.092 | ↓ | ↓ | ↓ | ||||
| Conjugated 5α-pregnane-3β,20α-diol [pM] | 66.5 (42.3, 106) | 36.6 (26.7, 50.1) | 91.5 (52.3, 164) | 323 (176, 620) | 0.409 | 0.001 | 0.011 | 0.044 | ↑ | ↑ | |||||
| Conjugated 5β-pregnane-3α,20α-diol [pM] | 54.3 (43.6, 67.2) | 73.5 (63.5, 85) | 168 (130, 219) | 222 (171, 289) | 0.077 | 0.000 | 0.951 | 0.010 | |||||||
| Conjugated 5β-pregnane-3β,20α-diol [pM] | 53.7 (45.5, 63.3) | 63.3 (56.6, 70.7) | 105 (85.8, 128) | 78.2 (63.9, 95.8) | 0.621 | 0.001 | 0.068 | 0.049 | |||||||
| 5α-Pregnane-3α,17,20α-triol [pM] | 0.534 (0.391, 0.74) | 0.38 (0.312, 0.465) | 0.634 (0.424, 0.974) | 0.502 (0.354, 0.726) | 0.222 | 0.337 | 0.804 | 0.006 | ↓ | ↓ | ↓ | ||||
| 5β-Pregnane-3α,17,20α-triol [pM] | 18.1 (14.9, 21.8) | 25.6 (22.8, 28.7) | 39.5 (33, 46.9) | 22.8 (18.5, 28) | 0.343 | 0.008 | 0.001 | 0.167 | ↑ | ↓ | |||||
| Androsterone [pM] | 29.5 (25, 34.9) | 18.8 (17, 20.7) | 47.8 (39.2, 58.8) | 6.73 (5.38, 8.37) | 0.000 | 0.015 | 0.000 | 0.071 | ↓ | ↓ | ↓ | ↓ | ↓ | ||
| Androsterone sulphate [pM] | 460 (381, 559) | 307 (271, 347) | 363 (292, 455) | 292 (236, 363) | 0.025 | 0.307 | 0.512 | 0.005 | ↓ | ↓ | ↓ | ||||
| Epiandrosterone sulphate [pM] | 151 (119, 189) | 180 (155, 208) | 170 (127, 225) | 158 (116, 211) | 0.775 | 0.982 | 0.473 | 0.324 | |||||||
| Etiocholanolone sulphate [pM] | 132 (112, 155) | 126 (113, 140) | 126 (104, 153) | 116 (94, 144) | 0.620 | 0.617 | 0.889 | 0.520 | ↓ | ↓ | |||||
| Epietiocholanolone sulphate [pM] | 47.3 (38.3, 58.1) | 60.9 (52.6, 70.4) | 42.3 (32.8, 54.3) | 41.8 (31.7, 54.4) | 0.443 | 0.125 | 0.395 | 0.857 | ↓ | ↓ | |||||
| Conjugated 5α-androstane-3α,17β-diol [pM] | 532 (422, 673) | 405 (349, 472) | 333 (252, 441) | 337 (255, 447) | 0.459 | 0.062 | 0.420 | 0.069 | ↑ | ↑ | |||||
| Conjugated 5α-androstane-3β,17β-diol [pM] | 143 (112, 182) | 108 (91.1, 128) | 106 (77.4, 142) | 108 (78.3, 146) | 0.481 | 0.402 | 0.419 | 0.845 | |||||||
| Conjugated 5β-androstane-3α,17β-diol [pM] | 18.9 (15.2, 23.4) | 20.3 (17.5, 23.5) | 30.9 (23.4, 40.7) | 23.7 (18.2, 30.7) | 0.557 | 0.052 | 0.299 | 0.645 | |||||||
| 11β-Hydroxyandrostenedione [nM] | 2.09 (1.87, 2.33) | 1.82 (1.69, 1.96) | 2.35 (2.07, 2.65) | 1.9 (1.67, 2.15) | 0.030 | 0.321 | 0.614 | 0.087 | ↓ | ↓ | |||||
| 11β-Hydroxyandrosterone [pM] | 182 (147, 225) | 91.1 (77.2, 107) | 131 (98.9, 171) | 82.4 (61.3, 109) | 0.001 | 0.196 | 0.459 | 0.001 | ↓ | ↓ | ↓ | ↓ | ↓ | ||
| 11β-Hydroxyandrosterone sulphate [pM] | 116 (105, 128) | 110 (102, 119) | 137 (119, 157) | 93.6 (82, 106) | 0.009 | 0.890 | 0.044 | 0.881 | ↓ | ↓ | ↓ | ||||
| 11β-Hydroxyetiocholanolone [pM] | 75.4 (61.2, 91.8) | 66.9 (58.1, 76.8) | 84.4 (67.8, 104) | 62.5 (49.3, 78.2) | 0.143 | 0.864 | 0.522 | 0.001 | ↓ | ↓ | ↓ | ||||
| 11β-Hydroxyetiocholanolone sulphate [pM] | 149 (120, 182) | 191 (166, 218) | 233 (186, 289) | 193 (152, 242) | 0.860 | 0.115 | 0.137 | 0.917 | |||||||
| PMC=phase of menstrual cycle, MS×PMC=interaction of multiple sclerosis with PMC, ↑=higher in MS+ (patients) compared with MS- (controls), ↓=lower in MS+ compared with MS- | |||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
