Submitted:
12 October 2024
Posted:
14 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Participants
2.2. Neurohormone and Neuropeptide Measurements via ELISA Kits
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
References
- Pisetsky, D.S. Pathogenesis of autoimmune disease. Nature Reviews Nephrology 2023, 19, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Deckx, N.; Lee, W.-P.; Berneman, Z.N.; Cools, N. Neuroendocrine immunoregulation in multiple sclerosis. Journal of Immunology Research 2013, 2013, 705232. [Google Scholar] [CrossRef] [PubMed]
- Marefat, A.; Sadeghi, L. Neurotoxic effects of phenytoin on primary culture of hippocampal neurons: Neural development retardation. Neurology, Psychiatry and Brain Research 2020, 36, 52–56. [Google Scholar] [CrossRef]
- Hunter, S.F. Overview and diagnosis of multiple sclerosis. Am J Manag Care 2016, 22, s141–s150. [Google Scholar]
- Ghareghani, M.; Pons, V.; Laflamme, N.; Zibara, K.; Rivest, S. Inhibiting nighttime melatonin and boosting cortisol increase patrolling monocytes, phagocytosis, and myelination in a murine model of multiple sclerosis. Experimental & Molecular Medicine 2023, 55, 215–227. [Google Scholar]
- Feinstein, A. The neuropsychiatry of multiple sclerosis. The Canadian Journal of Psychiatry 2004, 49, 157–163. [Google Scholar] [CrossRef]
- Regen, T.; Waisman, A. Modeling a complex disease: multiple sclerosis—update 2020. Advances in Immunology 2021, 149, 25–34. [Google Scholar]
- Sadeghi, L.; Marefat, A. Investigation of the Iron Oxide Nanoparticle Effects on Amyloid Precursor Protein Processing in Hippocampal Cells. Basic and Clinical Neuroscience 2023, 14, 203. [Google Scholar] [CrossRef]
- Ross, A.P. Management of multiple sclerosis. Am J Manag Care 2013, 19, S301–S306. [Google Scholar]
- ALTAŞ, M.; Uca, A.U.; AKDAĞ, T.; ODABAŞ, F.Ö.; TOKGÖZ, O.S. Serum levels of irisin and nesfatin-1 in multiple sclerosis. Arquivos de Neuro-Psiquiatria 2022, 80, 161–167. [Google Scholar] [CrossRef]
- Tavazzi, B.; Batocchi, A.P.; Amorini, A.M.; Nociti, V.; D′ Urso, S.; Longo, S.; Gullotta, S.; Picardi, M.; Lazzarino, G. Serum metabolic profile in multiple sclerosis patients. Multiple sclerosis international 2011, 2011, 167156. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Rodrigues, A.J.; Silva, J.M.; Tronche, F.; Almeida, O.F.; Sousa, N.; Sotiropoulos, I. Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural plasticity 2016, 2016, 6391686. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, A.; Szklarczyk, J.; Barańska, I.; Majda, A.; Jaworek, J. Association between levels of serotonin, melatonin, cortisol and the clinical condition of patients with rheumatoid arthritis. Rheumatology International 2023, 43, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Morey, J.N.; Boggero, I.A.; Scott, A.B.; Segerstrom, S.C. Current directions in stress and human immune function. Current opinion in psychology 2015, 5, 13–17. [Google Scholar] [CrossRef]
- Stojanovich, L.; Marisavljevich, D. Stress as a trigger of autoimmune disease. Autoimmunity reviews 2008, 7, 209–213. [Google Scholar] [CrossRef]
- Maydych, V. The interplay between stress, inflammation, and emotional attention: relevance for depression. Frontiers in neuroscience 2019, 13, 384. [Google Scholar] [CrossRef]
- Allen, M.J.; Sharma, S. Physiology, adrenocorticotropic hormone (ACTH). 2018.
- Hasenmajer, V.; Bonaventura, I.; Minnetti, M.; Sada, V.; Sbardella, E.; Isidori, A.M. Non-canonical effects of ACTH: insights into adrenal insufficiency. Frontiers in Endocrinology 2021, 12, 701263. [Google Scholar] [CrossRef]
- Angelousi, A.; Margioris, A.N.; Tsatsanis, C. ACTH Action on the Adrenals. Endotext [Internet].
- Marketon, J.I.W.; Glaser, R. Stress hormones and immune function. Cellular immunology 2008, 252, 16–26. [Google Scholar] [CrossRef]
- Sadeghi, L.; Feizi, M.H.; Rashtbari, S.; Marefat, A. Spectroscopic and computational studies on the binding interaction of biologically active thioridazine and perphenazine with human Matrix metalloproteinases 9. Journal of Molecular Structure 2024, 1313, 138548. [Google Scholar]
- Shoenfeld, Y.; Zandman-Goddard, G.; Stojanovich, L.; Cutolo, M.; Amital, H.; Levy, Y.; Abu-Shakra, M.; Barzilai, O.; Berkun, Y.; Blank, M. The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases--2008. The Israel Medical Association Journal 2008, 10, 8. [Google Scholar]
- Hasannia, E.; Derakhshanpour, F.; Vakili, M.A. Effects of melatonin on salivary levels of cortisol and sleep quality of hemodialysis patients: a randomized clinical trial. Iranian Journal of Psychiatry 2021, 16, 305. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Rodriguez, M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Multiple sclerosis and related disorders 2015, 4, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-J.; Huang, S.-H.; Chen, S.-J.; Wang, C.-H.; Chang, D.-M.; Sytwu, H.-K. Modulation by melatonin of the pathogenesis of inflammatory autoimmune diseases. International journal of molecular sciences 2013, 14, 11742–11766. [Google Scholar] [CrossRef] [PubMed]
- Erten, S.; Bolat, A.D.; Akin, F.E.; Ersoy, O. A male patient with systemic lupus erythematosus presenting with fulminant hepatitis. Gastroenterology Research 2011, 4, 283. [Google Scholar] [CrossRef] [PubMed]
- Katzke, V.; Johnson, T.; Sookthai, D.; Hüsing, A.; Kühn, T.; Kaaks, R. Circulating liver enzymes and risks of chronic diseases and mortality in the prospective EPIC-Heidelberg case-cohort study. BMJ open 2020, 10, e033532. [Google Scholar] [CrossRef]
- Galetta, K.M.; Bhattacharyya, S. Multiple sclerosis and autoimmune neurology of the central nervous system. Medical Clinics 2019, 103, 325–336. [Google Scholar] [CrossRef]
- Koriem, K.M.M. Multiple sclerosis: New insights and trends. Asian Pacific Journal of Tropical Biomedicine 2016, 6, 429–440. [Google Scholar] [CrossRef]
- Vega-Beyhart, A.; Araujo-Castro, M.; Hanzu, F.A.; Casals, G. Cortisol: analytical and clinical determinants. In Advances in Clinical Chemistry, Elsevier: 2023; Vol. 113, pp. 235-271.
- Fassbender, K.; Schmidt, R.; Mößner, R.; Kischka, U.; Kühnen, J.; Schwartz, A.; Hennerici, M. Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Archives of neurology 1998, 55, 66–72. [Google Scholar] [CrossRef]
- Stevens, A.; White, A. ACTH: cellular peptide hormone synthesis and secretory pathways. Cellular Peptide Hormone Synthesis and Secretory Pathways 2010, 121–135. [Google Scholar]
- Wei, T.; Lightman, S.L. The neuroendocrine axis in patients with multiple sclerosis. Brain: a journal of neurology 1997, 120, 1067–1076. [Google Scholar] [CrossRef]
- Kümpfel, T.; Schwan, M.; Weber, F.; Holsboer, F.; Trenkwalder, C.; Bergh, F.T. Hypothalamo-pituitary-adrenal axis activity evolves differentially in untreated versus treated multiple sclerosis. Psychoneuroendocrinology 2014, 45, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Aulinas, A. Physiology of the pineal gland and melatonin. 2019.
- Gunata, M.; Parlakpinar, H.; Acet, H. Melatonin: A review of its potential functions and effects on neurological diseases. Revue neurologique 2020, 176, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Sandyk, R.; Awerbuch, G.I. The pineal gland in multiple sclerosis. International journal of neuroscience 1991, 61, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Karaaslan, C.; Suzen, S. Antioxidant properties of melatonin and its potential action in diseases. Current topics in medicinal chemistry 2015, 15, 894–903. [Google Scholar] [CrossRef]
- Carrascal, L.; Nunez-Abades, P.; Ayala, A.; Cano, M. Role of melatonin in the inflammatory process and its therapeutic potential. Current pharmaceutical design 2018, 24, 1563–1588. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, M.; Rani, R. Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics. Proceedings of Seminars in cancer biology; pp. 184–195.
- Nijland, P.G.; Molenaar, R.J.; van der Pol, S.M.; van der Valk, P.; van Noorden, C.J.; de Vries, H.E.; van Horssen, J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta neuropathologica communications 2015, 3, 1–13. [Google Scholar] [CrossRef]
| Parameters | PatientsMean±SD (n=50) | ControlMean±SD (n=50) | P value |
|---|---|---|---|
| Age (years) | 39.83±7.79 | 43.02±5.60 | 0.009** |
| BMI (kg/m2) | 26.38±3.53 | 26.32±3.78 | 0.921 |
| CPK (U/L) | 66.28±15.60 | 65.98±14.87 | 0.910 |
| LDH (U/L) | 275.11±98.02 | 217.74±74.15 | 0.001** |
| SGOT (U/L) | 26.00±6.26 | 23.72±6.56 | 0.043 |
| SGPT (U/L) | 27.49±7.14 | 27.30±7.03 | 0.872 |
| ACTH (pg/mL) | 41.43±24.23 | 54.26±27.52 | 0.006** |
| Melatonin (pg/mL) | 23.11±4.83 | 41.65±6.98 | 0.0001** |
| Cortisol (ng/mL) | 218.52±34.57 | 137.90±43.46 | 0.0001** |
| Characteristics | EDSS | CPK | LDH | SGOT | SGPT | ACTH | Melatonin | Cortisol | |
| EDSS | R | 1 | 0.221 | -0.041 | 0.034 | 0.200 | 0.076 | 0.096 | 0.132 |
| P value | - | 0.056 | 0.724 | 0.772 | 0.085 | 0.516 | 0.412 | 0.241 | |
| CPK | R | 0.221 | 1 | -0.188* | -0.075 | 0.137 | 0.125 | -0.038 | 0.132 |
| P value | 0.056 | - | 0.036 | 0.404 | 0.129 | 0.166 | 0.671 | 0.142 | |
| LDH | R | -0.041 | -0.188* | 1 | 0.186* | -0.040 | -0.291** | -0.131 | 0.231** |
| P value | 0.724 | 0.036 | - | 0.038 | 0.658 | 0.001 | 0.145 | 0.009 | |
| SGOT | R | 0.034 | -0.075 | 0.186* | 1 | 0.176* | 0.094 | -0.156 | 0.109 |
| P value | 0.772 | 0.404 | 0.038 | - | 0.050 | 0.295 | 0.082 | 0.228 | |
| SGPT | R | 0.200 | 0.137 | -0.040 | 0.176* | 1 | 0.161 | 0.046 | 0.058 |
| P value | 0.085 | 0.129 | 0.658 | 0.050 | - | 0.072 | 0.610 | 0.519 | |
| ACTH | R | 0.076 | 0.125 | -0.291** | 0.094 | 0.161 | 1 | 0.233** | -0.221* |
| P value | 0.516 | 0.166 | 0.001 | 0.295 | 0.072 | - | 0.009 | 0.013 | |
| Melatonin | R | 0.096 | -0.038 | -0.131 | -0.156 | 0.046 | 0.233** | 1 | -0.577** |
| P value | 0.412 | 0.671 | 0.145 | 0.082 | 0.610 | 0.009 | - | 0.0001 | |
| Cortisol | R | 0.134 | 0.132 | 0.231** | 0.109 | 0.058 | -0.221* | -0.577** | 1 |
| P value | 0.251 | 0.142 | 0.009 | 0.228 | 0.519 | 0.013 | 0.0001 | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
