Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Flexible and Stable N-Isopropylacrylamide/Sodium Alginate Gel Electrolytes for Aqueous Zn-MnO2 Batteries

Version 1 : Received: 12 June 2023 / Approved: 12 June 2023 / Online: 12 June 2023 (08:31:24 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, K.; Shangguan, M.; Zhao, Y.; Tian, H.; Wang, F.; Yuan, J.; Xia, L. Flexible and Stable N-Isopropylacrylamide/Sodium Alginate Gel Electrolytes for Aqueous Zn-MNO2 Batteries. Batteries 2023, 9, 426. Wang, K.; Shangguan, M.; Zhao, Y.; Tian, H.; Wang, F.; Yuan, J.; Xia, L. Flexible and Stable N-Isopropylacrylamide/Sodium Alginate Gel Electrolytes for Aqueous Zn-MNO2 Batteries. Batteries 2023, 9, 426.

Abstract

Rechargeable aqueous Zn-ion batteries (ZIBs) have attracted considerable attention owing to their high theoretical capacity of 820 mA h g‒1, low cost and intrinsic safety. However, the electrolyte leakage and the instability issues of Zn negative electrodes originating from side reactions between the aqueous electrolyte and Zn negative electrode, not only restricts the battery stability but also results in short-circuit of aqueous ZIBs. Herein we report a flexible and stable N-isopropylacrylamide/sodium alginate (N-SA) gel electrolyte, which possesses high mechanical strength and high ionic conductivity of 2.96×10‒2 S cm‒1, and enables the Zn metal negative electrode and MnO2 positive electrode to reversibly and stably cycle. Compared to the liquid electrolyte, the N-SA hydrogel electrolyte can effectively form a uniform Zn deposition and suppress the generation of irreversible by-products. The assemble symmetric Zn/Zn cells at a current density of 1 mA cm‒2 shows a stable voltage profile, which maintains a low level of about 100 mV over 2600 h without an obvious short circuit or any overpotential increasing. Specially, the assembled Zn/N-SA/MnO2 batteries can deliver a high specific capacity of 182 mAh g‒1 and maintain 98% capacity retention after 650 cycles at 0.5 A g‒1. This work provides a facile method to fabricate high-performance SA-based hydrogel electrolytes that illustrates their potential for flexible batteries for wearable electronics.

Keywords

Zn ion battery; aqueous; hydrogel gel electrolyte; sodium alginate; N-isopropylacrylamide

Subject

Chemistry and Materials Science, Electrochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.