Submitted:
01 May 2023
Posted:
02 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane fabrication
2.3. Membrane Characterization
2.4. Analysis
3. Results and discussion
3.1. Comparing the membrane characteristics




3.2. Comparing the membrane performance
Performance with synthetic water
Performance with raw restaurant water
4. Conclusion
Acknowledgments
Conflicts of Interest
References
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water. 2021, 13, 490. [Google Scholar] [CrossRef]
- Thyagaraju, N. Water pollution and its impact on environment of society. International Research Journal of Management, IT and Social Sciences. 2016, 3, 1–7. [Google Scholar] [CrossRef]
- Beler-Baykal, B. An appraisal of domestic wastewater segregation from the perspective of recovery, recycling, and reuse. Recycling and Reuse Approaches for Better Sustainability. 2019, 11–20. [Google Scholar]
- Salgot, M.; Folch, M. Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health. 2018, 2, 64–74. [Google Scholar]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal. 2017, 323, 361–380. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. Journal of environmental management. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Ramadan, M.; Olabi, A.G. Environmental impact of emerging desalination technologies: A preliminary evaluation. Journal of Environmental Chemical Engineering. 2020, 8, 104099. [Google Scholar] [CrossRef]
- Kaner, P.; Rubakh, E.; Asatekin, A. Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes. Journal of Membrane Science. 2017, 533, 141–159. [Google Scholar] [CrossRef]
- Gohari, R.J.; Korminouri, F.; Lau, W.J.; Ismail, A.F.; Matsuura, T.; Chowdhury, M.N.K.; Halakoo, E.; Gohari, M.J. A novel super-hydrophilic PSf/HAO nanocomposite ultrafiltration membrane for efficient separation of oil/water emulsion. Separation and Purification Technology. 2015, 150, 13–20. [Google Scholar] [CrossRef]
- Muppalla, R.; Jewrajka, S.K.; Reddy, A.V.R. Fouling resistant nanofiltration membranes for the separation of oil–water emulsion and micropollutants from water. Separation and Purification Technology. 2015, 143, 125–134. [Google Scholar] [CrossRef]
- Tian, X.; Jin, H.; Sainio, J.; Ras, R.H.; Ikkala, O. Droplet and fluid gating by biomimetic Janus membranes. Advanced Functional Materials. 2014, 24, 6023–6028. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, A.; Saadat, A.H.M.; Shammi, M.; Uddin, M.K. Desalination technologies for developing countries: A review. Journal of Scientific Research. 2018, 10, 77–97. [Google Scholar] [CrossRef]
- Keskin, B.; Ormancı-Acar, T.; Türken, T.; Imer, D.Y.; Koyuncu, I. Effect of wetting agent on the dye filtration performance of ultrafiltration membrane. Water Science and Technology. 2020, 82, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid & Interface Science. 2017, 29, 32–45. [Google Scholar]
- Lessan, F.; Karimi, M.; Bañuelos, J.L.; Foudazi, R. Phase separation and performance of polyethersulfone/cellulose nanocrystals membranes. Polymer. 2020, 186, 121969. [Google Scholar] [CrossRef]
- Zhong, L.; Ding, Z.; Li, B.; Zhang, L. Preparation and characterization of polysulfone/sulfonated polysulfone/cellulose nanofibers ternary blend membranes. BioResources. 2015, 10, 2936–2948. [Google Scholar] [CrossRef]
- Zhang, D.; Karkooti, A.; Liu, L.; Sadrzadeh, M.; Thundat, T.; Liu, Y.; Narain, R. Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. Journal of Membrane Science. 2018, 549, 350–356. [Google Scholar] [CrossRef]
- Prasad, N.S.; Gayatri, N.L.; Sandhya, B.N.; Kalyani, S.; Bhargava, S.K.; Sridhar, S. Hydrophilized Ultrafiltration Membranes Synthesized from Acrylic Acid Grafted Polyethersulfone for Downstream Processing of Therapeutic Insulin and Cobalamin. Applied Biochemistry and Biotechnology. 2022, 194, 3400–3418. [Google Scholar] [CrossRef]
- Goetz, L.; Mathew, A.; Oksman, K.; Gatenholm, P.; Ragauskas, A.J. A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydrate polymers. 2009, 75, 85–89. [Google Scholar] [CrossRef]
- Asempour, F.; Emadzadeh, D.; Matsuura, T.; Kruczek, B. Synthesis and characterization of novel Cellulose Nanocrystals-based Thin Film Nanocomposite membranes for reverse osmosis applications. Desalination. 2018, 439, 179–187. [Google Scholar] [CrossRef]
- Adeniyi, A.; Odo, G.O.; Gonzalez-Ortiz, D.; Pochat- Bohatier, C.; Onyango, M. COD and turbidity removal from restaurant wastewater using polyethersulfone ultrafiltration membrane containing sawdust-derived cellulose nanocrystals. South African Chemical Engineering Congress 2021, ISBN 978-1-991213-99-0, 258-270.
- Parnian, P.; D’Amore, A. Fabrication of high-performance CNT reinforced polymer composite for additive manufacturing by phase inversion technique. Polymers. 2021, 13, 4007. [Google Scholar] [CrossRef] [PubMed]
- Farjami, M.; Vatanpour, V.; Moghadassi, A. Effect of nanoboehmite/poly (ethylene glycol) on the performance and physiochemical attributes EPVC nano-composite membranes in protein separation. Chemical Engineering Research and Design. 2020, 156, 371–383. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Aryanti, N.; Utomo, D.P. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process. Chemical Engineering Journal. 2018, 347, 462–471. [Google Scholar] [CrossRef]
- Adeniyi, A.; Gonzalez-Ortiz, D.; Pochat-Bohatier, C.; Oyewo, O.; Sithole, B.; Onyango, M. Incorporation of Cellulose Nanocrystals (CNC) derived from sawdust into polyamide thin-film composite membranes for enhanced water recovery. Alexandria Engineering Journal. 2020, 59, 4201–4210. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of scientific instruments. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, Z.; Zhang, Y.; Wei, Y.; Wang, J. Effect of non-solvent additives on the morphology, pore structure, and direct contact membrane distillation performance of PVDF-CTFE hydrophobic membranes. Journal of Environmental Sciences. 2016, 45, 28–39. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier transform infrared (FTIR) spectroscopy. InMembrane characterization 2017, 3-29. elsevier.
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate research. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Yu, H.; Gu, L.; Wu, S.; Dong, G.; Qiao, X.; Zhang, K.; Lu, X.; Wen, H.; Zhang, D. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance. Separation and Purification Technology. 2020, 247, 116889. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Liu, T.; Xu, X.; Hu, Y. Improving the perm-selectivity and anti-fouling property of UF membrane through the micro-phase separation of PSf-b-PEG block copolymers. Journal of Membrane Science. 2020, 599, 117851. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, G.; Zhang, H.; Zhao, C.; Yang, F. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Applied Surface Science. 2018, 440, 91–100. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Starov, V.M. Effect of solvents on performance of polyethersulfone ultrafiltration membranes: Investigation of metal ion separations. Desalination. 2011, 267, 57–63. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Wang, Y. Fly ash-based zeolite-complexed polyethylene-glycol on an interdigitated electrode surface for high-performance determination of diabetes mellitus. International Journal of Nanomedicine. 2020, 66, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Woo, Y.C.; Kim, H.S. Effect of driving pressure and recovery rate on the performance of nanofiltration and reverse osmosis membranes for the treatment of the effluent from MBR. Desalination and water treatment. 2015, 54, 89–95. [Google Scholar] [CrossRef]
- Mulyati, S.; Aprilia, S.; Armando, M.A.; Mawardi, H. The effect of poly ethylene glycol additive on the characteristics and performance of cellulose acetate ultrafiltration membrane for removal of Cr (III) from aqueous solution. IOP Conference Series: Materials Science and Engineering 2018, 352, 012051. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
