Submitted:
23 April 2023
Posted:
24 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Site description
2.2. Meteorological conditions
2.3. Experimental treatments and agronomic practices
2.4. Methods and analysis
3. Results and Discussion
3.1. Height of faba bean canopy
3.2. Faba bean leaves chlorophyll index
3.3. Faba bean leaves assimilation area
3.3. Faba bean canopy dried biomass
3.4. Faba bean roots dried biomass
3.5. Number of nodules on faba bean roots
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roberttson, G. P.; Swinton, S. M. Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ. 2005, 3, 38–46. [Google Scholar] [CrossRef]
- Foley, A. J.; Ramankutty, N.; Brauman, K. A.; Cassidy, E. S.; Gerber, J.; Johnston, M. S.; Mueller, N. D.; O’Connell, C.; Ray, D. K.; West, P. C.; Balzer, C.; Bennett, E. M.; Carpenter, S. R.; Sheehan, J.; Siebert, S.; Tilman, D.; David, P. M. Solutions for a cultivated planet. Nature. 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Dubrocsky, N. M.; Burow, R.; Clark, G. M.; Gronber, J. M.; Hamilton, P. A. The quality of our nation`s waters: Nutrients in the natio`s streams and groundwater, 1992–2004. Geol Surv 2010, 1350, 162–174. [Google Scholar]
- Rohr, J. R.; McCoy, K. A. A qualitative meta–analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Persp. 2010, 118, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Bogužas, V.; Kairytė, A.; Jodaugienė, D. Soil physical properties and earthworms as affected by soil tillage systems, straw and green manure management. Zemdirbyste 2010, 97(3), 3–14. [Google Scholar]
- Vetsch, J. A.; Gyles, W. R. Corn production as affected by tillage system and starter fertilizer. Agron J. 2002, 94(3), 532–540. [Google Scholar] [CrossRef]
- Kulig, B.; Lepiarczyk, A.; Oleksy, A.; Kolodziejczyk, M. The effect of tillage system and forecrop on the yield and values of LAI and SPAD indices of spring wheat. Eur J Agron. 2010, 33, 43–51. [Google Scholar] [CrossRef]
- Lu, X.; Cui, Y.; Liao, Y. Tillage and crop straw methods affect energy use efficiency, economics and greenhouse gas emissions in rainfed winter wheat field of Loess Plateau in China. Acta Agric Scand B Soil Plant Sci. 2018, 68(6), 562–574. [Google Scholar] [CrossRef]
- Kimbirauskienė, R.; Romaneckas, K.; Naujokienė, V.; Sinkeviečienė, A.; Šarauskis, E.; Buragienė, S.; Stanislaw, B. Plonosol CO2 respiration, chemical and physical properties of differently tilled faba bean cultivation. Land. 2020, 456(9), 1–13. [Google Scholar]
- Organisation for Co-operation and Economic Development (OECD), Environmental Indicators for Agriculture–Vol. 3: Methods and Results, OECD, Paris, France, 2013, pp. 389–391.
- Šarauskis, E.; Romaneckas, K.; Jasinskas, A.; Kimbirauskienė, R.; Naujokienė, V. Improving energy efficiency and environmental mitigation through tillage management in faba bean production. Energy. 2020, 209, 1–10. [Google Scholar] [CrossRef]
- Trumper, K.; Ravilions, C.; Dickso, B. Carbon sequestration in dry land soils. Food and Agriculture Organization of the United Nations. World Soil Resources Reports. 2008, 102, 1–12. [Google Scholar]
- Gao, B.; Bian, X. C.; Yang, F.; Chen, M. X.; Das, D.; Zhu, X. R.; Jiang, Y.; Zhang, J.; Cao, Y. Y.; Wu, C. F. Comprehensive transcriptome analysis of faba bean in response to vernalization. Plant. 2020, 251(1), 10–22. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, F.; Hashemi, M.; Barker, A. V.; Zandvakili, O. R.; Liu, X. Agronomy, nutritional value, and medicinal application of faba bean (Vicia faba L.). Hortic. Plant J 2019, 5, 170–182. [Google Scholar] [CrossRef]
- Guo, Z.; Dong, Y.; Dong, K.; Zhu, J.; Ma, L. Effects of nitrogen management and intercropping on faba bean chocolate spot disease development. J. Crop Prot. 2020, 127, 1–7. [Google Scholar] [CrossRef]
- Collison, E. J.; Riutta, T.; Slade E., M. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions. Acta Oecol. 2013, 47, 30–36. [Google Scholar] [CrossRef]
- Crumsey, J. M.; Le Moine, J. M.; Capowiez, Y.; Goodsitt, M. M.; Larson, S. C.; Kling, G. W.; Nadelhoffer, K. J. Community-specific impacts of exotic earthworm invasions on soil carbon dynamics in a sandy temperate forest. Ecology. 2013, 94, 2827–2837. [Google Scholar] [CrossRef]
- Eerd, L. V.; Congreves, K. A.; Hayes, A.; Verhallen, A.; Hooker, D. C. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen Canadian. J. Soil Sci. 2014, 94(3), 303–315. [Google Scholar]
- Boldrini, A.; Benincasa, P.; Tosti, G.; Tei, F.; Guiducci, M. The risk of N loss in an organic and a conventional farming system. Editorial Milenio, Lleida, Spain, 2007, pp. 315–317.
- Mwanamwenge, J.; Loss, S. P.; Siddique, K. H. M.; Cocks, P. S. Growth, seed yield and water use of faba bean (Vicia faba L.) in a short-season Mediterranean-type environment. Aust. J. Exp. Agric. 1998, 38, 171–180. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernandez, J. A.; Vagen, I. M.; Rewald, B.; Alsina, I.; Kronberga, A.; Balliu, A.; Olle, M.; Bodner, G.; Dubova, L.; Rosa, E.; Savvas, D. Faba bean cultivation – revealing novel managing practices for a more sustainable and competitiveness European cropping systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef]
- Etemadi, F.; Hashemi, M.; Zandvakili, O.; Dolatabadian, A.; Sadeghpour, A. Nitrogen contribution from winter–killed faba bean cover crop to spring–sown sweet corn in conventional and no–till systems. Agron J. 2018, 110(2), 455–462. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R. J.; Castillo J., E.; López-Bellido F., J. Effects of tillage, crop rotation, and nitrogen fertilization on wheat under rainfed Mediterranean conditions. Agron J. 2000, 92, 1054–1063. [Google Scholar] [CrossRef]
- Alsalimm, H.A.A.; Abood, A.; Abbas, L.M.R. The ability of Rhizobium leguminosarum inoculum to improve fava faba beans (Vicia faba L.) growth and produce some hydrolytic enzymes. Iraqi J. Sci. 2018, 59, 1231–1236. [Google Scholar]
- Zhang, F.; Shen, J.; Li, L.; Liu, X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant Soil. 2004, 260, 89–99. [Google Scholar] [CrossRef]
- Peoples, M. B.; Hauggaard-Nielsen, H.; Jensen, E. S. The potential environmental benefits and risks derived from legumes in rotations. Agron. monogr. 2009, 52, 349–385. [Google Scholar]
- Unkovich, M. J.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk P. Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR Monograph No. 136, Canberra, Australia, 2008, pp. 258.
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef]
- Birkhofer, K.; Schoning, I.; Alt, F.; Herold, N.; Klarner, B.; Maraun, M.; Marhan, S.; Oelmann, Y.; Wubet, T.; Yurkov, A.; et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. Plos one. 2012, 7, 43292. [Google Scholar] [CrossRef] [PubMed]
- Manschadi, A. M.; Sauerborn, J.; Stützel, H.; Göbel, W.; Saxena, M. C. Simulation of faba bean (Vicia faba L.) root system development under Mediterranean conditions. Eur J Agron. 1998, 9, 259–272. [Google Scholar] [CrossRef]
- Bond, D. A.; Jellis, G. J.; Rowland, G. G.; Le Guen, J.; Robertson, L. D.; Khalil, S. A.; Li-Juan, L. Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to biotic and abiotic stresses. Euphytica. 1994, 73, 151–166. [Google Scholar] [CrossRef]
- Xia, M. Z. Effects of drought during the generative development phase of faba bean (Vicia faba L.) on photosynthetic characters and biomass production. J. Agric. Sci. 1994, 122, 67–72. [Google Scholar] [CrossRef]
- Husain, M. M.; Reid, J. B.; Othman, H.; Gallagher J., N. Growth and water use of Faba beans (Vicia faba) in a sub-humid climate. I. Root and shoot adaptations to drought stress. Field Crops Res. 1990, 23, 1–17. [Google Scholar] [CrossRef]
- Paul, E. A.; Clark, F. E. Soil microbiology and biochemistry. New York, 1989. 273.
- Jeon, M. W.; Ali, M. B.; Hahn, E. J.; Paek, K. Y. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environ. Exp. Bot. 2006, 55, 183–194. [Google Scholar] [CrossRef]
- IUSS WORKING GROUP, W. R. B., et al. update 2015. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Food and Agriculture Organization of the United Nations, Rome, 2014, 190.
- Romaneckas, K.; Kimbirauskienė, R.; Adamavičienė, A.; Buragienė, S.; Sinkevičienė, A.; Šarauskis, E.; Jasinskas, A.; Minajeva, A. Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield. Agric. Food Sci. 2019, 28, 101–111. [Google Scholar] [CrossRef]
- SPSS Instant 10. Statistics I; IBM: Armonk, NY, USA, 2000, 663.
- Leonavičienė, T. SPSS Programų Paketo Taikymas Statistiniuose Tyrimuose; Lithuanian University of Educational Sciences: Vilnius, Lithuanian, 2007; Volume 663. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Scott Long, J.; Ervin, L. Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model. Am. Stat. 2012, 54, 217–224. [Google Scholar]
- Chaves, M. M.; Maroko, J. P.; Pereira, J. S. Understanding plant responses to drought – from genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Šliogerytė, K.; Sakalauskienė, S.; Brazaitytė, A.; Lazauskas, S.; Sakalauskaitė, J.; Sirtautas, R.; Duchovskis, P. Paprastojo kukurūzo (Zea mays L.), auginto skirtingomis drėgmės ir temperatūros sąlygomis, fotosintezės ir biometrinių rodiklių kitimas. Sodininkystė ir daržininkystė 2009, 28, 189–197. [Google Scholar]
- Janušauskaitė, D.; Auškalnienė, O.; Pšibišauskienė, G. Skirtingo tankumo vasarinių miežių chlorofilo indeksas ir jo ryšys su derliumi. Zemdirbyste 2009, 96(4), 124–138. [Google Scholar]
- Janušauskaitė, D.; Feizienė, D.; Feiza, V. The effect of tillage, fertilization and residue management on winter wheat and spring wheat physiological performance. Acta Physiol. Plant. 2022, 44, 1–13. [Google Scholar] [CrossRef]
- Fageria, N. K.; Baligar, V. C.; Clark, R. B. Physiology of crop production. The Harworth Press. New York, London, Oxford, USA, 2006, pp. 345.
- Murungu, F. S.; Chiduza, C.; Muchaonyerwa, P. Biomass accumulation, weed dynamics and nitrogen uptake by winter cover crops in a warm-temperate region of South Africa. Afr. J. Agric. Res. 2010, 5(13), 1632–1642. [Google Scholar]
- Probert, M. E.; Fergus, I. F.; Bridge, B. J.; McGarry, D.; Thompson, C. H.; Russel, J. S., The Properties and Management of Vertisols. C.A.B. International. 1987, Wallingford, Oksford, UK.
- Coulombe, C. E.; Wilding, L. P.; Dixon, J. B. Overview of Vertisols: characteristics and impacts on society. Adv. Agron. 1996, 57, 289–375. [Google Scholar]
- López-Bellido, R. J; López-Bellido, L.; Benitez-Vega, J.; Munoz-Romero, V.; López-Bellido, F. J.; Redondo, R. Chickpea and faba bean nitrogen fixation in a Mediterranean rainfed Vertisol: Effect of the tillage system. Eur J Agron. 2011, 34(4), 222–230. [Google Scholar] [CrossRef]
- Trinick, M. J.; Dilworth, M. J.; Grounds, M. Factors affecting the reduction of acetylene by root nodules of Lupinus species. New Phytol. 1976, 77, 359–370. [Google Scholar] [CrossRef]
- Zhou, Y.; Hagedorn, F.; Zhou, C.; Jiang, X.; Wang, X.; Li, M. H. Experimental warming of a mountas tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai mountain, China. Sci. Rep. 2016, 6, 1–8. [Google Scholar]
- Amanuel, G.; Kunne, R. F.; Tanner, D. G.; Vlek, P. L. G. Biological nitrogen fixation in faba bean (Vicia faba L.) in the Ethiopian highlands as affected by P fertilization and inoculation. Biol. Fertil. Soils 2000, 32, 353–359. [Google Scholar] [CrossRef]
- Puschel, D.; Janoušková, M.; Voříšková, A.; Gryndlerová, H.; Vosátka, M.; Jansa, J. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. 2017, 8, 382–390. [Google Scholar] [CrossRef]

| Tillage treatment | Tillage type | Tillage depth (cm) | Pre-crop residue coverage (%) |
|---|---|---|---|
| 1. Ploughing | inversion | 22–25 | 0.5–1.5 |
| 2. Ploughing | inversion | 12–15 | 0.3–8.2 |
| 3. Chiselling | non-inversion | 25–30 | 8.5–36.8 |
| 4. Disking | non-inversion | 10–12 | 10.5–25.8 |
| 5. No-till | - | 0 | 22.0–82.8 |
| Operation | 2016 | 2017 | 2018 | 2019 |
|---|---|---|---|---|
| 1. Sowing + fertilization | 25 04 | 08 05 | 24 04 | 06 05 |
| 2. Insecticide application | 10 05 | 07 06 | 15 05 | 06 06 |
| 3. Fungicide application | 13 06 | 23 06 | 18 06 | 22 06 |
| Year of investigation (factor B) |
Tillage treatments (factor A) | Average (B) | ||||
|---|---|---|---|---|---|---|
| DP | SP | DC | SC | NT | ||
| 2016 | 50.0 | 51.2 | 52.2 | 55.6 | 50.4 | 51.9d |
| 2017 | 86.0 | 82.3 | 93.8 | 101.0 | 72.1 | 87.0a |
| 2018 | 64.7 | 65.0 | 73.3 | 62.6 | 70.6 | 67.3c |
| 2019 | 75.3 | 70.6 | 80.1 | 79.7 | 68.9 | 74.9b |
| Average (A) | 69.0B | 67.3B | 74.8A | 74.7A | 65.5B | |
| Interaction AxB, F-act. 3.3, P ≤ 0.01 > 0.001, LSD05 – 8.94, LSD01 – 11.90 | ||||||
| Year of investigation (factor B) |
Tillage treatments (factor A) | Average (B) | ||||
|---|---|---|---|---|---|---|
| DP | SP | DC | SC | NT | ||
| 2016 | 28.2 | 30.0 | 29.9 | 31.0 | 29.6 | 29.7c |
| 2017 | 25.7 | 27.7 | 27.4 | 23.2 | 27.6 | 26.3d |
| 2018 | 47.0 | 45.2 | 46.3 | 42.2 | 37.9 | 43.7a |
| 2019 | 31.0 | 37.2 | 33.9 | 30.4 | 43.8 | 33.5b |
| Average (A) | 33.0A | 35.0A | 34.4A | 31.7A | 32.5A | |
| Interaction AxB, F-act. 1.07, P> 0.05, LSD05 – 6.90, LSD01 – 9.18 | ||||||
| Year of investigation (factor B) |
Tillage treatments (factor A) | Average (B) | ||||
|---|---|---|---|---|---|---|
| DP | SP | DC | SC | NT | ||
| 2016 | 337.2 | 409.7 | 360.6 | 381.7 | 367.3 | 371.3c |
| 2017 | 1132.4 | 1191.9 | 1270.9 | 1227.5 | 945.4 | 1153.6a |
| 2018 | 764.4 | 809.7 | 1052.7 | 675.2 | 866.8 | 833.8b |
| 2019 | 1053.7 | 1096.8 | 1102.1 | 1073.1 | 866.6 | 1038.5a |
| Average (A) | 821.9A | 877.0A | 946.6A | 839.4A | 761.5A | |
| Interaction AxB, F-act. 0.48, P> 0.05, LSD05 – 392.08, LSD01 – 521.78 | ||||||
| Year of investigation (factor B) |
Tillage treatments (factor A) | Average (B) | ||||
|---|---|---|---|---|---|---|
| DP | SP | DC | SC | NT | ||
| 2016 | 11.4 | 10.6 | 10.7 | 10.9 | 9.9 | 10.7c |
| 2017 | 11.2 | 10.1 | 11.8 | 12.5 | 8.9 | 10.9c |
| 2018 | 18.0 | 13.0 | 16.3 | 11.6 | 13.7 | 14.4b |
| 2019 | 16.8 | 21.7 | 23.5 | 20.1 | 18.3 | 20.1a |
| Average (A) | 14.3AB | 13.9AB | 15.6A | 13.6AB | 12.7B | |
| Interaction AxB, F-act. 1.32, P> 0.05, LSD05 – 5.01, LSD01 – 6.67 | ||||||
| Year of investigation (factor B) |
Tillage treatments (factor A) | Average (B) | ||||
|---|---|---|---|---|---|---|
| DP | SP | DC | SC | NT | ||
| 2017 | 9.2 | 8.3 | 9.5 | 8.0 | 11.4 | 9.3a |
| 2018 | 5.1 | 6.2 | 6.6 | 5.0 | 6.4 | 5.9bc |
| 2019 | 6.1 | 7.0 | 6.6 | 7.0 | 6.6 | 6.5b |
| Average (A) | 6.4BC | 6.9BD | 7.6AB | 6.0B | 8.0A | |
| Interaction AxB, F-act. 1.54, P> 0.05, LSD05 – 2.04, LSD01 – 2.72 | ||||||
| Year of investigation (factor B) |
Tillage treatments (factor A) | Average (B) | ||||
|---|---|---|---|---|---|---|
| DP | SP | DC | SC | NT | ||
| 2017 | 100.6 | 190.4 | 101.0 | 69.5 | 96.4 | 111.6a |
| 2018 | 70.8 | 73.8 | 70.4 | 90.2 | 92.4 | 79.5ab |
| 2019 | 47.0 | 55.2 | 66.6 | 68.9 | 71.8 | 61.9b |
| Average (A) | 72.8A | 106.4A | 79.4A | 76.2A | 86.9A | |
| Interaction AxB, F-act. 1.05, P> 0.05, LSD05 – 83.72, LSD01 – 111.93 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
