Submitted:
10 April 2023
Posted:
11 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Effect of Cannabinoid Drugs on Cognitive Functions of the Healthy Brain
2.1. Alterations in Cognitive Functions upon Direct Action on CB Receptors and after the Deletion of CB Receptors
2.2. Changes in Cognitive Functions upon Modulation of Metabolism of eCBs
3. The Endocannabinoid System as a Target for Influence in the Models of Alzheimer’s Disease and Temporal Lobe Epilepsy
3.1. Investigation of the Role of the ECS in Experimental Models of Alzheimer’s Disease
3.2. Investigation of the Role of the ECS in Experimental Models of Temporal Lobe Epilepsy
4. Conclusions
Conflict of interest statement
Acknowledgments
Abbreviations
| 2-AG | 2-arachidonylglycerol (endogenous ligand of CBR) |
| Aβ | β-amyloid peptides |
| AEA | N-arachidonylethanolamide, anandamide (endogenous ligand of CBR) |
| AD | Alzheimer's disease |
| CBR | cannabinoid receptors |
| CB1R | type 1 cannabinoid receptors |
| CB2R | type 2 cannabinoid receptors |
| CBD | cannabidiol (CBR partial agonist) |
| eCBs | endocannabinoids |
| ECS | endocannabinoid system |
| DAGL-α, DAGL-β | diacylglycerol lipases, enzymes for the synthesis of 2-AG |
| FAAH | fatty acid amide hydrolase, AEA degradation enzyme |
| fMRI | functional magnetic resonance imaging |
| GPR55, GPR18 | G-protein coupled receptors |
| LTD | long-term synaptic depression |
| LTP | long-term synaptic potentiation |
| MAGL | monoacylglycerol lipase, 2-AG degradation enzyme |
| mTOR | mammalian target of rapamycin |
| NAPE-PLD | anandamide synthesizing enzyme |
| PEA | palmitoylethanolamide (endogenous analogue of AEA) |
| PET | positron emission tomography |
| PPAR | receptors activated by peroxisome proliferators, a group of cell nucleus receptors that function as a transcription factor |
| THC | Δ9-tetrahydrocannabinol (partial agonist at both CB1 and CB2 receptors) |
| TLE | temporal lobe epilepsy |
| TRPV | vanilloid receptors, nonspecific cation channels |
| TRPV1, TRPV2, PPARα, PPARγ, GPR55, GPR18 | receptors included in the endocannabinoidom |
| WIN-2 | synthetic agonist of CB1/CB2 receptors WIN 55,212-2 |
References
- Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y.-P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep. 2012, 2, 1329–1339. [Google Scholar] [CrossRef]
- Burns, H.D.; Van Laere, K.; Sanabria-Bohуrquez, S.; Hamill, T.G.; Bormans, G.; Eng, W.-S.; Gibson, R.; Ryan, C.; Connolly, B.; Patel, S.; et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc. Natl. Acad. Sci. USA 2007, 104, 9800–9805. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, M.A.P.; Hindocha, C.; Green, S.F.; Wall, M.B.; Lees, R.; Petrilli, K.; Costello, H.; Ogunbiyi, M.O.; Bossong, M.G.; Freeman, T.P. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol. Ther. 2019, 195, 132–161. [Google Scholar] [CrossRef] [PubMed]
- Tsou, K.; Brown, S.; Sanudo-Pena, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef]
- Freund, T.F.; Katona, I.; Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003, 83, 1017–1066. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.I.; Nicoll, R.A. Endocannabinoid signaling in the brain. Science 2002, 296, 678–682. [Google Scholar] [CrossRef]
- Chevaleyre, V.; Castillo, P.E.; Chevaleyre, V.; Castillo, P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 2003, 38, 461–472. [Google Scholar] [CrossRef]
- Letzkus, J.J.; Wolff, S.B.; Luthi, A. Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 2015, 88, 264–276. [Google Scholar] [CrossRef]
- Carlson, G.; Wang, Y.; Alger, B.E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat. Neurosci. 2002, 5, 723–724. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Chen, C. Endocannabinoids in Synaptic Plasticity and Neuroprotection. Neuroscientist 2015, 21, 152–168. [Google Scholar] [CrossRef]
- Gaoni, Y.; Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Mechoulam, R.; Shvo, Y.; Hashish, I. The structure of cannabidiol. Tetrahedron 1963, 19, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, L.A. , Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of a cloned cDNA. Nature 1990, 346, 561–564. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.L.; Abushaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 31–65. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; Pertwee, R.G.; Griffin, G.; Bayewitch, M.; Barg, J.; Vogel, Z. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995, 50, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2 -Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [Google Scholar] [CrossRef]
- Piomelli, D. The molecular logic of endocannabinoid signaling. Nat. Rev. Neurosci. 2003, 4, 873–884. [Google Scholar] [CrossRef]
- Lu, H.C.; Mackie, K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 2016, 79, 516–525. [Google Scholar] [CrossRef]
- Herkenham, M.; Lynn, A.B.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 1991, 11, 563–583. [Google Scholar] [CrossRef]
- Galiegue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carriere, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 1995, 232, 54–61. [Google Scholar] [CrossRef]
- van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; Marnett, L.J.; Di Marzo, V.; Pittman, Q.J.; Patel, K.D.; Sharkey, K.A. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005, 310, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Navarro, G.; Morales, P.; Rodríguez-Cueto, C.; Fernández-Ruiz, J.; Jagerovic, N.; Franco, R. Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front. Neurosci. 2016, 2016. 10, 406. [Google Scholar] [CrossRef]
- Centonze, D.; Battista, N.; Rossi, S.; Mercuri, N.B.; Finazzi-Agró, A.; Bernardi, G.; Calabresi, P.; Maccarrone, M. A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal GABAergic transmission. Neuropsychopharmacology 2004, 29, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Viscomi, M.T.; Oddi, S.; Latini, L.; Pasquariello, N.; Florenzano, F.; Bernardi, G.; Molinari, M.; Maccarrone, M. Selective CB2 receptor agonism protects central neurons from remote axotomyinduced apoptosis through the PI3K/Akt pathway. J. Neurosci. 2009, 29, 4564–4570. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, B.G.; Blázquez, C.; Gуmez del Pulgar, T.; Guzman, M.; de Ceballos, M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 2005, 25, 1904–1913. [Google Scholar] [CrossRef]
- Navarrete, M.; Araque, A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 2008, 58, 883–893. [Google Scholar] [CrossRef]
- Robin, L.M.; Oliveira da Cruz, J.F.; Langlais, V.C.; Martin-Fernandez, M.; Metna-Laurent, M.; Busquets-Garcia, A.; Bellocchio, L.; Soria-Gomez, E.; Papouin, T.; Varilh, M.; Sherwood, M.W.; Belluomo, I.; Balcells, G.; Matias, I.; Bosier, B.; Drago, F.; Van Eeckhaut, A.; Smolders, I.; Georges, F.; Araque, A.; Panatier, A.; Oliet, S.H.R.; Marsicano, G. Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory. Neuron 2018, 98, 935–944.E5. [Google Scholar] [CrossRef]
- Kano, M.; Ohno-Shosaku, T.; Hashimotodani, Y.; Uchigashima, M.; Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 2009, 89, 309–380. [Google Scholar] [CrossRef]
- Bénard, G.; Massa, F.; Puente, N.; Lourenco, J.; Bellocchio, L.; Soria-Gomez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega- Gutierrez, S.; Martin-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; Lopez-Rodriguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB1 receptors regulate neuronalenergy metabolism. Nat. Neurosci. 2012, 15, 558–564. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Nabissi, M; Santoni, G. ; Ligresti, A. Actions and Regulation of Ionotropic Cannabinoid Receptors. Adv Pharmacol. 2017, 80, 249–289. [Google Scholar] [PubMed]
- Di Marzo, V.; Breivogel, C.S.; Tao, Q.; Bridgen, D.T.; Razdan, R.K.; Zimmer, A.M.; Zimmer, A.; Martin, B.R. Levels, metabolism, and pharmacological activity of anandamide in CB1 cannabinoid receptor knockout mice: evidence for non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 2000, 75, 2434–2444. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018, 17, 623–639. [Google Scholar] [CrossRef] [PubMed]
- Mazier, W.; Saucisse, N.; Simon, V.; Cannich, A.; Marsicano, G.; Massa, F.; Cota, D. mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol. Metab. 2019, 28, 151–159. [Google Scholar] [CrossRef]
- Alger, B.E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 2002, 68, 247–286. [Google Scholar] [CrossRef]
- Luchicchi, A.; Lecca, S.; Carta, S.; Pillolla, G.; Muntoni, A.L.; Yasar, S.; Goldberg, S.R.; Pistis, M. Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR- alpha nuclear receptors. Addict. Biol. 2010, 15, 277–288. [Google Scholar] [CrossRef]
- Benito, C.; Tolón, R.M.; Castillo, A.I.; Ruiz-Valdepeñas, L.; Martínez-Orgado, J.A.; Fernández-Sánchez, F.J.; Vázquez, C.; Cravatt, B.F.; Romero, J. beta-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR- alpha, PPAR- gamma and TRPV1, but not CB(1) or CB(2) receptors. Br. J. Pharmacol. 2012, 166, 1474–1489. [Google Scholar] [CrossRef]
- Hansen, H.S.; Rosenkilde, M.M.; Holst, J.J.; Schwartz, T.W. GPR119 as a fat sensor. Trends Pharmacol. Sci. 2012, 33, 374–381. [Google Scholar] [CrossRef]
- Blankman, J.L.; Simon, G.M.; Cravatt, B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 2007, 14, 1347–1356. [Google Scholar] [CrossRef]
- Zygmunt, P.M.; Ermund, A.; Movahed, P.; Andersson, D.A.; Simonsen, C.; Jönsson, B.A.; Blomgren, A.; Birnir, B.; Bevan, S.; Eschalier, A.; Mallet, C.; Gomis, A.; Högestätt, E.D. Monoacylglycerols activate TRPV1 – a link between phospholipase C and TRPV1. PLOS One 2013, 8, e81618. [Google Scholar] [CrossRef]
- Valjent, E.; Pages, C.; Rogard, M.; Besson, M.J.; Maldonado, R.; Caboche, J. Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. Eur. J. Neurosci. 2001, 14, 342–52. [Google Scholar] [CrossRef] [PubMed]
- Puighermanal, E.; Marsicano, G.; Busquets-Garcia, A.; Lutz, B.; Maldonado, R.; Ozaita, A. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat. Neurosci. 2009, 12, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J-F. ; Guerriero, G. Cannabis sativa: the Plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Giacoppo, S.; Pollastro, F.; Grassi, G.; Bramanti, P.; Mazzon, E. . Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitoterapia. 2017, 116, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Lanza Cariccio, V.; Scionti, D.; Raffa, A.; Iori, R.; Pollastro, F.; Diomede, F.; Bramanti, P.; Trubiani, O.; Mazzon, E. Treatment of Periodontal Ligament Stem Cells with MOR and CBD Promotes Cell Survival and Neuronal Differentiation via the PI3K/Akt/mTOR Pathway. Int. J. Mol. Sci. 2018, 19, pii–E2341. [Google Scholar] [CrossRef]
- Elsohly, M.A.; Slade, D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sciences. 2005, 78, 539–548. [Google Scholar] [CrossRef]
- Di Marzo, V.; Wang, J. (Eds.) The Endocannabinoidome: The World of Endocannabinoids and Related Mediators; Elsevier Academic Press: London, UK, 2015. [Google Scholar]
- Morales, M.; Wang, S.D.; Diaz-Ruiz, O.; Jho, D.H. Cannabinoid CB1 receptor and serotonin 3 receptor subunit A (5-HT3A) are co-expressed in GABA neurons in the rat telencephalon. J. Comp. Neurol. 2004, 468, 205–216. [Google Scholar] [CrossRef]
- Mechoulam, R.; Shani, A.; Edery, H.; Grunfeld, Y. Chemical basis of hashish activity. Science 1970, 169, 611–612. [Google Scholar] [CrossRef]
- Howlett, A.C. in: Cannabinoids: Handbook of Experimental Pharmacology (ed. Pertwee R.G.) 2005, Springer, Berlin, pp. 53–79.
- Varvel, S.A.; Anum, E.A.; Lichtman, A.H. Disruption of CB1 receptor signaling impairs extinction of spatial memory in mice. Psychopharmacology (Berl). 2005, 179, 863–872. [Google Scholar] [CrossRef]
- Terranova, J.P.; Storme, J.J.; Lafon, N.; Perio, A.; Rinaldi-Carmona, M.; Le Fur, G.; Soubrie, P. Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology 1996, 126, 165–172. [Google Scholar] [CrossRef]
- Reibaud, M.; Obinu, M.C.; Ledent, C.; Parmentier, M.; Bőhme, G.A.; Imperato, A. Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur. J. Pharmacol. 1999, 379, R1–2. [Google Scholar] [CrossRef]
- Lichtman, A.H. SR141716A enhances spatial memory as assessed in a radial-arm maze task in rats. Eur. J. Pharmacol. 2000, 404, 175–179. [Google Scholar] [CrossRef]
- Wolff, M.C.; Leander, J.D. SR141716A, a cannabinoid CB1 receptor antagonist, improves memory in a delayed radial maze task. Eur. J. Pharmacol. 2003, 477, 213–217. [Google Scholar] [CrossRef]
- Basavarajappa, B.S.; Subbanna, S. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus 2014, 24, 178–188. [Google Scholar] [CrossRef]
- Shahveisi, K.; Farnia, V.; Khazaie, H.; Ghazvini, H.; Nozari, M.; Khodamoradi, M. Novel object recognition memory in REM sleep-deprived rats: Role of the cannabinoid CB(1) receptor. Behav. Brain Res, 2020; 381, 112311. [Google Scholar]
- Khodamoradi, M.; Tirgar, F.; Ghazvini, H.; Rafaiee, R.; Tamijani, S.M.S.; Karimi, N.; Yadegari, A.; Khachaki, A.S.; Akhtari, J. Role of the cannabinoid CB1 receptor in methamphetamine-induced social and recognition memory impairment. Neurosci Lett. 2022, 779, 136634. [Google Scholar] [CrossRef] [PubMed]
- Nakama, H.; Chang, L.; Fein, G.; Shimotsu, R.; Jiang, C.S.; Ernst, T. Methamphetamine users show greater than normal age-related cortical gray matter loss. Addiction 2011, 106, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.R.; Rossato, J.I.; Monteiro, S.; Bevilaqua, L.R.M.; Izquierdo, I.; Cammarota, M. Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol. Learn Mem. 2008, 90, 374–381. [Google Scholar] [CrossRef]
- Baek, J.h.; Zheng, Y.; Darlington, C.L.; Smith, P.F. The CB1 receptor agonist, WIN 55,212–2, dose-dependently disrupts object recognition memory in adult rats. Neurosci. Lett. 2009, 464, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Brodkin, J.; Moerschbaecher, J.M. SR141716A antagonizes the disruptive effects of cannabinoid ligands on learning in rats. J. Pharmacol. Exp. Ther. 1997, 282, 1526–1532. [Google Scholar] [PubMed]
- Mallet, P.E.; Beninger, R.J. The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta-9-tetrahydrocannabinol or anandamide. Psychopharmacology 1998, 140, 11–19. [Google Scholar] [CrossRef]
- Hampson, R.E.; Deadwyler, S.A. Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J. Neurosci. 2000, 20, 8932–8942. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, A.H.; Varvel, S.A.; Martin, B.R. Endocannabinoids in cognition and dependence. Prostaglandins Leukot. Essent. Fatty Acids 2002, 66, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, A.H.; Dimen, K.R.; Martin, B.R. Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology (Berl). 1995, 119, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, A.H.; Martin, B.R. Delta 9-tetrahydrocannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology (Berl). 1996, 126, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Ottani, A.; Vivoli, R.; Giuliani, D. Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water maze task. Pharmacol. Biochem. Behav. 1999, 64, 555–561. [Google Scholar] [CrossRef]
- Tselnicker, I.; Keren, O.; Hefetz, A.; Pick, C.G.; Sarne, Y. A single low dose of tetrahydrocannabinol induces long-term cognitive deficits. Neurosci. Lett. 2007, 411, 108–111. [Google Scholar] [CrossRef]
- Mouro, F.M.; Ribeiro, J.A.; Sebastiгo, A.M.; Dawson, N. Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. J. Neurochem. 2018, 147, 71–83. [Google Scholar] [CrossRef]
- Mouro, F.M.; Batalha, V.L.; Ferreira, D.G.; Coelho, J.E.; Baqi, Y.; Muller, C.E.; Lopes, L.V.; Ribeiro, J.A.; Sebastião, A.M. Chronic and acute adenosine A 2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology 2017, 117, 316–327. [Google Scholar] [CrossRef]
- Abboussi, O.; Tazi, A.; Paizanis, E.; El Ganouni, S. Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis. Pharmacol Biochem Behav. 2014, 120, 95–102. [Google Scholar] [CrossRef]
- Murphy, M.; Mills, S.; Winstone, J.; Leishman, E.; Wager-Miller, J.; Bradshaw, H.; Mackie, K. Chronic adolescent Δ 9 -Tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent cannabidiol treatment. Cannabis Cannabinoid Res. 2017, 2, 235–246. [Google Scholar] [CrossRef]
- Beggiato, S, Ieraci, A, Zuccarini, M, Di Iorio, P, Schwarcz, R, Ferraro, L. Alterations in rat prefrontal cortex kynurenic acid levels are involved in the enduring cognitive dysfunctions induced by tetrahydrocannabinol exposure during the adolescence. Front Psychiatry 2022, 13, 996406. [Google Scholar] [CrossRef]
- Verrico, C.D. , Gu, H., Peterson, M.L, Sampson, A.R., Lewis, D.A. Repeated Δ9-tetrahydrocannabinol exposure in adolescent monkeys: persistent effects selective for spatial working memory. Am. J. Psychiatry, 2014; 171, 416–425. [Google Scholar]
- Abush, H.; Akirav, I. Cannabinoids modulate hippocampal memory and plasticity. Hippocampus 2010, 20, 1126–1138. [Google Scholar] [CrossRef]
- Borgan, F.; Beck, K.; Butler, E.; McCutcheon, R.; Veronese, M.; Vernon, A. , Howes, O.D. The effects of cannabinoid 1 receptor compounds on memory. Psychopharmacology (Berl), 2019; 236, 3257–3270. [Google Scholar]
- Suliman, N.A.; Taib, C.N.M.; Moklas, M.A.M.; Basir, R. Delta-9-Tetrahydrocannabinol (∆9-THC) Induce Neurogenesis and Improve Cognitive Performances of Male Sprague Dawley Rats. Neurotox Res. 2018, 33, 402–411. [Google Scholar] [CrossRef]
- Abd El-Rahman, S.S.; Fayed, H.M. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS One. 2022, 17, e0265961. [Google Scholar] [CrossRef] [PubMed]
- Bilkei-Gorzo, A.; Racz, I.; Valverde, O.; Otto, M.; Michel, K.; Sastre, M.; Zimmer, A. Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc. Natl. Acad. Sci. USA 2005, 102, 15670–15675. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, F.K.J.; Gilbert, A.; Burton, S.; Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus, 2003; 13, 175–189. [Google Scholar]
- Robbe, D.; Buzsàki, G. Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J. Neurosci. 2009, 29, 12597–12605. [Google Scholar] [CrossRef]
- Ratano, P.; Palmery, M.; Trezza, V.; Campolongo, P. Cannabinoid modulation of memory consolidation in rats: beyond the role of cannabinoid receptor subtype 1. Front. Pharmacol. 2017, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Laviolette, S.R.; Lipski, W.J.; Grace, A.A. A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J. Neurosci. 2005, 25, 6066–6075. [Google Scholar] [CrossRef]
- Kamprath, K.; Romo-Parra, H.; Haring, M.; Gaburro, S.; Doengi, M.; Lutz, B.; Pape, H.C. Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology 2011, 36, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Kuhnert, S.; Meyer, C.; Koch, M. Involvement of cannabinoid receptors in the amygdala and prefrontal cortex of rats in fear learning, consolidation, retrieval and extinction. Behav. Brain Res. 2013, 250, 274–284. [Google Scholar] [CrossRef]
- Laviolette, S.R.; Lipski, W.J.; Grace, A.A. A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J. Neurosci. 2005. 25: 6066–6075.
- Alarcon, T.A.; Areal, L.B.; Herlinger, A.L.; Paiva, K.K.; Cicilini, M.A.; Martins-Silva, C.; Pires, R.G.W. The cannabinoid agonist WIN-2 affects acquisition but not consolidation of a spatial information in training and retraining processes: Relation with transcriptional regulation of the endocannabinoid system? Behav Brain Res. 2020, 377, 112231. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutiérrez, M.S.; Ortega-Álvaro, A.; Busquets-Garcia, A.; Pérez-Ortiz, J.M.; Caltana, L.; Ricatti, M.J.; Brusco, A.; Maldonado, R.; Manzanares, J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 2013, 73, 388–396. [Google Scholar] [CrossRef]
- Kruk-Slomka, M. , Biala, G. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice. Behav. Brain Res. 2016; 301, 84–95. [Google Scholar]
- Li, Y.; Kim, J. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory. Neural Plast. 2016, 9817089, 1–1. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Garcia, A.; Oliveira Da Cruz, J.F.; Terral, G. , Pagano Zottola, A.C.; Soria-Gуmez, E.; Contini, A.; Martin, H.; Redon, B.; Varilh, M.; Ioannidou, C.; Drago, F., Massa, F.; Fioramonti, X.; Trifilieff, P.; Ferreira, G.; Marsicano, G. Hippocampal Cb1 Receptors Controlincidental Associations. Neuron 2018, 99, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, A.M.; Khaw, M.W.; Shohamy, D.; Daw, N.D. Reminders of past choices bias decisions for reward in humans. Nat. Commun. 2017, 8, 15958. [Google Scholar] [CrossRef]
- Parkes, S.L.; Westbrook, R.F. Role of the basolateral amygdala and NMDA receptors in higher-order conditioned fear. Rev. Neurosci. 2011, 22, 317–333. [Google Scholar] [CrossRef]
- Wheeler, D.S.; Chang, S.E.; Holland, P.C. Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity. Neurobiol. Learn. Mem. 2013, 101, 1–7. [Google Scholar] [CrossRef]
- Wimmer, G.E.; Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 2012, 338(6104), 270–273. [Google Scholar] [CrossRef]
- Hebert-Chatelain, E.; Desprez, T. ; Serrat, R,; Bellocchio, L.; Soria-Gomez, E.; Busquets-Garcia, A.; Pagano Zottola, A.C.; Delamarre, A.; Cannich, A.; Vincent, P.; et al. A cannabinoid link between mitochondria and memory. Nature, 2016; 539, 555–559. [Google Scholar]
- Bedse, G.; Bluett, R.J.; Patrick, T.A.; Romness, N.K.; Gaulden, A.D.; Kingsley, P.J.; Plath, N.; Marnett, L.J.; Patel, S. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl. Psychiatry 2018, 8, 92. [Google Scholar] [CrossRef]
- Mazzola, C.; Medalie, J.; Scherma, M. , Panlilio, L.V.; Solinas, M.; Tanda, G.; Drago, F.; Cadet, J.L.; Goldberg, S.R.; Yasar, S. Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-alpha nuclear receptors. Learn. Mem. 2009, 16, 332–337. [Google Scholar] [CrossRef]
- Busquets-Garcia, A.; Puighermanal, E.; Pastor, A.; de la Torre, R.; Maldonado, R.; Ozaita, A. Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses. Biol. Psychiatry 2011, 70, 479–486. [Google Scholar] [CrossRef]
- Ratano, P.; Petrella, C.; Forti, F.; Passeri, P.P.; Morena, M.; Palmery, M.; Trezza, V.; Severini, C.; Campolongo, P. Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. Neuropharmacology 2018, 138, 210–218. [Google Scholar] [CrossRef]
- Campolongo, P.; Roozendaal, B.; Trezza, V.; Cuomo, V.; Astarita, G.; Fu, J.; McGaugh, J.L.; Piomelli, D. Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc. Natl. Acad. Sci. U S A 2009, 106, 8027–8031. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; McLaughlin, R.J.; Bingham, B.; Shrestha, L.; Lee, T.T.Y.; Gray, J.M.; Hillard, C.J.; Gorzalka, B.B.; Viau, V. Endogenous cannabinoid signaling is essential for stress adaptation. Proc. Natl. Acad. Sci. U S A 2010, 107, 9406–9411. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 2009, 110, 1129–134. [Google Scholar] [CrossRef] [PubMed]
- Mackie, K. Cannabinoid receptors: where they are and what they do. J. Neuroendocrinol. 2008, Suppl. 1, 10–14. [Google Scholar] [CrossRef]
- Mikheeva, I.B.; Pavlik, L.L.; Shubina, L.V.; Malkov, A.E.; Khutsyan, S.S.; Kitchigina, V.F. Ultrastructural Alterations in Granular Neurons of the Dentate Fascia Caused by Intrahippocampal Injection of Beta-Amyloid 1-42. Bull. Exp. Biol. Med. 2020, 168, 802–806. [Google Scholar] [CrossRef]
- Panza, F.; Lozupone, M.; Seripa, D.; Imbimbo, B.P. Amyloid-β immunotherapy for Alzheimer disease: Is it now a long shot? Ann. Neurol. 2019, 85, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, C.; Esposito, G.; Blasio, A.; Valenza, M.; Arietti, P.; Steardo, L.Jr.; Carnuccio, R.; De Filippis, D.; Petrosino, S.; Iuvone, T.; Di Marzo, V.; Steardo, L. Palmitoylethanolamide counteracts reactive astrogliosis induced by β-amyloid peptide. J. Cell Mol. Med. 2011, 15, 2664–2674. [Google Scholar] [CrossRef]
- Gordon, R.Y; Makarova, E.G.; Mugantseva, E.A.; Khutsyan, S.S.; Kichigina, V.F. Analysis of the effect of neuroprotectors that reduce the level of degeneration of neurons in the rat hippocampus caused by administration of beta-amyloid peptide Aβ 25-35. Bull. Exp. Biol. Med. 2022, 172, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Iuvone, T.; Esposito, G.; Esposito, R.; Santamaria, R.; Di Rosa, M.; Izzo, A.A. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on b-amyloid-induced toxicity in PC12 cells. J. Neurochem. 2004, 89, 134–141. [Google Scholar] [CrossRef]
- Esposito, G.; De Filippis, D.; Carnuccio, R.; Izzo, A.A.; Iuvone, T. The marijuana component cannabidiol inhibits beta amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J. Mol. Med. (Berl.) 2006, 84, 253–258. [Google Scholar] [CrossRef]
- van der Stelt, M.; Mazzola, C.; Esposito, G.; Matias, I.; Petrosino, S.; De Filippis, D.; Micale, V.; Steardo, L.; Drago, F.; Iuvone, T.; Di Marzo, V. Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: Effect of pharmacological elevation of endocannabinoid levels. Cell Mol. Life Sci. 2006, 63, 1410–1424. [Google Scholar] [CrossRef]
- Eubanks, L.M.; Rogers, C.J.; Beuscher, A.E. 4th; Koob, G.F.; Olson, A.J.; Dickerson, T.J.; Janda, K.D. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol. Pharm. 2006, 3, 773–777. [Google Scholar] [CrossRef]
- Campbell, V.A.; Gowran, A. Alzheimer's disease; taking the edge off with cannabinoids? Br. J. Pharmacol. 2007, 152, 655–662. [Google Scholar] [CrossRef]
- Martin-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; Garcia-Garcia, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation. 2012, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Fishbein-Kaminietsky, M.; Gafni, M.; Sarne, Y. Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage. J. Neurosci. Res. 2014, 92, 1669–1677. [Google Scholar] [CrossRef]
- Wu, J.; Bie, B.; Yang, H.; Xu, J.J.; Brown, D.L.; Naguib, M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol. Aging. 2013, 34, 791–804. [Google Scholar] [CrossRef]
- Bachmeier, C.; Beaulieu-Abdelahad, D.; Mullan, M.; Paris, D. Role of the cannabinoid system in the transit of betaamyloid across the blood-brain barrier. Mol. Cell. Neurosci. 2013, 56, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Ferrer, I. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Front. Pharmacol. 2014, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Bedse, G.; Romano, A.; Cianci, S.; Lavecchia, A.M.; Lorenzo, P.; Elphick, M.R.; Laferla, F.M.; Vendemiale, G.; Grillo, C.; Altieri, F.; Cassano, T.; Gaetani, S. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2014, 40, 701–712. [Google Scholar] [CrossRef]
- Bedse, G.; Romano, A.; Lavecchia, A.M.; Cassano, T.; Gaetani, S. The role of endocannabinoid signaling in the molecular mechanisms of neurodegeneration in Alzheimer’s Disease. J. Alzheimers Dis. 2015, 43, 1115–1136. [Google Scholar] [CrossRef]
- Crunfli, F.; Vrechi, T.A.; Costa, A.P.; Torrгo, A.S. Cannabinoid receptor type 1 agonist ACEA improves cognitive deficit on STZ-Induced neurotoxicity through apoptosis pathway and NO modulation. Neurotox. Res. 2019, 35, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Sánchez-Pla, A.; Vegas-Lozano, E.; Maldonado, R.; Ferrer, I. Cannabis-based medicine reduces multiple pathological processes in AßPP/PS1 mice. J. Alzheimers Dis. 2015, 43, 977–991. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, H.; Salles, É.L.; Jarrahi, A.; Costigliola, V.; Khan, M.B.; Yu, J.C.; Morgan, J.C.; Hess, D.C.; Vaibhav, K.; Dhandapani, K.M.; Baban, B. Cannabidiol Ameliorates Cognitive Function via Regulation of IL-33 and TREM2 Upregulation in a Murine Model of Alzheimer’s Disease. J. Alzheimers Dis. 2021, 80, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Varvel, S.A.; Wise, L.E.; Niyuhire, F.; Cravatt, B.F.; Lichtman, A.H. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 2007, 32, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Portillo, G.; Rangel-López, E.; Villeda-Hernández, J.; Chavarría, A.; Castellanos, P.; Elmazoglu, Z.; Karasu, Ç.; Túnez, I.; Pedraza, G.; Königsberg, M.; et al. The Pharmacological Inhibition of Fatty Acid Amide Hydrolase Prevents Excitotoxic Damage in the Rat Striatum: Possible Involvement of CB1 Receptors Regulation. Mol. Neurobiol. 2019, 56, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Maya-López, M.; Ruiz-Contreras, H.A.; de Jesús Negrete-Ruíz, M.; Martínez-Sánchez, J.E.; Benítez-Valenzuela, J.; Colín-González, A.L.; Villeda-Hernández, J.; Sánchez-Chapul, L.; Parra-Cid, C.; Rangel-López, E.; et al. URB597 reduces biochemical, behavioral and morphological alterations in two neurotoxic models in rats. Biomed. Pharmacother. 2017, 88, 745–753. [Google Scholar] [CrossRef]
- Elmazoglu, Z.; Rangel-López, E.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Túnez, I.; Aschner, M.; Santamaría, A.; Karasu, Ç. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ (1-42) peptide in rat hippocampal neurons. Neurochem. Int. 2020, 140, 104817. [Google Scholar] [CrossRef]
- Murphy, N.; Cowley, T.R.; Blau, C.W.; Dempsey, C.N.; Noonan, J.; Gowran, A.; Tanveer, R.; Olango, W.M.; Finn, D.P.; Campbell, V.A.; et al. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation. J. Neuroinflamm. 2012, 9, 79. [Google Scholar] [CrossRef]
- Su, S.H.; Wang, Y.Q.; Wu, Y.F.; Wang, D.P.; Lin, Q.; Hai, J. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling. Behav. Brain Res. 2016, 313, 334–44. [Google Scholar] [CrossRef]
- Hasumi, T.; Fukushima, T.; Haisa, T.; Yonemitsu, T.; Waragai, M. Focal dural arteriovenous fistula (DAVF) presenting with progressive cognitive impairment including amnesia and alexia. Intern. Med. 2007, 46, 1317–1320. [Google Scholar] [CrossRef] [PubMed]
- Aso, E.; Juvis, S.; Maldonado, R.; Ferrer, I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice. J. Alzheimers Dis. 2013, 35, 847–858. [Google Scholar]
- Cheng, D.; Spiro, A.S.; Jenner, A.M.; Garner, B.; Karl, T. Long- term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 2014, 42, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Hillen, J.B.; Soulsby, N.; Alderman, C.; Caughey, G.E. Safety and effectiveness of cannabinoids for the treatment of neuropsychiatric symptoms in dementia: a systematic review. Ther. Adv. in drug safety 2019, 10, 1–23. [Google Scholar] [CrossRef]
- Abate, G.; Uberti, D.; Tambaro, S. Potential and Limits of Cannabinoids in Alzheimer's Disease Therapy. Biology (Basel) 2021, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Fahnestock, M.; Racine, R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Progr. Neurobiol. 2004, 73, 1–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Miller, S.D.; Koh, S. Immune mechanisms in epileptogenesis. Front. Cell. Neurosci. 2013, 7, 195. [Google Scholar] [CrossRef]
- Suleymanova, E.M.; Borisova, M.A.; Vinogradova, L.V. Early endocannabinoid system activation attenuates behavioral impairments induced by initial impact but does not prevent epileptogenesis in lithium-pilocarpine status epilepticus model. Epilepsy Behav. 2019, 92, 71–78. [Google Scholar] [CrossRef]
- de Curtis, M.; Jefferys, J.G.R.; Avoli, M. Interictal epileptiform discharges in partial epilepsy: Complex neurobiological mechanisms based on experimental and clinical evidence. In: Jasper’s Basic Mechanisms of the Epilepsies. Eds: Noebels J.L., Avoli M., Rogawski M., Olsen R.W., Delgado-Escueta A.V., USA. Oxford: Oxford University Press. 2012, pp. 1–20.
- Amini, E.; Rezaei, M.; Mohamed Ibrahim, N.; Golpich, M.; Ghasemi, R.; Mohamed, Z.; Raymond, A.A.; Dargahi, L.; Ahmadiani, A. A molecular approach to epilepsy management: from current therapeutic methods to preconditioning efforts. Mol. Neurobiol. 2015, 52, 492–513. [Google Scholar] [CrossRef]
- Magloczky, Z.; Toth, K.; Karlocai, R.; Nagy, S.; Eross, L.; Czirjak, S.; Vajda, J.; Rasonyi, G.; Kelemen, A.; Juhos, V.; Halasz, P.; Mackie, K.; Freund, T.F. Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans. Epilepsia 2010, 51(S3), 115–120. [Google Scholar] [CrossRef]
- Marsicano, G.; Goodenough, S.; Monory, K.; Hermann, H.; Eder, M.; Cannich, A.; Azad, S.C.; Cascio, M.G.; Gutierrez, S.O.; van der Stelt, M.; Lopez-Rodriguez, M.L.; Casanova, E.; Schutz, G.; Zieglgansberger, W.; Di Marzo, V.; Behl, C.; Lutz, B. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003, 302, 84–88. [Google Scholar] [CrossRef]
- Wallace, M.J.; Blair, R.E.; Falenski, K.W.; Martin, B.R.; DeLorenzo, R.J. The Endogenous Cannabinoid System Regulates Seizure Frequency and Duration in a Model of Temporal Lobe Epilepsy. J. Pharmacol. Exp. Ther. 2003, 307, 129–137. [Google Scholar] [CrossRef]
- Wettschureck, N. , Van der Stelt, M., Tsubokawa, H., Kreste, l H., Moers, A., Petrosino, S., Schutz, G., Di Marzo, V. Offermanns S. Forebrain-specific inactivation of Gq/G11 family G proteins results in age-dependent epilepsy and impaired endocannabinoid formation. Mol. Cell. Biol. 2006, 26, 5888–5894. [Google Scholar] [CrossRef]
- Lourenço, J.; Matias, I.; Marsicano, G.; Mulle, C. Pharmacological activation of kainate receptors drives endocannabinoid mobilization. J. Neurosci. 2011, 31, 3243–3248. [Google Scholar] [CrossRef]
- Katona, I.; Freund, T.F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 2008, 14, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Citraro, R.; Russo, E.; Ngomba, R.T.; Nicoletti, F.; Scicchitano, F.; Whalley, B.J. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res. 2013, 106, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Monory, K.; Polack, M.; Remus, A.; Lutz, B.; Korte, M. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J. Neurosci. 2015, 35, 3842–3850. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.J.; Wiley, J.L.; Martin, B.R.; DeLorenzo, R.J. Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur. J. Pharmacol. 2001, 428, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bahremand, A.; Shafaroodi, H.; Ghasemi, M.; Nasrabady, S.E.; Gholizadeh, S.; Dehpour, A.R. The cannabinoid anticonvulsant effect on pentylenetetrazole-induced seizure is potentiated by ultra-low dose naltrexone in mice. Epilepsy Res. 2008, 81, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.; Cheer, J.F. Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus. Front. Integr. Neurosci. 2009, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kozan, R.; Ayyildiz, M.; Agar, E. The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia. 2009, 50, 1760–1767. [Google Scholar] [CrossRef]
- Shubina, L.; Aliev, R.; Kitchigina, V. Attenuation of kainic acid induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs. Epilepsy Res. 2015, 111, 33–44. [Google Scholar] [CrossRef]
- Malkov, A.E.; Shubina, L.V; Kitchigina, V.F. Effects of Endocannabinoid-Related Compounds on the Activity of Septal and Hippocampal Neurons in a Model of Kainic Neurotoxicity: Study Ex Vivo. Opera Med. Physiol. 2018, 4, 23–34. [Google Scholar]
- Ma, L.; Wang, L.; Yang, F.; Meng, X.-D.; Wu, C.; Ma, H. Disease-Modifying Effects of RHC80267 and JZL184 in a Pilocarpine Mouse Model of Temporal Lobe Epilepsy. CNS Neurosci. Ther. 2014, 20, 905–915. [Google Scholar] [CrossRef]
- Gordon, R.Ya.; Mikheeva, I.B.; Shubina, L.V.; Khutsian, S.S.; Kitchigina, V.F. Kainate-Induced Degeneration of Hippocampal Neurons. Protective Effect of Activation of the Endocannabinoid System. Bull. Exp. Biol. Med. 2021, 171, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Post, J.M.; Loch, S.; Lerner, R.; Remmers, F.; Lomazzo, E.; Lutz, B.; Bindila, L. Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy. Frontiers Mol. Neurosci. 2018, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Shubina, L; Aliev, R. ; Kitchigina, V. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res. 2017, 1661, 1–14.
- Mikheeva, I.B.; Shubina, L.; Matveeva, N.; Pavlik, L.L.; Kitchigina, V.F. Fatty acid amide hydrolase inhibitor URB597 may protect against kainic acid–induced damage to hippocampal neurons: Dependence on the degree of injury. Epilepsy Res. 2017, 137, 84–94. [Google Scholar] [CrossRef]
- Monory, K.; Massa, F.; Egertová, M.; Eder, M.; Blaudzun, H.; Westenbroek, R.; Kelsch, W.; Jacob, W.; Marsch, R.; Ekker, M.; Long, J.; Rubenstein, J.L.; Goebbels, S.; Nave, K.A.; During, M.; Klugmann, M.; Wölfel, B.; Dodt, H.U.; Zieglgänsberger, W.; Wotjak, C.T.; Mackie, K.; Elphick, M.R.; Marsicano, G.; Lutz, B. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 2006, 51, 455–466. [Google Scholar] [CrossRef]
- von Ruden, E.L.; Jafari, M.; Bogdanovic, R.M.; Wotjak, C.T.; Potschka, H. Analysis in conditional cannabinoid 1 receptor-knockout mice reveals neuronal subpopulation specific effects on epileptogenesis in the kindling paradigm. Neurobiol. Dis. 2015, 73, 334–347. [Google Scholar] [CrossRef]
- Di Marzo, V.; Fontana, A.; Cadas, H.; Schinelli, S.; Cimino, G.; Schwartz, J.C.; Piomelli, D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 1994, 372, 686–691. [Google Scholar] [CrossRef]
- Vilela, L.R.; Medeiros, D.C.; de Oliveira, A.C.P.; Moraes, M.F.; Moreira, F.A. Anticonvulsant effects of N-arachidonoyl-serotonin, a dual fatty acid amide hydrolase enzyme and transient receptor potential vanilloid type-1 (TRPV1) channel blocker, on experimental seizures: the roles of cannabinoid CB1 receptors and TRPV1 channels. Basic Clin. Pharmacol. Toxicol. 2014, 115, 330–334. [Google Scholar] [CrossRef]
- Rivera, P.; Bindila, L.; Pastor, A.; Pérez-Martнn, M.; Pavón, F.J.; Serrano, A.; de la Torre, R.l.; Lutz, B.; de Fonseca, F.R.; Suárez, J. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front. Cell. Neurosci. 2015, 9, 98. [Google Scholar] [CrossRef]
- Howlett, A.C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 2002. 68–69: 619–31.
- Xu, H.; Steven Richardson, J.; Li, X.M. Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacol. 2003, 28, 53–62. [Google Scholar] [CrossRef]
- Khaspekov, L.G.; Brenz-Verca, M.S.; Frumkina, L.E.; Hermann, H.; Marsicano, G.; Lutz, B. Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur. J. Neurosci. 2004, 19, 1691–1698. [Google Scholar] [CrossRef]
- Bell, B.; Lin, J.J.; Seidenberg, M.; Hermann, B. The neurobiology of cognitive disorders in temporal lobe epilepsy. Nat. Rev. Neurol. 2011, 7, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol. 2016, 12, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Assaf, F.; Fishbein, M.; Gafni, M.; Keren, O.; Sarne, Y. Pre- and Post-Conditioning Treatment with an Ultra-Low Dose of D9-Tetrahydrocannabinol (THC) Protects against Pentylenetetrazole (PTZ)-Induced Cognitive Damage. Behav. Brain Res. 2011, 220, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Colangeli, R.; Pierucci, M.; Benigno, A.; Campiani, G.; Butini, S.; Di Giovanni, G. The FAAH inhibitor URB597 suppresses hippocampal maximal dentate afterdischarges and restores seizure-induced impairment of short and long-term synaptic plasticity. Sci Rep. 2017, 7, 11152. [Google Scholar] [CrossRef]
- Patra, P.H.; Barker-Haliski, M.; Whit, H.S.; Whalley, B.J.; Glyn, S.; Sandhu, H.; Jones, N.; Bazelot, M.; Williams, C.M.; McNeish, A.J. Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia 2019, 60, 303–314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).